岩石学报  2014, Vol. 30 Issue (4): 918-930   PDF    
长江中下游成矿带及邻区地壳速度结构:来自利辛-宜兴宽角地震资料的约束
徐涛1, 张忠杰1, 田小波1, 刘宝峰2, 白志明1, 吕庆田3, 滕吉文1    
1. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029;
2. 中国地震局地球物理勘探中心, 郑州 450002;
3. 中国地质科学院矿产资源研究所, 国土资源部成矿作用和资源评价重点实验室, 北京 100037
摘要:为了理解长江中下游地区在中生代成矿的深部动力学过程,Sinoprobe-03-02项目于2011年9月至10月,在跨宁芜矿集区和郯庐断裂带实施了从安徽利辛至江苏宜兴450km长的宽角反射/折射地震剖面。速度剖面结果显示,Moho面深度和地壳速度结构在郯庐断裂两侧东西方向存在明显的差异:(1)在东部扬子块体内部,地壳覆盖层厚3~5km,西部的合肥盆地下方,则达到4~7km。(2)剖面平均Moho面深度为30~32km左右,在郯庐断裂下方,Moho面深度在35km左右;在宁芜矿集区下方,Moho面整体深度偏浅,达30~31km左右,但局部范围内,Moho面深度至34km左右。(3)剖面的下地壳平均速度在6.5~6.6km/s左右,在宁芜矿集区下方,下地壳速度偏低,为6.4~6.5km/s左右。剖面上地幔顶部的速度结构平均在8.0~8.2km/s。在宁芜矿集区下方,速度偏低,为7.9~8.1km/s左右。(4)郯庐断裂带的下方,从地表开始,还存在20多千米长的低速异常带,一直延伸到Moho面附近。剖面的宁芜矿集区下方Moho面上隆、下地壳及上地幔的低速异常等壳幔结构特征,预示下地壳不以榴辉岩残体为主,支持燕山期地幔岩浆的上涌和侵入并成矿,是热上涌物质的源地。
关键词长江中下游成矿带     地壳速度结构     宽角地震资料     利辛-宜兴    
Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas:Constraints from active source seismic experiment along the Lixin to Yixing profile in East China
XU Tao1, ZHANG ZhongJie1, TIAN XiaoBo1, LIU BaoFeng2, BAI ZhiMing1, LÜ QingTian3, TENG JiWen1    
1. State key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, China;
3. Key Laboratory of Metallogeny and Mineral Assessment, MLR, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: To understand the formation and the tectonic process of the Mesozoic Middle-Lower Yangtze Metallogenic Belt (YMB), the SinoProbe program conducted a 450km-long active source seismic experiment along a profile from Lixing to Yixing. We herein present the modeling results and the interpretations of the crustal velocity structure obtained with this wide-angle seismic dataset. Our results show: (1) The thickness of the sedimentary layer is 3~5km in the Yangtze block, and 4~7km in the Hefei basin. (2) The average Moho depth is 30~32km along the profile. The Moho depth is up to 35km beneath the Tan-lu Fault, and shallows up to 30~31km beneath the Ningwu ore district. (3) The average velocity of the lower crust is 6.5~6.6km/s along the profile, decreases to 6.4~6.5km/s beneath the Ningwu ore district. The average velocity of uppermost mantle is 8.0~8.2km/s along the profile, decreases to 7.9~8.1km/s beneath the Ningwu ore district. (4) An over 20-km long low velocity belt is seen from the surface to the Moho nearby. The Moho uplift, the low velocity anomalies in the lower crust and the uppermost mantle, all these features can be reasonably regarded as the relics of past asthenosphere upwelling and lithosphere thinning, therefore support the Mesozoic magmatism and mineralization to be consequence of mantle upwelling process.
Key words: Middle-Lower Yangtze metallogenic belt     Crustal velocity structure     Wide-angle seismic data     Lixin-Yixing    
1 引言

在印支-早燕山期,华北和扬子两大块体碰撞对接,标志着新的中国大陆的形成,大别-苏鲁地区的变质杂岩是这一碰撞的重要标志。大量放射性同位素测年数据表明这一超高压变质带形成于238~218Ma(Ames et al., 1993; 李曙光等,1997)。伴随燕山期强烈的构造-岩浆-成矿活动,在扬子块体的北缘,华北和扬子块体的边界,形成长江中下游成矿带(董树文等,2007; 宁芜研究项目编写小组,1978)。

长江中下游成矿带,包括宁镇、宁芜、铜陵、庐枞、安庆-贵池、九瑞、鄂东南7个矿集区以及超过200种多金属矿种(常印佛等,1991; Mao et al., 2006; Pan and Dong, 1999),对中国东部经济的发展有举足轻重的地位。成矿主要源自140~125Ma的早白垩纪的矽卡岩、斑岩等类型火成岩(Chen et al., 2001; Mao et al., 2006; Sun et al., 2003)。在如此狭窄的区域内发生如此大规模的金属聚集,深部的岩浆活动机制及动力学过程是什么,一直是争论的焦点。目前有关多种矿石起源及白垩纪岩浆岩的形成的模型已经被提出,主要包括:(1)增厚的下地壳熔融(张旗等, 20012002);(2)拆沉的下地壳熔融(侯增谦等,2007;Wang et al., 20042006);(3)底侵的玄武岩下地壳熔融(王强等,2001);(4)太平洋板块洋中脊的俯冲(Ling et al., 2009)。因此,获取深部壳幔结构有关的地球物理信息,有助于理解上述构造运动及岩浆活动过程。

尽管该地区已经有大量矿产勘查的地球物理调查(常印佛等,1991),地球物理研究结果表明成矿带下方及相邻区域Moho面的深度在28~32km左右(滕吉文等,1985; 陈沪生,1988; Dong et al., 2004; 吕庆田等,2004Zhang et al., 20052007; Bai and Wang, 2006; Bai et al., 2007);下地壳显示为低速(陈沪生,1988)和层状强反射(吕庆田等,2004),被普遍认为是上地幔物质对下地壳的侵入(吕庆田等,2004)。由于资料使用的有限,深部壳幔大尺度的中生代成矿过程,仍然有待理解。

为了更好的理解长江中下游成矿带岩浆活动过程的深部构造背景及动力学机制,国土资源部“深部探测技术与实验研究专项”(Dong et al., 2013吕庆田等,2014)在该地区实施了一条横穿宁芜矿集区的多学科深部探测剖面。剖面东南起自扬子克拉通北缘的江苏宜兴,向北西方向穿过宁芜矿集区和郯庐断裂带,终止于华北块体的安徽利辛。主要探测手段包括宽角地震反射/折射,近垂直反射地震剖面(Lü et al., 2013梁锋等,2014),宽频带天然地震剖面(史大年等,2012Shi et al., 2013Jiang et al., 2013江国明等,2014)和大地电磁剖面(强建科等,2014张昆等,2014肖晓等,2014严加永等,2014),并结合了区域岩石地球化学、成矿学和年代学等方面的分析测试研究。本文利用宽角地震数据,来揭示该地区壳幔精细速度结构,并探讨成矿带深部动力学过程与壳幔结构关系。 2 构造背景

长江中下游地区位于大别-苏鲁超高压变质带的前陆,北部以北西向的襄樊-广济断裂和北东向的郯-庐断裂带为界,南部以江南断裂与江南古陆为邻,总体上呈北西狭窄、北东宽阔的“V”字型地带。晋宁-澄江运动使多个基底联合,之后发育了震旦纪之后的统一盖层,构成“一盖多底”的格局(常印佛等,1996)。震旦系-志留系为陆表海碳酸盐岩-碎屑岩相沉积,加里东运动晚期隆起成陆,缺失下-中泥盆统。海西期开始沉积了上泥盆统-下三叠统的碎屑岩、碳酸盐岩和海陆交互含煤系建造,其间剧烈的升降运动形成了多个平行不整合面,造成下石炭统部分地层缺失,而在上石炭统底部形成块状硫化物层,在二叠系形成孤峰和大隆组深水硅质岩。中三叠世受印支运动影响,主要为局限海含膏盐碳酸盐岩沉积,之后开始大规模褶皱隆升,至中侏罗世发育陆相盆地沉积。上侏罗统-下白垩统为燕山期大规模构造-岩浆活动形成的一套钙碱性-碱性火山岩、火山碎屑岩建造,指示本区进入陆内伸展构造环境。伴随燕山期强烈的构造-岩浆-成矿活动,形成长江中下游成矿带现今的主体面貌,其成矿作用呈现“层控”和“多位一体”的规律(吕庆田等,2007)。

长江中下游成矿带被广泛认为是形成于陆内环境(董树文等,2011; 毛景文和王志良,2000)和大陆演化的非造山阶段(侯增谦等,2007),是在被动的大陆边缘基础上发展形成的(Yin and Nie, 1993)。成矿带内的矿床与具有不同含量富集地幔物质的的埃达克型岩有关,该类型岩石有高含量K2O、中低到负的εNd含量及高氧逸度状态特征(侯增谦等,2007; Wang et al., 20042006; Xu et al., 2002)。上述特征与其它世界级的成矿带明显不同:比如安第斯山成矿带,形成于典型的活动大陆边缘,与海洋板片的俯冲有关(Hildreth and Moorbath, 1988);又如青藏高原的冈底斯成矿带,形成于过去的活动大陆边缘且与大陆之间碰撞有关(Hou and Cook, 2009Nábělek et al., 2009)。因此,长江中下游成矿带是研究陆内成矿理论的理想场所。

3 “宜兴-利辛”剖面宽角地震数据 3.1 地震数据采集

图 1所示,“宜兴-利辛”深地震宽角反射/折射探测剖面,穿过了茅山、小丹阳-南棱、滁河、郯庐等断裂构造带。探测剖面横跨江苏、安徽两省,穿过的主要地区有宜兴、溧水、溧阳、全椒、定远、淮南、利辛等地。2011年9月-10月,沿探测剖面设计6个人工源爆破激发点(总数达 13.2吨TNT),采取井下组合爆破激发地震波场的方式,炮点间距 60~90km;沿剖面布设450台(纵测线 250台,非纵测线 200台)人工地震测深专用便携式三分量数字地震仪同时记录观测,接 收器间距1.5~2.0km,剖面总长450km左右,记录来自地壳上地幔顶部不同深度范围、不同属性的深层地震波信息。

图 1长江中下游成矿带人工源深地震探测观测系统 ★ 为炮点,▲ 为接收器; ▲ 为宽频带地震台站;青色粗线条为大地电磁剖面;TLF-郯庐断裂;SDF-寿县-定远断裂;CHF-滁河断裂;MSF-茅山东侧断裂;JNF-江南断裂 Fig. 1Geophysical surveys in the Middle-Lower Yangtze metallogenic belt ★ denote active sources,▲ denote receivers; ▲ denote transportable broadb and stations;Cyan thick line denotes magnetotelluric(MT)profile; TLF-Tan-Lu Fault; SDF-Shouxian-Dingyuan Fault;CHF-Chuhe Fault;MSF-East Maoshan Fault;JNF-Jiangnan Fault

3.2 震相分析与数据处理

震相识别包括浅层地壳结晶基底的反射和折射震相Pg,表现为初至波;来自一级间断Moho面的Pm反射强震相;上地幔顶部弱速度梯度层的折射波,即Pn震相,视速度为8.0~8.1km/s;地壳内部二级速度间断面的反射波,能量较弱,不同区域分为不同的几组,统称为Pc震相,本地区细分成P1、P2和P3壳内反射震相。经过模型的多次修正,并利用射线追踪正演计算进行多震相的走时拟合(Cerveny et al., 1988; Cerveny,2001; 徐涛等,2004; Xu et al., 20062010,2014; 李飞等,2013; Vidale,1988; Zelt and Smith, 1992),获得最终的壳幔结构模型。震相拟合过程中,震相曲线的截距主要反映反射界面的深度;震相曲线斜率主要反映界面上部地层的平均速度,如Pm震相,远偏移距的视速度即近似为反射点所在下地壳的速度。宽频带地震结果显示长江中下游成矿带下地壳存在5%左右的速度各向异性(Shi et al., 2013),对于高频近似的射线走时拟合影响不大。6炮最终的震相拟合、射线追踪及理论地震图见图 2-图 7

图 2“利辛-宜兴”剖面Sp01炮 (a)-地震震相和走时拟合;(b)-射线追踪结果;(c)-理论地震图 Fig. 2Shot Sp01 of the “Lixin-Yixing” profile (a)-picked seismic phases and calculated traveltimes;(b)-theoretical ray-paths ;(c)-synthetic seismograms

图 3“利辛-宜兴”剖面Sp02炮 (a)-地震震相和走时拟合;(b)-射线追踪结果;(c)-理论地震图 Fig. 3Shot Sp02 of the “Lixin-Yixing” profile (a)-picked seismic phases and calculated traveltimes;(b)-theoretical ray-paths ;(c)-synthetic seismograms

图 4“利辛-宜兴”剖面Sp03炮 (a)-地震震相和走时拟合;(b)-射线追踪结果;(c)-理论地震图 Fig. 4Shot Sp03 of the “Lixin-Yixing” profile (a)-picked seismic phases and calculated traveltimes;(b)-theoretical ray paths;(c)-synthetic seismograms

图 5“利辛-宜兴”剖面Sp04炮 (a)-地震震相和走时拟合;(b)-射线追踪结果;(c)-理论地震图 Fig. 5Shot Sp04 of the “Lixin-Yixing” profile (a)-picked seismic phases and calculated traveltimes;(b)-theoretical ray-paths ;(c)-synthetic seismograms

图 6“利辛-宜兴”剖面Sp05炮 (a)-地震震相和走时拟合;(b)-射线追踪结果;(c)-理论地震图 Fig. 6Shot Sp05 of the “Lixin-Yixing” profile (a)-picked seismic phases and calculated traveltimes;(b)-theoretical ray-paths ;(c)-synthetic seismograms

图 7“利辛-宜兴”剖面Sp06炮 (a)-地震震相和走时拟合;(b)-射线追踪结果;(c)-理论地震图 Fig. 7Shot Sp06 of the “Lixin-Yixing” profile (a)-picked seismic phases and calculated traveltimes;(b)-theoretical ray-paths ;(c)-synthetic seismograms
3.3 走时拟合和射线覆盖

“利辛-宜兴”剖面6炮的走时拟合结果(图 8)和射线覆盖图(图 9)显示该区域剖面的射线覆盖密度足够,走时拟合非常理想,走时拟合得到的二维速度结构是可靠的。

图 8“利辛-宜兴”剖面6炮震相的走时拟合结果 蓝色十字为拾取走时;红色圆圈为计算走时 Fig. 8Comparision between observed(blue cross) and calculated(red circle)traveltimes for all reflection events obtained from the 6 shot gathers

图 9“利辛-宜兴”剖面6炮地震射线覆盖图 Fig. 9Summarized diagram showing the seismic ray-path coverage of the whole crust along the profile
4 “宜兴-利辛”剖面速度结构 4.1 剖面二维速度结构

通过6炮走时数据拟合,最终获得450km长二维地壳速度结构(图 10)。可以看出,整条剖面的Moho面深度和地壳的速度结构在郯庐断裂两侧东西方向存在明显的差异。在东部扬子块体内部,地壳覆盖层厚度3~5km,西部的合肥盆地下方,则达到4~7km。剖面平均Moho面深度为30~32km左右(本文Moho面深度均指相对大地水准面深度)。在郯庐断裂下方,Moho面深度在35km左右;在宁芜矿集区下方,Moho面整体深度偏浅,达30~31km左右,但局部范围内,Moho面深度至34km左右。

图 10卫星布格重力异常曲线(上)及“利辛-宜兴”剖面二维地壳速度结构(下) TLF-郯庐断裂; CHF-滁河断裂;MSF-茅山东侧断裂;JNF-江南断裂 Fig. 10Bouguer gravity anomalies(upper panel) and crustal velocity structure of the “Lixin-Yixing” profile(lower panel) TLF-Tan-Lu Fault; CHF-Chuhe Fault;MSF-East Maoshan Fault;JNF-Jiangnan Fault

地壳结构可以近似分为上(地表至P1,图 10)、中(P1至P3)、下(P3至Moho)地壳。剖面的下地壳平均速度在6.5~6.6km/s左右,在宁芜矿集区下方,下地壳速度偏低,为6.4~6.5km/s左右。剖面上地幔顶部的速度结构平均在8.0~8.2km/s。但在宁芜矿集区下方,速度偏低,为7.9~8.1km/s左右。郯庐断裂带的下方,从地表开始,还存在20多千米长的低速异常带,一直延伸到Moho面附近。

图 10的上方为该剖面的卫星布格重力异常结果,和Moho面深度有很好的相关性,如在郯庐断裂的西侧的合肥盆地表现出较明显的低重力异常,和该地段Moho面较深有很好的对应;结果表明了在该区域,Moho形态,即壳幔间断面形态是布格重力异常的主要因素(张永谦等,2014)。

4.2 结果比较

平行于宽角地震剖面,“深部探测技术与实验研究专项”(SinoProbe-03-02)还同时进行了宽频带流动地震台站观测、近垂直反射地震探测及大地电磁探测等综合地球物理探测。远震体波成像结果显示成矿带下方150km深度的上地幔中存在着明显的低速异常(Jiang et al., 2013; 江国明等,2014),认为是长江中下游成矿带曾发生软流圈物质上涌和地壳减薄所残留的痕迹(史大年等,2012)。宽角剖面速度结果同样显示宁芜矿集区下方下地壳,尤其是上地幔顶部,存在明显的低速异常(图 10)。尽管两种方法的分辨尺度不同,但均显示了类似的低速异常区。体波接收函数结果显示郯庐断裂下方Moho面深度为36km,宁芜矿集区Moho面上隆至28~30km,成矿过程类似MASH过程(Melting,Assimilation,Storage,Homogenisation)(史大年等,2012Shi et al., 2013)。地震深反射结果同样显示宁芜矿集区下方Moho面整体上隆,但局部存在西倾的反射结构(Lü et al., 2013)。宽角剖面结果同样显示在郯庐断裂下方,Moho深度在35km左右,在宁芜矿集区,Moho面整体上隆,但在局部区域却存在下沉。

大地电磁剖面较短,如在郯庐断裂西侧的合肥盆地,显示了大片的低电阻率异常,该异常不仅和重力异常有 很好的对应,一方面说明该区段在地壳范围内确实存在低密度、高电导率的物质;另一方面也说明此区段上地幔埋深较大,和地震剖面的结果非常吻合。宁芜矿集区下方上中地壳速度偏高,和大地电磁显示高阻异常结果一致(强建科等,2014)。

5 长江中下游成矿动力学过程与壳幔结构

华北板块和扬子板块在印支-早燕山期(238~218Ma)碰撞对接,在燕山期(140~125Ma)岩浆活动形成长江中下游成矿带,深部壳幔运动及成矿的动力学过程如何,值得关注。

根据超高压变质岩在苏北-胶南和胶东地区的分布,华北与扬子块体的地表地幔缝合线应位于五莲断裂一线。然而Li(1994)根据南京以东的东西走向航磁负异常,提出华北与扬子陆块的深部岩石圈地缝合线应位于南京以东一线,并提出俯冲陆壳上、下地壳发生分离的构造模型来解释。Chung(1999)通过对苏北新生代玄武岩的地球化学研究,以及与华北和扬子陆块内部新生代玄武岩的对比也指出,苏北六合一带的玄武岩的地球化学特征表明岩石圈地幔是华北型的,而非扬子型的。观测结果有力的支持了郯庐断裂以东深部地幔缝合线应位于长江一线。应当指出郯庐断裂以东的深部地幔缝合线不都是东西走向的。如果南京以东东西走向的航磁负异常可指示深部地幔缝合线的位置,则在南京以西,该航磁负异常带拐向南西方向延伸,并在桐城附近与郯庐断裂带相接见。这说明郯庐断裂带以东深部地幔缝合线受郯庐断裂的左行走滑的影响向北发生了位移,并在桐城—南京段被拖曳呈北东向走向。据此,这一位移距离约为120~150km(李曙光,2001),与Li(1994)Chung(1999)的估计一致。

长江中下游成矿大地构造背景和过程经历了由板缘到板内的环境,成矿作用发生在挤压向伸展的转换过程;其次,成岩成矿受基底构造和深部作用控制、与特有的基底有关(董树文等,2011)。从全球大型成矿带的构造背景而言,成矿带多形成于板块的边缘,这是因为板块边缘的活动型决定了板缘成为能量交换、物质交换、流体活动的界面,非常有利成矿。长江中下游这种曾经“板缘”的背景作为岩石圈结构的不连续带,对后期在板内环境的活化和成矿产生了深刻的影响。

长江中下游原有的三叠纪前陆构造在晚侏罗纪构造作用下,发生强烈改造,主要受控于太平洋板块斜向俯冲产生的构造环境,主应力场由南北向转为近东西向(任纪舜,1991陶奎元等,1998戚建中等,2000),岩石圈大增厚到大减薄(邓晋福等,1999董树文等,2000);与此同时,华北克拉通被破坏,东部岩石圈减薄(朱日祥等,2011Chen et al., 2006);郯-庐断裂发生大规模的左行走滑变形,造成了郯庐断裂东西两侧变形的差异,这同时也导致了郯庐断裂两侧速度结构存在显著差异。晚侏罗纪的汇聚构造造成了中国东部整体抬升、侵蚀,缺失了晚侏罗统沉积,晚侏罗纪开始的挤压造山延续到早白垩纪早期,大致从140Ma后转为大规模的伸展,中生代以来太平洋板块向东亚大陆的持续俯冲所引发的非稳态地幔流动,造成了晚侏罗纪加厚的岩石圈的跨塌,软流圈上涌,大规模的岩浆侵入和火山喷发,并沿着华北和扬子块体的深部缝合带位置(李曙光,2001),直到地表,同时伴有巨量金属的堆积和成矿(毛景文等,2005)。

宁镇(南京-镇江)地区的中生代安基山中酸性侵入岩以亏损重稀土和钇及富集锶为成分特征,具有埃达克(adakite)成分特征。它们与消减过程的板片熔融无关,也不是基性岩浆分离结晶和地壳物质混染的产物,很有可能是相对较厚的地壳下部的镁铁质物质成分熔融产生的,意味着中生代宁镇地区的地壳厚度可能大于40km(许继峰等,2001Xu et al., 2002)。预示着长江中下游成矿带大陆地壳底部形成铁镁质/超铁镁质壳根,增厚的下地壳发生榴辉岩相变(吕庆田等,2004)。中生代以来,软流圈上涌和底侵作用,下地壳和上地幔的拆沉,地壳厚度明显减薄至目前的30~34km。宽角速度剖面显示宁芜矿集区下方下地壳和上地幔为低速特征(图 10),揭示了长江中下游成矿带下地壳不应该以榴辉岩残留体为主体,宽频地震结果解释为MASH成矿过程产生的榴辉岩体可能已经随着拆沉作用沉入到地幔深处(Shi et al., 2013)。

宽角地震速度结构剖面、远震接收函数CCP成像剖面、远震体波成像速度结构、近垂直深反射地震剖面、卫星重力异常结果以及大地电磁测深等综合地球物理信息,揭示了宁芜矿集区下方Moho面上隆、下地壳及上地幔的低速异常等深部结构特征,可能是岩石圈地幔的薄弱地带,支持了燕山期地幔岩浆上涌和侵入并成矿,是热上涌物质的源地。综合地球物理信息从不同的角度揭示了成矿带及邻域的深部壳幔结构特征,为深入了解成矿带的构造演化及矿产资源的远景预测提供重要的深部基础。

6 结论

在印支-早燕山期,华北和扬子两大块体碰撞对接,形成了新的中国大陆。中生代以来太平洋板块向东亚大陆的持续俯冲所引发的非稳态地幔流动,造成了晚侏罗纪加厚的岩石圈的跨塌,软流圈上涌,大规模的岩浆侵入和火山喷发,并沿着华北和扬子块体的深部缝合带位置,直到地表,产生长江中下游成矿带。剖面的宁芜矿集区下方Moho面上隆、下地壳及上地幔的低速异常等壳幔结构特征,预示下地壳不以榴辉岩残体为主,支持燕山期地幔岩浆的上涌和侵入并成矿,是热上涌物质的源地。

致谢 感谢中国地震局物探中心的野外地震数据采集工作;感谢地震局物探中心王夫运、赵金仁、嘉世旭、张成科、张建狮研究员有益的帮助。感谢史大年研究员、强建科教授、江国明副教授的指导和帮助。感谢杨宝俊教授审稿中有益的批评和指导意见。

参考文献
[1] Ames L, Tilton GR and Zhou G. 1993. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites.   Geology, 21(4): 339-342
[2] Bai ZM and Wang CY. 2006. Crustal P-wave velocity structure in Lower Yangtze region: Reinterpretation of Fuliji-Fengxian deep seismic sounding profile.   Chinese Science Bulletin, 51(19): 2391-2400
[3] Bai ZM, Zhang ZJ and Wang YH. 2007. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles. J. Geophys. Eng.  , 4(4): 436-442
[4] Cerveny V, Klimes L and Psencik I. 1988. Complete seismic-ray tracing in three-dimensional structures. In: Doornbos DJ (ed.). Seismological Algorithms.   New York: Academic Press, 89-168
[5] Cerveny V. 2001. Seismic Ray Theory. Cambridge: Cambridge University Press
[6] Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-379 (in Chinese)
[7] Chang YF, Dong SW and Huang DZ. 1996. On tectonics of "Poly-basement with one cover" in Middle-Lower Yangtze Craton China.   Volcanology and Mineral Resources, 17(1-2): 1-15(in Chinese with English abstract)
[8] Chen HS. 1988. Comprehensive geophysical survey of HQ-13 line in the Lower Yangtze Reaches and its geological significance. Oil & Gas Geology, 9(3): 211-222 (in Chinese with English abstract)
[9] Chen JF, Yan J, Xie Z, Xu X and Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: Constraints on sources.   Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 719-731
[10] Chen L, Zheng TY and Xu WW. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J. Geophys. Res.  , 111: B09312
[11] Chung SL. 1999. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between North and South China.   The Journal of Geology, 107(3): 301-312
[12] Deng JF, Mo XX, Zhao HL, Luo ZH, Zhao GC and Dai SQ. 1999. The Yanshanian lithosphere-asthenosphere catastrophe and metallogenic environment in East China.   Mineral Deposits, 18(4): 309-315(in Chinese with English abstract)
[13] Dong SW, Wu XH, Wu ZH, Deng JF, Gao R and Wang CS. 2000. On tectonic seesawing of the East Asia Continent: Global implication of the Yanshanian Movement. Geological Review, 46(1): 8-13(in Chinese with English abstract)
[14] Dong SW, Gao R, Cong BL, Zhao ZY, Liu XC, Li SZ, Li QS and Huang DD. 2004. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling.   Terra Nova, 16(6): 319-324
[15] Dong SW, Zhang YQ, Long CX, Yang ZY, Ji Q, Wang T, Hu JM and Chen XH. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement.   Acta Geologica Sinica, 81(11): 1449-1461(in Chinese with English abstract)
[16] Dong SW, Ma LC, Liu G, Xue HM, Shi W and Li JH. 2011. On dynamics of the Metallogenic Belt of Middle-Lower Reaches of Yangtze River, eastern China. Acta Geologica Sinica, 85(5): 612-625(in Chinese with English abstract)
[17] Dong SW, Li TD, Lü QT, Gao R, Yang JS, Chen XH, Wei WB, Zhou Q and SinoProbe team. 2013. Progress in deep lithospheric exploration of the continental China: A review of the SinoProbe. Tectonophysics, 606: 1-13, doi: 10.1016/j.tecto.2013.05.  038
[18] Hildreth W and Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile.   Contributions to Mineralogy and Petrology, 98(4): 455-489
[19] Hou ZQ, Pan XF, Yang ZM and Qu XM. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings.   Geoscience, 21(2): 332-351(in Chinese with English abstract)
[20] Hou ZQ and Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue.   Ore Geology Reviews, 36(1-3): 2-24
[21] Jiang GM, Zhang GB, Lü QT, Shi DN and Xu Y. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics. Tectonophysics, 606: 36-47, doi: 10.1016/j.tecto.2013.03.  026
[22] Jiang GM, Zhang GB, Lü QT, Shi DN and Xu Y. 2014. Deep geodynamics of mineralization beneath the Middle-Lower Yangtze River: Evidence from teleseismic tomography. Acta Petrologica Sinica, 30(4): 907-917(in Chinese with English abstract)
[23] Li F, Xu T, Wu ZB, Zhang ZJ and Teng JW. 2013. Segmentally iterative ray tracing in 3-D heterogeneous geological models. Chinese J. Geophys., 56(10): 3514-3522 (in Chinese with English abstract)
[24] Li SG, Li HM, Chen YZ, Xiao YL and Liu DL. 1997. Chronology of UHPM rocks in Dabieshan-Sulu terrain: Ⅱ zircon U-Pb isotopic system. Science in China (Series D), 27(3): 200-206 (in Chinese)
[25] Li SG. 2001. Infrastructure of Mesozoic magmatic rocks and copper-iron metallogenic belt in the Middle and Lower Yangtze River Reaches.   Geology of Anhui, 11(2): 118-123(in Chinese with English abstract)
[26] Li ZX. 1994. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault.   Geology, 22(8): 739-742
[27] Liang F, Lü QT, Yan JY and Liu ZD. 2014. Deep structure of Ningwu volcanic basin in the Middle and Lower Reaches of Yangtze River: Insights from reflection seismic data. Acta Petrologica Sinica, 30(4): 941-956(in Chinese with English abstract)
[28] Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun W. 2009. Cretaceous ridge subduction along the Lower Yangtze River belt, eastern China.   Economic Geology, 104(4): 303-321
[29] Lü QT, Hou ZQ, Yang ZS and Shi DN. 2004. Upplating process and dynamics evolution mode in the Middle and Lower Reaches of Yangtze River: Constrain of physical geography information. Science in China (Series D), 34(9): 783-794 (in Chinese)
[30] Lü QT, Yang ZS, Yan JY and Xu WY. 2007. The metallogenic potential, prospecting idea and primary attempt in depth of the ore belt of the Middle and Lower Reaches of the Yangtze River: A case study of Tongling ore district. Acta Geologica Sinica, 81(7): 865-881(in Chinese with English abstract)
[31] Lü QT, Yan JY, Shi DN, Dong SW, Tang JT, Wu MA and Chang YF. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 606: 60-77, dio: 10.1016/j.tecto.2013.04.  006.
[32] Lü QT, Dong SW, Shi DN, Tang JT, Jiang GM, Zhang YQ, Xu T and SinoProbe-03-CJ group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze metallogenic belt: A review from SinoProbe. Acta Petrologica Sinica, 30(4): 889-906(in Chinese with English abstract)
[33] Mao JW and Wang ZL. 2000. A preliminary study on time limits and geodynamic setting of large-scale metallogeny in East China.   Mineral Deposits, 19(4): 289-296(in Chinese with English abstract)
[34] Mao JW, Xie GQ, Li XF, Zhang ZH, Wang YT, Wang ZL, Zhao CS, Yang FQ and Li HM. 2005. Geodynamic process and metallogeny: History and present research trend, with a special discussion on continental accretion and related metallogeny throughout geological history in South China.   Mineral Deposits, 24(3): 193-205(in Chinese with English abstract)
[35] Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications.   Ore Geology Reviews, 29(3-4): 307-324
[36] Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su HP, Chen J, Huang BS and the Hi-CLIMB team. 2009.   Underplating in the Himalaya-Tibet collision zone revealed by the HI-CLIMB experiment, Science, 325(5946): 1371-1374
[37] Ningwu Project Group. 1978. The Porphyrite Iron Deposit of Ningwu. Beijing: Geological Publishing House, 1-320(in Chinese)
[38] Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits.   Ore Geology Reviews, 15(4): 177-242
[39] Qi JZ, Liu HY and Jiang YH. 2000. Yenshanian subduction and strike-sliping regime of East China, and its control of ore localization.   Volcanology and Mineral Resources, 21(4): 244-266(in Chinese with English abstract)
[40] Qiang JK, Tang JT, Wang JY, Pan W and Zhang QJ. 2014. Magnetotelluric structure along Huai-Liyang profile. Acta Petrologica Sinica, 30(4): 957-965(in Chinese with English abstract)
[41] Ren JS. 1991. The basic characteristics of the tectonic evolution of the continental lithosphere in China. Regional Geology of China, (4): 289-293(in Chinese with English abstract)
[42] Shi DN, Lü QT, Xu WY, Yan JY, Zhao JH, Dong SW and Chang YF. 2012.   Crustal structures beneath the Mid-lower Yangtze Metallogenic Belt and its adjacent regions in eastern China: Evidences from P-wave receiver function imaging for a MASH metallization process? Acta Geologica Sinica, 86(3): 389-399 (in Chinese)
[43] Shi DN, Lü QT, Xu WY, Yan JY, Zhao JH, Dong SW, Chang YF and SinoProbe-03-02 team. 2013. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization. Tectonophysics, 606: 48-59, doi: 10.1016/j.tecto.2013.01.  012
[44] Sun WD, Xie Z, Chen JF, Zhang X, Chai ZF, Du AD, Zhao JS, Zhang CH and Zhou TF. 2003. Os-Os dating of copper and molybdenum deposits along the Middle and Lower Reaches of the Yangtze River, China.   Economic Geology, 98: 175-180
[45] Tao KY, Mao JR, Yang ZL, Zhao Y, Xing GF and Xue HM. 1998. Mesozonic petro-tectonic associations and records of the geodynamic processes in Southeast China.   Earth Science Frontiers, 5(4): 183-192(in Chinese with English abstract)
[46] Teng JW, Sun KZ, Xiong SB, Yao H, Yin ZX, Cheng LF, Xue CS, Tian DS, Hao TY, Lai MH and Wu MC. 1985. Explosion seismological study for velocity distribution and structure of the crust and upper mantle from Maanshan to Qidong of the southern parts of China.   Chinese Journal of Geophysics, 28(2): 155-169(in Chinese with English abstract)
[47] Vidale JE. 1988. Finite-difference calculation of travel times. Bull. Seismol. Soc. Am.  , 78(6): 2062-2076
[48] Wang Q, Zhao ZH, Xiong XL and Xu JF. 2001. Melting of the underplated basaltic lower crust: Evidence from the Shaxi sodic quartz diorite-porphyrites, Anhui Province, China.   Geochimica, 30(4): 353-362 (in Chinese with English abstract)
[49] Wang Q, Xu JF, Zhao ZH, Bao ZW, Xu W and Xiong XL. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of East China: Adakites in an extensional tectonic regime within a continent.   Geochemical Journal, 38(5): 417-434
[50] Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization.   Lithos, 89(3-4): 424-446
[51] Xiao X, Wang XY, Tang JT, Zhou C, Wang YQ, Chen XB and Lü QT. 2014. Conductivity structure of the Lujiang-Zongyang ore concentrated area, Anhui Province: Constraints from magnetotelluric data. Acta Geologica Sinica, 88(4): in press (in Chinese with English abstract)
[52] Xu JF, Wang Q, Xu YG, Zhao ZH and Xiong XL. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area: Constraint to origin of the magma with HREE and Y depletion. Acta Petrologica Sinica, 17(4): 576-584 (in Chinese with English abstract)
[53] Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002.   Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30(12): 1111-1114
[54] Xu T, Xu GM, Gao EG, Zhu LB and Jiang XY. 2004. Block modeling and shooting ray tracing in complex 3-D media. Chinese J. Geophys.  , 47(6): 1118-1126 (in Chinese with English abstract)
[55] Xu T, Xu GM, Gao EG, Li YC, Jiang XY and Luo KY. 2006. Block modeling and segmentally iterative ray tracing in complex 3D media.   Geophysics, 71(3): T41-T51
[56] Xu T, Zhang ZJ, Gao EG, Xu GM and Sun L. 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seismol. Soc. Am.  , 100(2): 841-850
[57] Yan JY, Lü QT, Chen XB, Qi G, Liu Y, Guo D and Chen YJ. 2014. 3D lithologic mapping test based on 3D inversion of gravity and magnetic: A case study in Lu-Zong ore concentration district, Anhui Province. Acta Petrologica Sinica, 30(4): 1041-1053(in Chinese with English abstract)
[58] Yin A and Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault systems, eastern Asia.   Tectonics, 12(4): 801-813
[59] Zelt CA and Smith RB. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int.  , 108(1): 16-34
[60] Zhang K, Yan JY, Lü QT, Wei WB, Shao LS, Wang HF and Yang ZW. 2014. The crust-mantle conductivity structure of Nanjing (Ning)-Wuhu (Wu) in the Middle and Lower Reaches of Yangtze River: Broadband magnetotelluric sounding research. Acta Petrologica Sinica, 30(4): 966-978(in Chinese with English abstract)
[61] Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP and Guo GJ. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan Period from eastern China. Acta Petrologica Sinica, 17(2): 236-244(in Chinese with English abstract)
[62] Zhang Q, Wang Y, Liu W and Wang YL. 2002. Adakite: Its characteristics and implications. Geological Bulletin of China, 21(7): 431-435(in Chinese with English abstract)
[63] Zhang YQ, Lü QT, Teng JW, Wang QS and Xu T. 2014. Discussion on the crustal density structure and deep mineralization background in the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from the gravity field. Acta Petrologica Sinica, 30(4): 931-940(in Chinese with English abstract)
[64] Zhang ZJ, Badal J, Li YK, Chen Y, Yang LQ and Teng JW. 2005. Crust-upper mantle seismic velocity structure across southeastern China.   Tectonophysics, 395(1-2): 137-157
[65] Zhang ZJ and Wang YH. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Phys. Earth Planet. Inter.  , 165(1-2): 114-126
[66] Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci., 54(6): 789-797, doi: 10.   1007/s11430-011-4203-4
[67] 常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-379
[68] 常印佛, 董树文, 黄德志. 1996. 论中-下扬子"一盖多底"格局与演化.   火山地质与矿产, 17(1-2): 1-15
[69] 陈沪生. 1988. 下扬子地区HQ-13线的综合地球物理调查及其地质意义. 石油与天然气地质, 9(3): 211-222
[70] 邓晋福, 莫宣学, 赵海玲, 罗照华, 赵国春, 戴圣潜. 1999. 中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.   矿床地质, 18(4): 309-315
[71] 董树文, 吴锡浩, 吴珍汉, 邓晋福, 高锐, 王成善. 2000. 论东亚大陆的构造翘变——燕山运动的全球意义.   地质论评,46(1): 8-13
[72] 董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释.   地质学报, 81(11): 1449-1461
[73] 董树文, 马立成, 刘刚, 薛怀民, 施炜, 李建华. 2011. 论长江中下游成矿动力学.   地质学报, 85(5): 612-625
[74] 侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿.   现代地质, 21(2): 332-351
[75] 江国明,张贵宾,吕庆田,史大年,徐峣. 2014. 长江中下游地区成矿深部动力学机制: 远震层析成像证据.   岩石学报, 30(4): 907-917
[76] 李飞, 徐涛, 武振波, 张忠杰, 滕吉文. 2013. 三维非均匀地质模型中的逐段迭代射线追踪.   地球物理学报, 56(10): 3514-3522
[77] 李曙光, 李惠民, 陈移之, 肖益林, 刘德良. 1997. 大别山-苏鲁地体超高压变质年代学——Ⅱ锆石U-Pb同位素体系.   中国科学(D辑), 27(3): 200-206
[78] 李曙光. 2001. 长江中下游中生代岩浆岩及铜铁成矿带的深部构造背景.   安徽地质, 11(2): 118-123
[79] 梁锋,吕庆田,严加永,刘振东. 2014. 长江中下游宁芜火山岩盆地深部结构特征——来自反射地震的认识.   岩石学报, 30(4): 941-956
[80] 吕庆田, 侯增谦, 杨竹森, 史大年. 2004. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束.   中国科学(D辑), 34(9): 783-794
[81] 吕庆田, 杨竹森, 严加永, 徐文艺. 2007. 长江中下游成矿带深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为例.   地质学报, 81(7): 865-881
[82] 吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦, 徐涛, SinoProbe-03-CJ项目组. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述.   岩石学报, 30(4): 889-906
[83] 毛景文, 王志良. 2000. 中国东部大规模成矿时限及其动力学背景的初步探讨.   矿床地质, 19(4): 289-296
[84] 毛景文, 谢桂青, 李晓峰, 张作衡, 王义天, 王志良, 赵财胜, 杨富全, 李厚民. 2005. 大陆动力学演化与成矿研究: 历史与现状-兼论华南地区在地质历史演化期间大陆增生与成矿作用.   矿床地质, 24(3): 193-205
[85] 宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 1-320
[86] 戚建中, 刘红缨, 姜耀辉. 2000. 中国东部燕山期俯冲走滑体制及其对成矿定位的控制.   火山地质与矿产, 21(4): 244-266
[87] 强建科, 汤井田, 王显莹, 潘伟, 张钱江. 2014. 淮南-溧阳大地电磁剖面与地质结构分析.   岩石学报, 30(4): 957-965
[88] 任纪舜. 1991. 论中国大陆岩石圈构造的基本特征.   中国区域地质, (4): 289-293
[89] 史大年, 吕庆田, 徐文艺, 严加永, 赵金花, 董树文, 常印佛. 2012.   长江中下游成矿带及邻区地壳结构——MASH成矿过程的P波接收函数成像证据? 地质学报, 86(3): 389-399
[90] 陶奎元, 毛建仁, 杨祝良, 赵宇, 邢光福, 薛怀民. 1998. 中国东南部中生代岩石构造组合和复合动力学过程的记录.   地学前缘, 5(4): 183-192
[91] 滕吉文, 孙克忠, 熊绍柏, 姚虹, 尹周勋, 程立芳, 薛长顺, 田东生, 郝天珧, 赖明惠, 伍明储. 1985. 中国东部马鞍山-常熟-启东地带地壳与上地幔结构和速度分布的爆炸地震研究.   地球物理学报, 28(2): 155-169
[92] 王强, 赵振华, 熊小林, 许继锋. 2001. 底侵玄武质下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据.   地球化学, 30(4): 353-362
[93] 肖晓,王显莹,汤井田,周聪,王永清,陈向斌,吕庆田. 2014. 庐枞矿集区大地电磁探测与电性结构分析.   地质学报,88(4):出版中
[94] 许继峰, 王强, 徐义刚, 赵振华, 熊小林. 2001. 宁镇地区中生代安基山中酸性侵入岩的地球化学: 亏损重稀土和钇的岩浆产生的限制.   岩石学报, 17(4): 576-584
[95] 徐涛, 徐果明, 高尔根, 朱良保, 蒋先艺. 2004. 三维复杂介质的块状建模和试射射线追踪.   地球物理学报, 47(6): 1118-1126
[96] 严加永,吕庆田,陈向斌,祁光,刘彦,郭冬,陈应军. 2014. 基于重磁三维反演的岩性填图试验——以安徽庐枞矿集区为例.   岩石学报, 30(4): 1041-1053
[97] 张昆,严加永,吕庆田,魏文博,邵陆森,王华峰,杨振威. 2014. 长江中下游南京(宁)-芜湖(芜)段深部电性结构——宽频大地电磁测深研究.   岩石学报, 30(4): 966-978
[98] 张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义.   岩石学报, 17(2): 236-244
[99] 张旗, 王焰, 刘伟, 王元龙. 2002. 埃达克岩的特征及其意义.   地质通报, 21(7): 431-435
[100] 张永谦, 吕庆田, 滕吉文, 王谦身, 徐涛. 2014. 长江中下游及邻区的地壳密度结构与深部成矿背景探讨-来自重力学的约束.   岩石学报, 30(4): 931-940
[101] 朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制.   中国科学(地球科学), 41(5): 583-592