Yuan YB, Yuan SD, Chen CJ and Huo R. 2014. Zircon U-Pb ages and Hf isotopes of the granitoids in the Huangshaping mining area and their geological significance. Acta Petrologica Sinica,30(1): 64-78 (in Chinese with English abstract)
Zircon U-Pb ages and Hf isotopes of the granitoids in the Huangshaping mining area and their geological significance
YUAN YaBin1, YUAN ShunDa2, CHEN ChangJiang3, HUO Ran3
1. School of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China; 2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China; 3. Southern Hunan Institute of Geology and Survey, Chenzhou 423000, China
Abstract: The Huangshaping polymetallic deposit is the largest lead-zinc mine in Hunan Province. There are various kinds of magmatic rocks distributing in this mining area, associated with W-Sn-Cu-Pb-Zn-Ag polymetallic mineralization. It's also a reprensitative deposit in southern Hunan with porphyry-skarn-vein Cu-Pb-Zn-Ag and W-Sn polymetallic superimposed mineralization. To clarify the geochronological framework and source characteristics of Huangshaping granitoids, and to address the temporal relationship between magmatism and mineralization, three types of granite including dacite porphyry, monzogranite porphyry and quartz porphyry, and the enclaves hosted in the quartz porphyry in Huangshaping were collected for zircon U-Pb dating and Hf isotope analysis. The results show that the zircon U-Pb ages of the dacite-porphyry, monzogranite porphyry and quartz porphyry are 158.5±0.9Ma, 155.2±0.4Ma and 160.8±1.0Ma, respectively. The zircon U-Pb age of the enclave hosted in the quartz porphyry is 220.4±1.2Ma. The inherited zircons cores that yield Paleoproterozoic and Neoproterozoic ages were found in the monzogranite porphyry. Igneous zircons of Middle-Late Jurassic have low and similar εHf(t) values of -7.6~-3.2 and Mesoproterozoic (1.7~1.4Ga) depleted-mantle model ages, which is interpreted to reflect derivation from old crust source. Those old zircons yield positive εHf(t) values of 0.5~6.5 and negative of -1.5~-0.07, suggesting involvement of the depleted mantle source in the magma generation. The zircon U-Pb dating and Hf isotope analysis of different kinds of granitoids in ore district imply that they had a cognate origin related to partial melting of ancient continental crust. These data also provide important evidence for temporal-spatial connections of emplacement of the granitiods and W-Sn-Cu-Pb-Zn-Ag polymetallic mineralization in the Huangshaping mining area. In addition, U-Pb ages of the inherited zircon cores indicate that this area has undergone a complex magmatic history, which maybe the crucial reason of the formation of Cu-Pb-Zn-W-Mo-Fe polymetallic deposit.
图3 黄沙坪矿区花岗质岩石和包体的野外及显微照片
(a)-石英斑岩;(b)-二长花岗斑岩;(c)-石英斑岩内包体;(d)-石英斑岩(HSP-7,正交偏光);(e)-二长花岗斑岩中,斜长石遭受蚀变(HSP-2,正交偏光);(f)-二长花岗斑岩中局部有显微文象结构出现(HSP-2,正交偏光);(g)-二长花岗斑岩(HSP-2,正交偏光);(h)-石英斑岩与包体接触界线(HSP-12,正交偏光);(i)-包体内部结构(HSP-12,正交偏光)
Fig.3 Photos and photomicrographs for the granites and enclaves from the Huashaping deposit
(a)-quartz porphyry; (b)-monzogranite porphyry; (c)-the enclaves hosted in the quartz porphyry; (d)-quartz porphyry (HSP-7, crossed light); (e)-altered plagioclase in monzogranite porphyry (HSP-2, crossed light); (f)-graphic texture partly appeared in the monzogranite porphyry (HSP-2, crossed light); (g)-monzogranite porphyry (HSP-2, crossed light); (h)-contact boundary of quartz porphyry and the enclaves (HSP-12, crossed light); (i)-the texture of the quartz porphyry enclaves (HSP-12, crossed light)
图4
图4 黄沙坪矿区部分花斑岩与花岗斑岩样品矿物成分分类定名图解(底图据Le Maitre, 1989)
Fig.4 Diagram showing classification and naming of rocks for parts of porphyry samples in Huangshaping area (base map after Le Maitre, 1989)
锆石U-Pb定年测试在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,锆石定年分析所用仪器为 Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用的斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。信号较小的207Pb,206Pb,204Pb(+204Hg),202Hg用离子计数器接收,208Pb,232Th,238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb,206Pb/238U,207Pb/235U的测试精度(2σ)均为2%左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态。锆石U-Pb定年以锆石GJ-1为外标,U, Th含量以锆石M127为外标进行校正。测试过程中在每测定10个样品前后重复测定两个锆石GJ-1对样品进行校正,并测量一个锆石标样Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal 4.3程序(Liu et al.,2008)。测量过程中206Pb/204Pb>1000的分析结果未进行普通铅校正,而204Pb含量异常高的分析点可能受到包体等普通Pb的影响,在计算时剔除,锆石年龄谐和图用Isoplot 3.2程序获得。详细实验测试过程参照侯可军等(2009)。
锆石Hf同位素分析在天津地质矿产研究所实验测试室激光剥蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)上进行测定,激光束斑直径为50μm,激光剥蚀时间26s,测试时采用锆石GJ-1标准,实验分析流程和校正参见文献(耿建珍等,2011)。为使Hf同位素分析与锆石U-Pb年龄分析相对应,此次锆石Hf同位素的分析点与锆石U-Pb年龄分析点位于同一颗锆石晶体内。在计算176Lu的衰变常数时采用1.867×10-11a-1(吴福元等,2007;Söderlund et al., 2004)。球粒陨石的176Lu /177Hf和176Hf/177Hf的比值分别为0.0332和0.282772 (Blichert and Albarède, 1997),亏损地幔的176Lu /177Hf和176Hf/177Hf的比值分别为0.0384和0.28325(Griffin et al., 2002),(176Lu /177Hf)平均地壳为0.015。
4 分析结果
4.1 锆石U-Pb年龄
黄沙坪矿区岩体的LA-MC-ICP-MS锆石U-Pb测年结果见表1。
表1(Table 1)
表1 黄沙坪矿区岩体锆石LA -ICP-MS U-Pb年代学测试结果Table 1 LA-ICP-MS U-Pb isotopic compositions of zircons for the Huangshaping granites
测点号
含量(×10-6)
Th/U
同位素比值
年龄(Ma)
谐和度
Th
U
207Pb/206Pb
1sigma
207Pb/235U
1sigma
206Pb/238U
1sigma
207Pb/206Pb
1sigma
207Pb/235U
1sigma
206Pb/238U
1sigma
HSP-1.1
177
171
1.04
0.0511
0.0009
0.1803
0.0044
0.0256
0.0003
242.66
37.96
168.28
3.80
162.72
1.94
96%
HSP-1.2
70
80
0.88
0.0507
0.0008
0.1747
0.0028
0.0251
0.0003
227.85
35.18
163.53
2.46
159.51
1.59
97%
HSP-1.3
263
317
0.83
0.0545
0.0007
0.1902
0.0031
0.0253
0.0003
390.79
27.78
176.76
2.64
161.15
1.98
90%
HSP-1.4
116
165
0.70
0.0540
0.0008
0.1846
0.0040
0.0248
0.0004
372.28
63.88
172.03
3.41
157.87
2.53
91%
HSP-1.5
186
389
0.48
0.0497
0.0003
0.1699
0.0020
0.0248
0.0003
188.97
14.82
159.31
1.76
157.88
1.70
99%
HSP-1.6
86
192
0.45
0.0520
0.0007
0.1828
0.0030
0.0255
0.0003
287.10
32.41
170.47
2.54
162.19
1.68
95%
HSP-1.7
820
721
1.14
0.0497
0.0002
0.1703
0.0018
0.0249
0.0002
176.01
9.26
159.68
1.58
158.30
1.41
99%
HSP-1.9
374
432
0.87
0.0506
0.0003
0.1725
0.0013
0.0247
0.0001
227.85
12.96
161.58
1.17
157.11
0.92
97%
HSP-1.10
163
212
0.77
0.0499
0.0011
0.1736
0.0043
0.0252
0.0003
190.82
27.77
162.54
3.74
160.52
1.80
98%
HSP-1.11
312
307
1.02
0.0524
0.0007
0.1776
0.0027
0.0246
0.0002
305.62
36.11
165.97
2.32
156.41
1.25
94%
HSP-1.12
118
125
0.95
0.0543
0.0011
0.1895
0.0037
0.0253
0.0002
387.09
46.29
176.19
3.14
161.06
1.50
91%
HSP-1.13
109
160
0.68
0.0510
0.0005
0.1764
0.0024
0.0251
0.0003
242.66
56.48
164.95
2.08
159.72
1.66
96%
HSP-1.14
247
181
1.37
0.0505
0.0004
0.1729
0.0018
0.0249
0.0002
220.44
13.89
161.95
1.56
158.26
1.40
97%
HSP-1.15
196
135
1.46
0.0493
0.0009
0.1744
0.0054
0.0256
0.0006
168.60
42.59
163.24
4.64
162.77
3.47
98%
HSP-1.16
130
141
0.92
0.0498
0.0018
0.1739
0.0129
0.0251
0.0012
187.12
115.73
162.77
11.17
160.02
7.33
99%
HSP-1.17
154
299
0.51
0.0517
0.0005
0.1778
0.0031
0.0249
0.0004
272.29
22.22
166.14
2.66
158.82
2.45
95%
HSP-1.18
326
415
0.79
0.0511
0.0004
0.1746
0.0017
0.0247
0.0002
250.07
52.77
163.38
1.51
157.53
1.14
96%
HSP-1.19
414
349
1.19
0.0516
0.0003
0.1750
0.0015
0.0246
0.0001
264.88
14.81
163.73
1.28
156.73
0.89
95%
HSP-1.20
89
227
0.40
0.0529
0.0001
0.1849
0.0029
0.0253
0.0004
324.13
5.56
172.23
2.47
161.20
2.39
93%
HSP-2.1
428
462
0.93
0.0496
0.0007
0.1690
0.0028
0.0246
0.0001
176.01
35.18
158.53
2.45
156.94
0.91
98%
HSP-2.2
277
310
0.90
0.0501
0.0011
0.1692
0.0038
0.0244
0.0001
211.19
51.84
158.74
3.30
155.69
0.73
98%
HSP-2.3
428
370
1.16
0.049
0.0007
0.1662
0.0025
0.0243
0.0002
176.01
33.33
156.15
2.18
154.72
0.95
99%
HSP-2.4
552
311
1.77
0.0498
0.0015
0.1697
0.0053
0.0246
0.0002
187.12
67.58
159.17
4.63
156.95
1.11
98%
HSP-2.5
743
334
2.22
0.1525
0.0004
9.2984
0.0685
0.4418
0.0032
2373.77
9.72
2367.86
6.94
2358.72
14.44
99%
HSP-2.6
282
404
0.70
0.0496
0.0008
0.1665
0.0026
0.0244
0.0001
176.01
37.03
156.41
2.28
155.13
0.89
99%
HSP-2.7
95
165
0.57
0.1115
0.0004
5.0062
0.0418
0.3254
0.0027
1824.38
6.64
1820.38
7.18
1815.86
13.30
99%
HSP-2.8
18
33
0.55
0.1596
0.0014
10.0959
0.1321
0.4596
0.0059
2451.54
14.81
2443.60
12.21
2437.63
25.96
99%
HSP-2.9
212
166
1.28
0.1602
0.0004
10.1308
0.1092
0.4586
0.0051
2457.09
4.16
2446.78
10.10
2433.30
22.57
99%
HSP-2.10
294
461
0.64
0.0492
0.0007
0.1624
0.0023
0.0240
0.0001
166.75
31.48
152.82
2.00
152.60
0.93
99%
HSP-2.11
36
232
0.16
0.1133
0.0004
5.1487
0.0447
0.3293
0.0029
1853.40
6.64
1844.19
7.48
1834.97
14.19
99%
HSP-2.12
95
154
0.62
0.1126
0.0010
5.0757
0.0630
0.3280
0.0041
1842.60
16.21
1832.05
10.60
1828.82
20.05
99%
HSP-2.13
195
196
1.00
0.1380
0.0016
7.5782
0.1301
0.3951
0.0030
2202.16
19.29
2182.29
15.47
2146.27
13.90
98%
HSP-2.14
215
212
1.02
0.1526
0.0004
9.3454
0.0716
0.4435
0.0033
2375.62
4.17
2372.49
7.21
2366.16
14.66
99%
HSP-2.15
112
55
2.02
0.1798
0.0013
12.3770
0.1204
0.5015
0.0058
2650.31
12.04
2633.43
9.31
2620.33
25.01
99%
HSP-2.16
97
179
0.55
0.1121
0.0006
5.0829
0.0648
0.3289
0.0042
1833.03
5.09
1833.26
10.89
1833.17
20.42
99%
HSP-7.1
2826
4059
0.70
0.0498
0.0007
0.1710
0.0016
0.0250
0.0002
187.12
35.18
160.31
1.39
159.33
1.01
99%
HSP-7.2
3965
5734
0.69
0.0497
0.0002
0.1748
0.0010
0.0255
0.0001
183.42
7.41
163.59
0.83
162.02
0.75
99%
HSP-7.4
1414
2491
0.57
0.0494
0.0003
0.1699
0.0016
0.0249
0.0002
164.90
17.59
159.33
1.37
158.69
1.27
99%
HSP-7.6
2657
3903
0.68
0.0508
0.0002
0.1764
0.0007
0.0251
0.0001
231.55
4.63
164.93
0.63
160.12
0.71
97%
HSP-7.7
1405
2971
0.47
0.0499
0.0002
0.1754
0.0008
0.0254
0.0001
190.82
5.56
164.07
0.72
161.91
0.69
98%
HSP-7.8
1700
3107
0.55
0.0499
0.0002
0.1750
0.0010
0.0254
0.0001
190.82
4.63
163.74
0.86
161.85
0.93
98%
HSP-7.9
189
489
0.39
0.0501
0.0015
0.1743
0.0048
0.0252
0.0003
211.19
100.91
163.14
4.18
160.42
1.88
98%
HSP-7.12
317
626
0.51
0.0492
0.0005
0.1698
0.0021
0.0250
0.0002
166.75
28.70
159.27
1.85
159.16
1.04
99%
HSP-7.13
1904
3125
0.61
0.0478
0.0002
0.1658
0.0019
0.0251
0.0003
87.13
11.11
155.77
1.68
160.03
1.60
97%
HSP-12.1
178
276
0.64
0.0503
0.0009
0.1691
0.0033
0.0244
0.0002
209.33
40.73
158.60
2.85
155.12
1.12
97%
HSP-12.2
257
282
0.91
0.0514
0.0012
0.1737
0.0042
0.0245
0.0001
261.18
55.55
162.67
3.68
155.99
0.71
95%
HSP-12.3
304
421
0.72
0.0506
0.0007
0.1683
0.0024
0.0241
0.0001
233.40
31.48
157.95
2.12
153.69
0.93
97%
HSP-12.4
542
934
0.58
0.0513
0.0003
0.2445
0.0016
0.0346
0.0002
253.77
12.96
222.10
1.30
219.31
1.30
98%
HSP-12.5
343
734
0.47
0.0493
0.0008
0.1682
0.0034
0.0247
0.0002
161.20
43.51
157.90
2.93
157.02
1.22
99%
HSP-12.6
400
589
0.68
0.0496
0.0006
0.1639
0.0018
0.0241
0.0002
176.01
32.40
154.09
1.56
153.57
1.37
99%
HSP-12.7
226
538
0.42
0.0494
0.0006
0.1657
0.0024
0.0243
0.0002
164.90
-2.78
155.67
2.12
154.67
1.12
99%
HSP-12.8
182
520
0.35
0.0511
0.0007
0.1745
0.0025
0.0247
0.0001
242.66
31.48
163.33
2.12
157.61
0.62
96%
HSP-12.10
634
586
1.08
0.0544
0.0010
0.2610
0.0043
0.0348
0.0002
387.09
40.74
235.45
3.49
220.34
1.07
93%
HSP-12.12
162
267
0.60
0.0519
0.0009
0.2515
0.0052
0.0350
0.0003
279.69
40.74
227.80
4.18
222.05
1.73
97%
HSP-12.13
225
226
0.99
0.0507
0.0012
0.2437
0.0061
0.0348
0.0001
227.85
55.55
221.48
4.98
220.59
0.93
99%
表1 河北沧州小山火山堆积物样石英Ge心ESR测年结果Table 1 ESR dating results of Ge signal in volcanic quartz from Xiaoshan site in Cangzhou, Hebei Province
前人通过Sr同位素(童潜明等,1995)和岩石地球化学特征(姚军明等,2005)分析认为,黄沙坪岩体来源于地壳,为以沉积岩为主的地壳物质部分熔融形成。近年来的研究发现,锆石原位Hf同位素分析是揭示地壳演化和示踪岩浆源区的重要手段(Vervoort and Patchett,1996;Scherer et al.,2000;Griffin et al.,2002;Zhang et al., 2012),最近,艾昊(2013)通过Hf同位素分析指出,与铜矿化有关的石英斑岩主要来源于地壳,而与钨钼矿化有关的花岗斑岩形成过程中有幔源物质的加入,是壳幔混合的产物,这与通常认为铜主要来自地幔,而钨主要来自地壳的认识相悖(毛景文,2008,2011)。并且,全铁军等(2012)和艾昊(2013)获得区内同一类型的岩石Hf同位素数据(表3)存在较大差别。因而,我们此次重新测定了黄沙坪矿区石英斑岩、二长花岗斑岩、英安斑岩的锆石Hf同位素组成,发现区内各花岗质岩石的初始176Hf/177Hf比值集中分布在0.2825附近,εHf(t)值在-7.6~-3.2之间,二阶段模式年龄(tDM2)峰值约为1.69~1.41Ga,表明这三类岩石可能主要来源于地壳(图7),为中元古代的古老地壳部分熔融形成。其中,石英斑岩的εHf(t)(平均值为-4.6)较花岗斑岩(平均值为-5.4)略大。但对矿区花岗岩类锆石Hf同位素数据统计(图8)显示,石英斑岩、花岗斑岩及英安斑岩的Hf同位素组成接近,并相互重叠。由于矿区不同类型的花岗质岩石具有相近的锆石U-Pb年龄及Hf同位素组成,指示其可能为同一岩浆不同演化阶段的产物。对比区域上典型的桂东南壳源花岗岩的Hf同位素组成(-11~-9, 祁昌实等,2007)发现,矿区内花岗质岩石的εHf(t)偏大,可能指示该区岩浆演化过程中有少量地幔物质的混入。
表3(Table 3)
表3 黄沙坪矿区不同花岗质岩石的Hf同位素资料总结Table 3 Summary of the former Hf isotopic data for the Huangshaping granites
表3 黄沙坪矿区不同花岗质岩石的Hf同位素资料总结Table 3 Summary of the former Hf isotopic data for the Huangshaping granites
图7
图7 黄沙坪矿区花岗质岩石中锆石的Hf同位素特征
Fig.7 Hf isotopic features of zircons from the Huangshaping granitic rocks
图8
图8 黄沙坪矿区岩体的Hf同位素组成直方图
Fig.8 Histograms of εHf(t) values of zircons from Huangshaping pluton
花岗质岩石中继承锆石核的存在为岩浆起源的研究提供了重要线索(Belousova et al., 2002),黄沙坪二长花岗斑岩大量的继承锆石核的存在表明燕山期岩浆活动可能与太古代至元古代时期地壳物质的部分熔融有关。1.8Ga左右的继承锆石εHf(t)值为接近0的负值,更古老的锆石εHf(t)值出现正值(图8),暗示与新太古代、古元古代的亏损地幔物质加入有关 (图7), 这些继承锆石相应的Hf同位素地壳模式年龄分别为1.43Ga、2.58~2.52Ga、2.67Ga、2.88Ga和2.80Ga,代表了该区新生地壳的生长时间(Amelin et al.,2000)。Yu et al.(2010)认为南岭地区的新生地壳生长主要发生在约3.6Ga、3.3Ga、2.6~2.5Ga、1.6Ga、1.0Ga和0.8~0.7Ga, Xu et al.(2005) 获得的华夏地块地壳生长期主要为三期:2.7~2.5Ga、1.8Ga、1.5~1.3Ga。本文利用锆石Hf同位素分析获得的中晚侏罗世花岗岩类二阶段模式年龄主体峰值约为1.69~1.41Ga,结合本次研究获得的新太古代地壳生长期的证据,显示研究区的地壳增生事件主要发生在2.9~2.8Ga、2.7~2.5Ga、1.7~1.4Ga三个时间段。
Griffin WL, Wang X, Jackson SE, Pearson SE, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269
Le Maitre RW. 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendation of the International Union of Geological Sciences on the Systematics of Igneous Rocks. Blackwell Scientific Publications, 1-193
Li XH, Liu DY, Sun M, Li WX, Liang XR and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225-231
Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MC MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphy-sharn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nan-ling district, South China. Mineralium Deposita, 41(7): 661-669
Scherer EE, Cameron KL and Blichert-Toft J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432
Tong QM, Jiang SZ, Li RQ, Gong MY, Wang SM and Huang RM. 1986. A study of geological characteristics and ore forming process of the Huangshaping lead-zinc ore deposit, Hunan. Hunan Geology, (Suppl.): 1-42 (in Chinese with English abstract)
Wang YB, Wang DH, Han J, Lei ZH, Chen ZH, Qu WJ, Xu YM, Zi BZ and Wang QL. 2010. U-Pb dating and Hf isotopic characteristics of zircons and Re-Os dating of molybdenite from Gao'aobei tungsten-molybdenum deposit, southern Hunan Province. Geological Review, 56(6): 820-830 (in Chinese with English abstract)
Xu XS, O'Reilly SY, Griffin WL, Deng P and Pearson NJ. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 24(2), doi: 10.1029/2004TC001652
Yao JM, Hua RM, Qu WJ, Qi HW, Lin JF and Du AD. 2007. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China (Series D), 50(4): 519-526
[44]
Yu JH, O'Reilly SY, Wang LJ, Griffin WL, Zhou MF, Zhang M and Shu LS. 2010. Components and episodic growth of Precambrain crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1-4): 97-114
[45]
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunnan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286
[46]
Yuan SD, Peng JT, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualingtin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
[47]
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. Insitu LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiteritein the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Zhang DY, Zhang ZC, Encarnación J, Xue CJ, Duan SG, Zhao ZD and Liu JL. 2012. Petrogenesis of the Kekesai composite porphyry intrusion, western Tianshan, NW China: Implications for metallogenesis, tectonic evolution and continental growth during Late Paleozoic time. Lithos, 146-147: 65-79