岩石学报  2013, Vol. 29 Issue (10): 3336-3352   PDF    
塔里木北缘皮羌地区早二叠纪花岗质岩体的成因:对塔里木大火成岩省A型花岗岩成因的启示
曹俊1,2, 徐义刚1, 邢长明2,3, 黄小龙1, 李洪颜1     
1. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室,广州 510640;
2. 中国科学院大学,北京 100049;
3. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室,广州 510640
摘要: 塔里木北缘皮羌地区发育大量闪长质-花岗质岩脉以及哈拉峻花岗岩Ⅰ号和Ⅱ号岩体,这些花岗质岩脉和岩体与赋存大型钒钛磁铁矿矿床的皮羌辉长质岩体空间上共生,推测其成因与塔里木地幔柱岩浆上涌有关。闪长质-花岗质岩脉出露在皮羌辉长质岩体的东缘、北缘及南缘,而哈拉峻花岗岩Ⅰ号和Ⅱ号岩体主要出露在辉长质岩体的西部。花岗质岩脉具有高硅(SiO2=64%~74%)、富碱(Na2O+K2O =8%~10%)、富集Rb、Th、U等大离子亲石元素和Nb、Ta、Zr、Hf等高场强元素,(Ga/Al)×104变化于2.85~3.85之间,具有明显Eu、Ba、Sr负异常等特征,类似A型花岗岩。闪长质岩脉具有低硅(SiO2=53%~59%)、低全碱含量(Na2O+K2O=5%~8%)、以及Eu和Ba正异常。哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的地球化学特征与花岗质岩脉相似。闪长质-花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的εNd(t)值范围在-2.9~-0.2之间,与皮羌辉长质岩体的εNd(t)值相近(-1.1~2.1),表明他们来源于类似的地幔源区。我们认为闪长质-花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体主要由底侵的镁铁质岩浆分异出的中酸性熔体结晶分异并伴随不同程度的地壳混染形成,皮羌辉长质岩体是镁铁质岩浆浅部侵位的产物。因此~280Ma大量幔源岩浆底侵是塔里木大火成岩省中A型花岗岩形成的必要前提。
关键词: 塔里木大火成岩省     皮羌地区     A型花岗岩     分离结晶    
Origin of the Early Permian granitic plutons from the Piqiang region in the northern Tarim Block: Implications for the origin of A-type granites of the Tarim large igneous province
CAO Jun1,2, XU YiGang1, XING ChangMing2,3, HUANG XiaoLong1, LI HongYan1     
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: The Early Permian dioritic and granitic dikes and Halajun granitic plutons I and II from the Piqiang region in the northern Tarim Block are spatially associated with the giant Piqiang Fe-Ti-V oxide-bearing gabbroic intrusion. They are considered to be genetically related to the magma upwelling of the Tarim mantle plume. Dioritic-granitic dikes occur in the eastern, northern and southern margin of the Piqiang gabbroic intrusion, and the Halajun granitic plutons I and II mainly outcrop to the west of the intrusion. The granitic dikes have typical A-type granitic affinity. They have 64% to 74% SiO2 and 8% to 10% Na2O+K2O. They are enriched in large ion lithophile elements (Rb, Th and U) and high field strength elements (Nb, Ta, Zr and Hf), but have very negative Eu, Ba and Sr anomalies. The rocks have high (Ga/Al)×104 ratios of 2.85 to 3.85. The dioritic dikes have 53% to 59% SiO2 and 5% to 8% Na2O+K2O. They have trace element patterns similar to the granitic dikes. The Halajun granitic plutons I and II have compositions similar to the granitic dikes. They both have εNd(t) values ranging from -2.9 to -0.2, comparable to those of the Piqiang gabbroic intrusion (εNd(t)=-1.1~2.1), indicating that they have been derived from the same mantle reservoir. We propose that the dioritic-granitic dikes, Halajun granitic plutonsⅠ and Ⅱ were predominantly generated by the emplacement of intermediate-felsic melts from differentiation of the newly underplated mafic magma ponding at the bottom of the lower crust, and subsequent fractional crystallization and assimilation to variable extent, whereas the Piqiang gabbroic intrusion are likely the product of emplacement of mafic magma at a shallow level. Hence large volume of underplating mafic magmas is the prerequisite for the formation of the coeval mafic-ultramafic intrusion and A-type granitic plutons of the Tarim large igneous province.
Key words: Tarim large igneous province     Piqiang region     A-type granitic pluton     Fractional crystallization    
1 引言

A型花岗岩通常产出在造山后或板内构造环境(Eby, 1990, 1992; Black and Liegeois, 1993)。A型花岗岩具有较高的Fe/Mg、K/Na比值和K2O含量,较低的CaO和Al2O3含量,富集不相容元素和稀土元素,亏损Co, Sc, Cr, Ni, Ba, Sr和Eu等(Loiselle and Wones, 1979; Bonin, 2007)。前人对A型花岗岩的成因提出了多种模式,主要包括:(1) 玄武质岩浆分异(Loiselle and Wones, 1979; Frost and Frost, 1997; Bonin, 2007);(2) 源岩部分熔融,如麻粒岩相岩石(Clemens et al., 1986; Whalen et al., 1987)、英云闪长岩-花岗闪长岩(Creaser et al., 1991)、紫苏花岗质下地壳(Landenberger and Collins, 1996)和新生玄武质地壳(Shellnutt and Zhou, 2007)等;(3) 幔源物质与壳源物质混合(Yang et al., 2006);(4) 上地壳钙碱性岩石低压熔融(Patiño Douce, 1997)。板内A型花岗岩常与赋含钒钛磁铁矿的层状镁铁-超镁铁质岩体紧密共生(Bonin, 2007),如我国攀西地区峨眉山大火成岩省中与赋含大型钒钛磁铁矿矿床的层状岩体伴生的A型花岗岩体(Shellnutt and Zhou, 2007, 2008; Shellnutt and Jahn, 2010),以及与加拿大Sept Iles层状岩体伴生的A型花岗岩体(Namur et al., 2011)。

早二叠纪塔里木大火成岩省由大面积发育在塔里木盆地的玄武岩、层状镁铁-超镁铁质岩体、镁铁质岩墙群和正长岩-花岗岩岩体组成,其成因被认为与塔里木地幔柱活动有关(杨树锋等, 2005; Yang et al., 2006; Zhang et al., 2008, 2010a, b ; Zhang and Zou, 2013a, b ; Zhou et al., 2009; Huang et al., 2012)。在皮羌地区,A型花岗质岩体在空间上与同期层状镁铁-超镁铁质岩体紧密伴生。目前不同学者对于这些A型花岗岩体的成因具有争议。Zhang et al.(2010b)认为这些A型花岗质岩体为镁铁质岩浆结晶分异的产物;而Huang et al.(2012) 则认为它们是新元古辉长质源区部分熔融形成的。在皮羌地区,除了A型花岗质岩体外还出露有大量中酸性岩脉,相关研究还未见报导。这些中酸性岩脉的成因可能与A型花岗质岩体的成因密切相关。本文对皮羌地区的闪长质-花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体进行了系统的矿物学、主微量和Sr-Nd同位素分析,并结合前人研究结果,探讨了塔里木大火成岩省中A型花岗岩的成因。

2 地质背景与岩相学

塔里木板块北邻天山造山带, 南侧与西昆仑-阿尔金造山带连接(图 1a),由前南华纪基底和南华纪-寒武纪盖层组成(Lu et al., 2008; Zhang et al., 2012)。大部分地区被沙漠覆盖,仅在塔里木北缘、西南以及东侧,断续出露了一些前寒武纪基底。岩浆活动主要发育在四个阶段, 即太古代TTG、古元古代中晚期A型花岗岩-镁铁质岩墙、新元古代花岗岩-镁铁质岩墙-镁铁-超镁铁质岩体以及二叠纪玄武岩-镁铁质岩墙-花岗岩-镁铁-超镁铁质岩体(杨树锋等, 2005, 2006陈汉林等,2006Zhang et al., 2012)。其中二叠纪岩浆活动形成了大面积分布的玄武岩(>25, 000km2)以及同期的镁铁质岩墙、镁铁-超镁铁质岩体和A型花岗岩体(陈汉林等,2006Yang et al., 2007厉子龙等,2008Zhang et al., 2010a, b )。

图 1 塔里木盆地地质简图和二叠纪玄武岩分布(a, 据 Yang et al., 2007修改)和皮羌地区不同类型岩体的分布及采样位置(b, 据 Zhang et al., 2010b修改) Fig. 1 A simplified geological map of the Tarim basin and the distribution of Permian basalts (a, modified after Yang et al., 2007) and a simplified geological map showing distribution of the Piqiang layered intrusions and dioritic-granitic dikes and Halajun granitic plutons I and II and sample locations in this study (b, modified after Zhang et al., 2010b)

皮羌层状辉长质岩体位于喀什市北东方向约150km。岩体侵入于石炭纪地层中,赋含钒钛磁铁矿矿床(图 1b)。在该岩体的东部、北部及南部边缘带,大量闪长质-花岗质岩脉侵入于辉长岩体中、或覆于辉长岩之上(图 1b图 2a, b)。闪长质-花岗质岩脉主要由英云闪长岩和钾长花岗岩组成, 侵入于晚石炭纪沉积岩。在皮羌层状岩体以西的哈拉峻地区,出露两个花岗质岩体,分别称为哈拉峻花岗岩Ⅰ号和Ⅱ号岩体(图 1b)。Ⅰ号岩体侵入晚石炭纪沉积地层,出露面积约40km2。Ⅱ号岩体被沙漠覆盖,出露面积约50km2。两个岩体的锆石SHRIMP U-Pb年龄均为278±3Ma (Zhang et al., 2010b)。皮羌地区闪长质-花岗质岩脉的年龄尚未见报道,但考虑到它们与皮羌层状岩体和哈拉峻花岗岩体的空间关系,我们推测这些闪长质-花岗质岩脉应与哈拉峻花岗岩体的形成时代接近。此外,皮羌层状岩体的年龄为276±4Ma (Zhang et al., 2010b),相邻的克孜尔托花岗岩体的年龄为273±1Ma (Huang et al., 2012),小海子正长岩的年龄为278±1Ma (杨树峰等, 1996),瓦吉里塔格正长岩体的年龄为274±2Ma (Zhang et al., 2008)。因此本次研究的闪长质-花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体,以及小海子正长岩体和瓦吉里塔格正长岩体可能同属~275Ma构造-热事件的产物 (Huang et al., 2012; Zhang et al., 2008, 2010b)。

图 2 皮羌地区闪长质和花岗质岩脉和哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的野外及岩相学照片 (a)-花岗质岩脉野外露头;(b)-花岗质岩脉与皮羌辉长岩边界截然;(c)-等粒结构闪长岩;(d)-闪长质岩脉中斜长石(Pl)、角闪石(Hb) 、黑云母(Bi)和碱性长石(Or)集合体(正交偏光);(e)-闪长质岩脉中斜长石环带(背散射);(f)-花岗质岩脉中碱性长石 、黑云母和斜长石集合体(正交偏光);(g)-哈拉峻花岗岩Ⅰ号岩体中碱性长石 、石英(Q) 、黑云母和斜长石集合体(正交偏光);(h)-哈拉峻花岗岩Ⅱ号岩体中碱性长石、石英、黑云母和斜长石集合体(正交偏光) Fig. 2 Field photographs and photomicrographs of the dioritic-granitic dikes and Halajun granitic plutons Ⅰ and Ⅱ (a)-outcrops of the granitic dikes; (b)-planar contact between granitic dikes and the Piqiang gabbroic intrusion; (c)-dioritic dike showing equigranular texture; (d)-dioritic dike composed of aggregates of plagioclase, hornblende, biotite and K-feldspar (cross polarizer); (e)-zoning plagioclase crystal in dioritic dike (BSE image); (f)-granitic dike composed of K-feldspar, biotite and plagioclase (cross polarizer); (g)-the Halajun granitic pluton Ⅰ composed of aggregates of K-feldspar, quartz, biotite and plagioclase (cross polarizer); (h)-the Halajun granitic pluton Ⅱ composed of aggregates of K-feldspar, quartz, biotite and plagioclase (cross polarizer)

英云闪长岩和钾长花岗岩主要呈中粗粒等粒结构,块状构造(图 2c)。英云闪长岩主要组成矿物为:斜长石(40%~60%)、角闪石(20%~30%)、碱性长石(10% ~20%)、黑云母(5%~10%)和石英(2%~10%)(图 2d, e)。钾长花岗岩主要组成矿物为:碱性长石(45%~60%)、石英(15%~30%)、斜长石(10%~20%)和黑云母(﹤10%)(图 2f)。哈拉峻花岗岩Ⅰ号岩体主要由碱性长石(45% ~60%)、石英(15%~30%)、斜长石(10%~20%)和少量角闪石和黑云母组成(图 2g);哈拉峻花岗岩Ⅱ号岩体主要由碱性长石(60%~70%)、石英(30% ~40%)和少量云母组成(图 2h)。

3 分析方法

矿物成分、全岩主、微量元素和Sr-Nd同位素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。矿物成分分析采用JEOL JXA-8100型电子探针进行分析。实验条件选择加速电压15kV,电流20nA,束斑直径为1μm。主量元素和背景的计数时间分别为20s和10s,微量元素和背景的计数时间分别为40s和20s。数据采用ZAF修正法进行修正获得。

全岩主量元素分析采用Rigaku RIX 2000型荧光光谱仪(XRF)分析,详细步骤见Li et al. (2005) 所述。样品中元素含量由36种涵盖硅酸盐样品范围的参考标准物质双变量拟合的工作曲线确定,基体校正根据经验的Traill-Lachance程序进行,分析精度优于1%~5%。微量元素的分析则采用Perkin Elmer Sciex ELAN6000型电感耦合等离子体质谱仪(ICP-MS),具体的流程见Li et al. (1997) 。使用USGS标准W-2和BHVO-2及国内标准GSR-1、GSR-2和GSR-3来校正所测样品的元素含量,分析精度一般为2%~5%。Sr-Nd同位素的分析采用Finnigan Neptune多接受电感耦合等离子体质谱仪(MC-ICP-MS),具体流程参见Li et al. (2005) 。分别使用USGS标准NBS SRM 987和Etsu JNdi-1校正所测样品的Sr-Nd同位素比值。本次测定的国际Sr同位素标样NBS SRM 987 87Sr/86Sr值为0.710272±10 (2σ),Nd 同位素标样Etsu JNdi-1的143Nd/144Nd值为0.512094±6 (2σ)。

4 分析结果 4.1 矿物化学

闪长质岩脉中的斜长石An含量变化范围为22.4~40.9,含有56.0%~61.7% SiO2,22.2%~26.9% Al2O3,5%~8.9% CaO和7.2%~9.7% Na2O+K2O(表 1)。花岗质岩脉中的斜长石An含量变化范围较小,为13~22.9,含有63.1%~66.5% SiO2,18.2%~23.5% Al2O3,3.0%~4.7% CaO和9.0%~11.3% Na2O+K2O(表 1)。相对而言,哈拉峻花岗岩Ⅰ号岩体和哈拉峻花岗岩Ⅱ号岩体中斜长石An值较低,为15.6~2.9,但含有较高的SiO2(64.6%~68.3%)和Na2O+K2O(10.4%~12.2%)(表 1)。

表 1 皮羌地区闪长质-花岗质岩脉和哈拉峻花岗岩Ⅰ和Ⅱ号岩体中斜长石成分分析结果(wt%) Table 1 Analysis results of plagioclase compositions for Piqiang dioritic and granitic dykes and Halajun granitic plutonsⅠand Ⅱ(wt%)
4.2 全岩地球化学 4.2.1 主量元素

闪长质岩脉的样品含有52.8%~59.4% SiO2,1.5%~4.1% MgO, 5.4%~8% CaO和0.2%~0.5% P2O5(表 2)。在TAS图解中主要落在亚碱性区域(图 3a)。在A/NK-A/CNK图解中(图 3b),样品具有较高的A/NK比值(A/NK=1.70~2.48)和较低的A/CNK比值(A/CNK=0.74~0.91),表现为准铝质特征。

表 2 皮羌地区闪长质-花岗质岩脉和哈拉峻花岗岩Ⅰ和Ⅱ号岩体主量(wt%)和微量元素(×10-6)组成 Table 2 Major element (wt%) and trace element(×10-6) compositions for Piqiang dioritic-granitic dykes and Halajun granitic plutonsⅠand Ⅱ

图 3 TAS图解(a, 据 Namur et al., 2011修改)和A/NK-A/CNK图解(b) 数据来源: 皮羌层状辉长质岩体、部分哈拉峻花岗岩Ⅰ号和Ⅱ号岩体引自Zhang et al. (2010b);瓦吉里塔格正长岩体引自Zhang et al. (2008) ; 小海子正长岩体位荀和徐义刚(2011) .图 4图 5图 10图 11的数据来源同此图 Fig. 3 Plots of TAS (a, modified after Namur et al., 2011) and A/NK vs. A/CNK (b) for the dioritic-granitic dikes, Halajun granitic plutons I and II, Wajilitag and Xiaohaizi syenitic plutons Data sources: Piqiang gabbroic intrusion and Halajun granitic plutons I and II after Zhang et al. (2010b); Wajilitag syenitic pluton after Zhang et al. (2008) ; Xiaohaizi syenitic pluton after Wei and Xu (2011) . Data sources in Fig. 4, Fig. 5, Fig. 10 and Fig. 11 are the same as in those in this figure

花岗质岩脉含有64.4%~74.3% SiO2,8.4%~10.4% Na2O+K2O,0.2%~0.7% MgO和1.0%~2.0% CaO。在A/NK-A/CNK图解中(图 3b),样品具有较低的A/NK和较高的A/CNK比值(A/NK=1.15~1.22, A/CNK=0.91~1.05),表现为准铝质到弱过铝质的特征。

哈拉峻花岗岩Ⅰ号岩体含有72.4%~72.6% SiO2和13.8%~14.0% Al2O3, 其Fe2O3、TiO2、MnO、CaO、Na2O和K2O含量与花岗质岩脉类似。相对而言,哈拉峻花岗岩Ⅱ号岩体具有最高的SiO2含量(SiO2=76.2%~77.2%)和最低的Fe2O3、TiO2、Al2O3、MnO、CaO、P2O5含量。在TAS图解中,所有样品都落在亚碱性区域(图 3a)。在A/NK-A/CNK图解中,这些样品A/NK和A/CNK比值分别为1.08~1.16和0.97~1.01,表现为准铝质到弱过铝质的特征(图 3b)。

在Harker图解上,闪长质和花岗质岩脉、哈拉峻花岗岩I号和II号岩体与该地区的皮羌辉长质岩体以及瓦吉里塔格和小海子正长岩呈现连续变化的特征(图 4)。Fe2O3、TiO2、MgO和CaO含量随着SiO2含量的增加而逐渐降低,而Al2O3、Na2O和K2O含量随SiO2含量先升高再降低,并在SiO2=~64%出现转折。P2O5含量同样表现为随SiO2含量先升高再降低的趋势,但转折点在SiO2=~53%附近(图 4)。

图 4 主量元素(%)对SiO2(%) Harker双变量协变图解 Fig. 4 Harker variation diagrams of major elements (%) vs. SiO2 (%)
4.2.2 微量元素

在微量元素-SiO2图解(图 5)中,该地区所有岩石的Rb含量随SiO2含量升高,Sr、Zr和Ba含量随SiO2含量先升高再降低,也在SiO2=~64%附近出现转折。Cr和V含量则随SiO2含量降低。

图 5 部分微量元素(×10-6)对SiO2(%)协变图解 Fig. 5 Harker variation diagrams of selected trace elements (×10-6) vs. SiO2 (%)

闪长质岩脉的稀土含量较低,∑REE=87.2×10-6~262.9×10-6,在球粒陨石标准化图解中呈LREE富集右倾型,轻重稀土分异明显,(La/Yb)N比值在7.2~10.3之间,与OIB和皮羌层状岩体类似(图 6a, b)。闪长质岩脉表现出微弱Eu正异常(δEu=0.91~1.53),与邻近的小海子和瓦吉里塔格正长岩体类似。在原始地幔标准化微量元素图解中,闪长质岩脉表现为富集Rb、Ba等大离子亲石元素和Nb、Ta、Zr和Hf等高场强元素,与OIB和皮羌层状岩体类似。但闪长质岩脉还表现出Ba、Sr正异常和Ti负异常(图 7a, b)。

图 6 稀土元素球粒陨石标准化配分图(标准化值和OIB值据Sun and McDonough, 1989) (a)-皮羌层状辉长质岩体(数据引自Zhang et al., 2010b);(b)-闪长质岩脉;(c)-花岗质岩脉;(d)-哈拉峻花岗岩Ⅰ号岩体;(e)-哈拉峻花岗岩Ⅱ号岩体 Fig. 6 Chondrite-normalized rare earth element patterns for plutons (normalization values and OIB data from Sun and McDonough, 1989) (a)-Piqiang gabbros (data from Zhang et al., 2010b); (b)-dioritic dikes; (c)-granitic dikes; Halajun granitic pluton Ⅰ (d) and Ⅱ (e)

花岗质岩脉的稀土含量较高,∑REE=179.1×10-6~331.6×10-6,在球粒陨石标准化图解中表现为LREE富集型式(图 6c),轻重稀土分异明显,(La/Yb)N比值在5.2~16.0之间,并具Eu负异常(δEu=0.39~0.63)。在原始地幔标准化微量元素图解中,表现为富集Rb、Ba、Nb、Ta、Zr和Hf,并具有Ba、Sr、P、Ti和Eu负异常(图 7c)。

图 7 微量元素原始地幔标准化配分图(标准化值和OIB值据Sun and McDonough, 1989) (a)-皮羌层状辉长质岩体(数据引自Zhang et al., 2010b); (b)-闪长质岩脉;(c)-花岗质岩脉;(d)-哈拉峻花岗岩Ⅰ号岩体;(e)-哈拉峻花岗岩Ⅱ号岩体 Fig. 7 Primitive mantle normalized trace element diagrams for plutons (normalization values and OIB data from Sun and McDonough, 1989) (a)-Piqiang gabbros (data from Zhang et al., 2010b); (b)-dioritic dikes; (c)-granitic dikes; Halajun granitic pluton Ⅰ (d) and Ⅱ (e)

哈拉峻花岗岩Ⅰ号和Ⅱ号岩体具有相似的稀土含量,∑REE总量分别为261.2×10-6~474.3 ×10-6和167.8×10-6~436.6×10-6。在球粒陨石标准化图解中,均表现为LREE富集右倾配分型式(图 6d, e),轻重稀土分异较弱,(La/Yb)N比值分别为7.3~10.9之间和3.0~5.4之间,具强烈Eu负异常(δEu=0.27~0.44; 0.01)。在原始地幔标准化微量元素图解中,哈拉峻花岗岩Ⅰ号和Ⅱ号岩体都表现为富集Rb、Ba、Nb、Ta、Zr和Hf等,但哈拉峻花岗岩Ⅱ号岩体相比Ⅰ号岩体具更强的Ba、Sr、P、Ti和Eu负异常(图 7d, e)。

花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体具有较高的Zr+Y+Nb+Ce含量和10000×Ga/Al比值,主要落在A型花岗岩区域(图 8a, b)。根据Eby (1992) 的分类方案,这些花岗岩属于A1型花岗岩,具有典型板内花岗岩的特征(图 8c, d)。

图 8 皮羌地区花岗质岩脉和哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的A型花岗岩相关判别图解 (a) Zr+Nb+Ce+Y-10000×Ga/Al; (b) FeOT/MgO-Zr+Nb+Ce+Y(据 Whalen et al., 1987); (c) Nb-Y-Ce三角图(据 Eby, 1990); (d) Rb-Nb+Y(据 Pearce et al., 1992).符号与图 3相同 Fig. 8 Discrimination diagrams for the granitic dikes, Halajun granitic plutons Ⅰ and Ⅱ in the Piqiang region (a) Zr+Ce+Y+Nb vs. 10000×Ga/Al; (b) FeOT/MgO vs. Zr+Nb+Ce+Y showing affinity of A-type granites (after Whalen et al., 1987); (c) Nb-Y-Ce plot showing A1-like characteristics (after Eby, 1990); (d) Rb vs. Nb+Y showing typical within-plate characteristics (after Pearce et al., 1992). Symbols are the same as Fig. 3
4.2.3 Sr-Nd同位素

闪长质岩脉的(87Sr/86Sr)i值为0.7063,εNd(t)值为-1.8(表 3)。花岗质岩脉的εNd(t)值为-2.9~-0.2,与闪长质岩脉相似。哈拉峻花岗岩Ⅰ号岩体的εNd(t)值为-1.0,Ⅱ号岩体的εNd(t)值介于-2. 8~-2.5之间,与Zhang et al. (2010b)报道结果一致。

表 3 皮羌地区闪长质-花岗质岩脉和哈拉峻花岗岩Ⅰ号和Ⅱ号岩体 Sr-Nd同位素组成 Table 3 Whole-rock Sr-Nd isotopic compositions of the dioritic-granitic dikes and Halajun granitic plutons Ⅰ and Ⅱ
5 讨论 5.1 岩浆源区

闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体与赋含钒钛磁铁矿矿床的皮羌层状辉长质岩体时空紧密共生。岩石的Sr-Nd同位素组成表明,闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体与皮羌层状岩体的(87Sr/86Sr)iεNd(t)值类似,说明他们的母岩浆有可能来自相同的地幔源区。Ba/Nb、Ba/La和Th/Ta等比值被认为可能有效的指示源区特征(Shellnutt et al., 2009),闪长质岩脉的Ba/Nb比值为16.6~30.9,Ba/La比值为14.4~34,Th/Ta比值为1.46~3.48,与巴楚地区的辉绿岩比值(Ba/Nb=0~20.9;Ba/La=0~22.1;Th/Ta=0.8~3.2)类似,也和OIB比值(Ba/Nb=4.7~23.4;Ba/La=6.2~19.1;Th/Ta=~2)类似(Weaver, 1991; 姜常义等, 2004; Zhou et al., 2009),说明形成这些岩石的原始岩浆可能来自OIB地幔源区。

5.2 分离结晶作用

皮羌层状辉长质岩体、闪长质和花岗质岩脉以及哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的Fe2O3、TiO2、MnO、CaO和P2O5随SiO2增加而逐渐降低,表明岩浆演化过程中发生了较为明显的橄榄石、单斜辉石、铁钛氧化物和磷灰石等的分离结晶作用。闪长质和花岗质岩脉以及哈拉峻花岗岩Ⅰ号和Ⅱ号岩体中含较低的MgO、CaO、Fe2O3和TiO2,与橄榄石、单斜辉石和铁钛氧化物的分离结晶作用吻合。另外,岩石的SiO2与A/CNK之间表现为正相关关系,说明还存在角闪石的分离结晶作用(图 9a)。实验岩石学结果表明,碱性长石的结晶温度比斜长石低70~80℃(Clemens et al., 1986),因此A型花岗岩的形成主要受控于碱性长石的分离结晶(Eby, 1990, 1992)。在Sr-Eu/Eu*(图 9b)、Ba-Eu/Eu*(图 9c)和Sr-Ba(图 9d)图解以及原始地幔标准化微量元素图解中,Ba和Eu负异常也说明花岗质岩脉及哈拉峻花岗岩Ⅰ号和Ⅱ号岩体是以碱性长石的分离结晶为主。

图 9 皮羌地区闪长质和花岗质岩脉和哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的A/CNK-SiO2 (a)、Sr-Eu/Eu* (b)、Ba-Eu/Eu*(c)和Ba-Sr (d)图解 符号与图 3相同 Fig. 9 A/CNK vs. SiO2 (a), Sr vs. Eu/Eu* (b), Ba vs. Eu/Eu* (c) and Ba vs. Sr (d) diagrams for the dioritic-granitic dikes and Halajun granitic plutons I and II showing fractionation of hornblende and K-feldspar Symbols are the same as Fig. 3

利用全岩成分和锆饱和温度计(Watson and Harrison, 1983)估算岩浆温度,所选样品的M值范围为1.36~1.54,在推荐值范围之内(0.9~1.7,Watson and Harrison, 1983)。计算结果表明,花岗质岩脉的锆饱和温度在796~846℃,与哈拉峻花岗岩Ⅰ号和Ⅱ号岩体锆饱和温度(785~860℃)范围相似,这些较高的锆饱和温度被认为与来源于镁铁质岩浆分异的A型花岗岩有关(Zhang and Zou, 2013b)。因此,花岗质岩脉以及哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的形成可能与镁铁质岩浆分异有关。

5.3 不同岩石之间成因联系

利用微量元素模拟区分不同成因过程(Peccerillo et al., 2003; Schiano et al., 2010;Wang et al., 2013)可用来探讨不同岩石类型之间的成因联系。在Rb-Rb/V图解中(图 10a),所有样品点落在一条双曲线上,指示岩浆混合或者分离结晶。在Rb/La-Rb图解中,所有样品点呈水平分布,指示以分离结晶作用为主(图 10b)。另外,闪长质岩脉、花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体中的斜长石An值呈逐渐降低的趋势(表 1),这是岩浆连续分异的特征(Cawthorn and Ashwal, 2009)。因此,我们提出,闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体可能是镁铁质母岩浆持续的分离结晶形成的,这与前面估算的高的锆饱和温度(785~860℃)相吻合。

图 10 皮羌地区闪长质和花岗质岩脉和哈拉峻花岗岩Ⅰ号和Ⅱ号岩体岩石成因图解 (a) Rb-Rb/V图解,内图为CI-CI/CC示意图(CI为不相容元素,CC为相容元素);(b) Rb/La-Rb图解,内图为CH/CM-CH示意图(CH为高度不相容元素,CM为中度不相容元素)(据Schiano et al., 2010修改);(c) Zr-Sr图解,分别假定闪长质岩脉(PQ1113)和小海子正长岩样品(Xhz-9)为闪长质-花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体,瓦吉里塔格和小海子正长岩体单阶段批式熔融和分离结晶的起始物质(参考Zhong et al., 2007) Fig. 10 Modeling for dioritic-granitic dikes and Halajun granitic plutons I and II showing the trends of fractional crystallization (a) plot Rb vs. Rb/V, inset showing a schematic plot of CI vs. CI/CC (CI is incompatible element concentration, and CC is compatible element concentration); (b) plot of Rb/La vs. Rb, inset showing a schematic plot of CH/CM vs. CH (CH is highly incompatible element concentration, and CM is moderately incompatible element concentration); (c) plot of Zr vs. Sr, dioritic dike sample (PQ1113) and Xiaohaizi syenitic sample (Xhz-9) are assumed to be the starting composition for both partial melting and fractional crystallization

酸性岩浆演化过程中经常伴随有地壳物质混染(DePaolo, 1981; 孙林华等, 2008)。我们分别选取同期的高镁镁铁质岩墙样品(W13; 姜常义等, 2004)和塔里木片麻状花岗岩样品(NT20; Hu et al., 2000)作为母岩浆和混染物质进行模拟,以估算地壳混染的影响。如图 11,当混染因子r变化在0.1~0.4时,残余熔体比例在0.2~0.8之间,模拟结果变化与观测的同位素成分一致,暗示地壳物质混染在闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体形成中起到重要作用。

图 11 εNd(t)-Nd (×10-6)图解 t=275Ma.演化曲线采用AFC模型(据Depalo, 1981)计算所得,分别假定同时期高镁的镁铁质岩墙(Nd=30.731×10-6; εNd(t)=4.275)和塔里木片麻状花岗岩(Nd=48.7×10-6; εNd(t)=-26.55)为母岩浆和混染物质,DNd=0.5.围岩质量与岩浆分离结晶质量之比(r)变化0.01~0.4,残余岩浆比例(F)以0.1比例变化 Fig. 11 Plot of εNd(t) vs. Nd (×10-6) t=275Ma. The curves are AFC models calculated following DePaolo (1981) assuming the coeval high-Mg mafic dikes (Nd=30.731×10-6; εNd(t)=4.275) as parental magma and the Tarim gneissic granites (Nd=48.7×10-6; εNd(t)=-26.55) as contaminant. DNd=0.5. Mass ratios of contaminant and fractionated component are 0.01~0.4. AFC trend symbols represent fraction of melt (F) increment of 0.1

值得注意的是,塔里木大火成岩省中的A型花岗岩(包括小海子和瓦吉里塔格正长岩体)在Rb-Rb/V、Rb/La-Rb和Zr-Sr图解中大多落在分离结晶趋势线上(图 10)。相比皮羌地区的闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体,小海子和瓦吉里塔格地区的正长岩岩体具有较高的εNd(t)值,其εNd(t)值分别介于3.0~3.7和1.4~2.8之间(位荀和徐义刚, 2011; Zhang et al., 2008)。因此,结合其空间分布,我们认为这些A型花岗岩可能是来源于不同岩浆房镁铁质母岩浆结晶分异的产物。但是相比较闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体而言,它们没有受到明显地壳物质混染(0.01﹤r﹤0.05,图 11)。

5.4 成因模式

关于这些A型花岗岩的成因机制存在地壳熔融和分离结晶之争。地壳熔融和分离结晶模式可以通过Zr-Sr图解加以区分,因为批式熔融产生的熔体富集不相容元素Zr和适度亏损相容元素Sr,而分离结晶作用则会引起Sr强烈亏损(Peccerillo et al., 2003; Zhang and Zou, 2013b)。如果以闪长质岩脉样品(PQ1113)作为起始物质,闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体和Zr与Sr变化趋势与单阶段部分熔融作用趋势不符,但与分离结晶作用趋势一致(图 10c)。因此他们不可能是镁铁质岩石单阶段部分熔融形成,从而排除了地壳熔融的可能。另外,镁铁质岩石单阶段部分熔融形成的酸性岩浆通常含有硅不饱和矿物,如霞石(Zhang and Zou, 2013b),然而闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体中未见硅不饱和矿物。侵入至地壳浅部岩浆房中的镁铁质岩浆的分异也有可能形成A型花岗岩,但哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的出露面积(~90km2)远大于皮羌层状辉长质岩体(~25km2),很难想像如此大量的酸性岩浆如何直接从形成皮羌岩体的镁铁质岩浆中分异出来。另一种可能是由底侵于下地壳的大量镁铁质岩浆分异产生的酸性岩浆侵位于浅部岩浆房形成(Zhong et al., 2007)。我们认为皮羌层状岩体是镁铁质岩浆早期侵位于浅部岩浆房结晶分异的产物,同时,底侵于下地壳的大量镁铁质岩浆分离结晶产生大量中酸性岩浆上升到地壳浅部并伴随有不同程度的地壳混染,形成闪长质和花岗质岩脉和哈拉峻花岗岩Ⅰ号和Ⅱ号花岗岩体。考虑到塔里木大火岩省中与层状岩体时空紧密共生的A型花岗岩体地球化学特征相似, 因此该成因机制可能也适用于塔里木大火成岩省中其它与层状岩体相联系的A型花岗岩。

5.5 地质意义

塔里木大火成岩省存在两期岩浆活动(徐义刚等, 2013):一期为~290Ma,以塔里木盆地内部的玄武岩和流纹岩为代表,另一期为~280Ma,以塔里木盆地边缘的侵入岩和镁铁质岩墙群为主。皮羌地区的闪长质和花岗质岩脉、哈拉峻Ⅰ号和Ⅱ号花岗岩体和皮羌层状岩体在形成时代、微量元素和同位素特征均与瓦吉里塔格和小海子地区的层状岩体和A1型正长岩体相似,应为第二期岩浆作用的产物。

根据塔里木大火成岩省的地幔柱模型,塔里木岩石圈在地幔柱的烘烤下,其中的富集成分发生熔融,形成~290Ma岩浆作用。当地幔柱上升到岩石圈底部即发生扁平化,由于克拉通边部岩石圈较薄,地幔柱减压熔融形成~280Ma岩浆作用(徐义刚等, 2013)。~280Ma大量镁铁质岩浆底侵至下地壳底部并经历结晶分异作用,从而产生大量中酸性岩浆,由于中酸性岩浆密度小,因此容易上升到地壳浅部形成A型花岗质岩体。因此,我们认为,~280Ma大量镁铁质岩浆底侵至塔里木地块底部是产生塔里木大火成岩省A型花岗岩的必要前提。

6 结论

皮羌层状辉长质岩体、闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体的母岩浆来自相同的OIB型地幔源区,其形成与不同程度橄榄石、单斜辉石、长石和铁钛氧化物的分离结晶作用有关。闪长质和花岗质岩脉、哈拉峻花岗岩Ⅰ号和Ⅱ号岩体是下地壳底部底侵的镁铁质岩浆分异出的中酸性岩浆侵位到地壳浅部岩浆房形成的。塔里木大火成岩省中的A型花岗岩可能具有相似的成因机制。

致谢 主量、微量元素分析在同位素地球化学国家重点实验室刘颖和胡光黔老师的帮助下完成;王焰研究员对本文的完善提出了宝贵意见;在此一并致以诚挚的感谢。
参考文献
[] Black R, Liegeois JP. 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: The Pan-African testimony. Journal of Geological Society, 150(1): 89–98. DOI:10.1144/gsjgs.150.1.0088
[] Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1–29. DOI:10.1016/j.lithos.2006.12.007
[] Cawthorn RG, Ashwal LD. 2009. Origin of anorthosite and magnetitite layers in the Bushveld Complex, constrained by major element compositions of plagioclase. Journal of Petrology, 50(9): 1607–1637. DOI:10.1093/petrology/egp042
[] Chen HL, Yang SF, Wang QH, Luo JC, Jia CZ, Wei GQ, Li ZL, He GY, Hu AP. 2006. Sedimentary response to the Early-Mid Permian basaltic magmatism in the Tarim plate. Geology in China, 33(3): 545–552.
[] Clemens JD, Holloway JR, White AJR. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71(3-4): 317–324.
[] Creaser RA, Price RC, Wormald RJ. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19(2): 163–166. DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
[] DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2): 189–202. DOI:10.1016/0012-821X(81)90153-9
[] Eby GN. 1990. The a-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115–134. DOI:10.1016/0024-4937(90)90043-Z
[] Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641–644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[] Frost CD, Frost BR. 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology, 25(7): 647–650. DOI:10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
[] Hu AQ, Jahn BM, Zhang GX, Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd-Sr isotopic evidence. Part I: Isotopic characterization of basement rocks. Tectonophysics, 328(1): 15–51.
[] Huang H, Zhang ZC, Kusky T, Santosh M, Zhang S, Zhang DY, Liu JL, Zhao ZD. 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49–56. DOI:10.1016/j.lithos.2012.08.014
[] Jiang CY, Jia CZ, Li LC, Zhang PB, Lu DR, Bai KY. 2004. Source of the Fe-riched-type high-Mg magma in Mazhartag region; Xinjiang. Acta Geologica Sinica, 78(6): 770–780.
[] Landenberger B, Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, eastern Australia. Journal of Petrology, 37(1): 145–170. DOI:10.1093/petrology/37.1.145
[] Li XH. 1997. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323–337. DOI:10.2343/geochemj.31.323
[] Li XH, Qi CS, Liu Y, Tu XL, Xie LW, Yang YH. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constrains from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50(21): 2481–2486. DOI:10.1360/982005-287
[] Li ZL, Yang SF, Chen HL, Langmuir CH, Yu X, Lin XB, Li YQ. 2008. Chronology and geochemistry of Taxidnan basalts from the Tarim basin: Evidence for Permian plume magmatism. Acta Petrologica Sinica, 24(5): 959–970.
[] Loiselle MC, Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of American Abstracts with Programs, 11(7): 468.
[] Lu SN, Li HK, Zhang CL, Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. Precambrian Research, 160: 4–107.
[] Namur O, Charlier B, Toplis MJ, Higgins MD, Hounsell V, Liegeois JP, Auwera JV. 2011. Differentiation of tholeiitic basalt to A-type granite in the sept Iles layered intrusion, Canada. Journal of Petrology, 52(3): 487–539. DOI:10.1093/petrology/egq088
[] Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743–746. DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
[] Pearce JA, Thirlwall MF, Ingram G, Murton BJ, Arculus RJ and van der Laan SR. 1992. Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB et al. (eds.). Proceedings of the ODP Scientific Results, 125: 237–261.
[] Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW. 2003. Relationships between mafic and peralkaline felsic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003–2032. DOI:10.1093/petrology/egg068
[] Schiano P, Monzier M, Eissen JP, Martin H, Koga KT. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297–312. DOI:10.1007/s00410-009-0478-2
[] Shellnutt JG, Zhou MF. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chemical Geology, 243(3-4): 286–313. DOI:10.1016/j.chemgeo.2007.05.022
[] Shellnutt JG, Zhou MF. 2008. Permian, rifting related fayalite syenite in the Panxi region, SW China. Lithos, 101(1-2): 54–73. DOI:10.1016/j.lithos.2007.07.007
[] Shellnutt JG, Wang CY, Zhou MF, Yang Y. 2009. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic of the Emeishan large igneous province (SW China): Constraints on the mantle source. Journal of Asian Earth Science, 35(1): 45–55. DOI:10.1016/j.jseaes.2008.12.003
[] Shellnutt JG, Jahn BM. 2010. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: Implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China. Earth and Planetary Science Letters, 289(3-4): 509–519. DOI:10.1016/j.epsl.2009.11.044
[] Sun LH, Wang YJ, Fan WM, Zi JW. 2008. A further discussion of the petrogenesis and tectonic implication of the Mazhashan syenites in the Bachu area. Journal of Jilin University (Earth Science Edition), 38(1): 8–20.
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH, Guo RR. 2013. Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos, 162-163: 175–194. DOI:10.1016/j.lithos.2013.01.005
[] Watson EB, Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. DOI:10.1016/0012-821X(83)90211-X
[] Weaver BL. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381–397. DOI:10.1016/0012-821X(91)90217-6
[] Wei X, Xu YG. 2011. Petrogenesis of Xiaohaizi syenite complex from Bachu area, Tarim. Acta Petrologica Sinica, 27(10): 2984–3004.
[] Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202
[] Xu YG, He B, Luo ZY, Liu HQ. 2013. Study on mantle plume and large igneous provinces in China: An overview and perspectives. Bulletin of Mineralogy Petrology and Geochemistry, 32(1): 25–39.
[] Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Chemical Geology, 89(1-2): 89–106.
[] Yang SF, Chen HL, Dong CW, Wang ZG. 1996. The discovery of Permian syenite inside Tarim basin and its geodynamic significance. Geochimica, 25(2): 121–128.
[] Yang SF, Chen HL, Ji DW, Li ZL, Dong CW, Jia CZ, Wei GQ. 2005. Geological process of early to middle Permian magmatism in Tarim Basin and its geodynamic significance. Geological Journal of China Universities, 11(4): 504–511.
[] Yang SF, Li ZL, Chen HL, Xiao WJ, Yu X, Lin XW, Shi XG. 2006. Discovery of a Permian quartz syenitic porphyritic dyke from the Tarim Basin and its tectonic implications. Acta Petrologica Sinica, 22(5): 1405–1412.
[] Yang SF, Li ZL, Chen HL, Santosh M, Dong CW, Yu X. 2007. Permian bimodal dyke of Tarim Basin, NW China: Geochemical characteristics and tectonic implications. Gondwana Research, 12(1-2): 113–120. DOI:10.1016/j.gr.2006.10.018
[] Zhang CL, Li XH, Li ZX, Ye HM, Li CN. 2008. A Permian layered intrusive complex in the western Tarim Block, northwestern China: Product of a ca. 275Ma mantle plume? Journal of Geology, 116(3): 269–287.
[] Zhang CL, Li ZX, Li XH, Xu YG, Zhou G, Ye HM. 2010a. A Permian large igneous province in Tarim and Central Asian Orogenic Belt (CAOB), NW China: Results of a ca. 275Ma mantle plume? Geologic al Society of America Bulletin, 122(11-12): 2020–2040. DOI:10.1130/B30007.1
[] Zhang CL, Xu YG, Li ZX, Wang HY, Ye HM. 2010b. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume. Lithos,, 119(3-4): 537–552. DOI:10.1016/j.lithos.2010.08.007
[] Zhang CL, Li HK, Santosh M, Li ZX, Zou HB, Wang HY, Ye HM. 2012. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt. Journal of Asian Earth Sciences, 47: 5–20. DOI:10.1016/j.jseaes.2011.05.018
[] Zhang CL, Zou HB. 2013a. Comparison between the Permian mafic dykes in Tarim and the western part of Central Asian Orogenic Belt (CAOB), NW China: Implications for two mantle domains of the Permian Tarim Large Igneous Province. Lithos, 174: 15–27. DOI:10.1016/j.lithos.2012.11.010
[] Zhang CL, Zou HB. 2013b. Permian A-type granites in Tarim and western part of Central Asian Orogenic Belt (CAOB): Genetically related to a common Permian mantle plume. Lithos, 172-173: 47–60. DOI:10.1016/j.lithos.2013.04.001
[] Zhou MF, Zhao JH, Jiang CY, Gao JF, Wang W, Yang SH. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583–594. DOI:10.1016/j.lithos.2009.06.027
[] Zhong H, Zhu WG, Chu ZY, He DF, Song XY. 2007. SHRIMP U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology, 236(1-2): 112–133. DOI:10.1016/j.chemgeo.2006.09.004
[] 陈汉林, 杨树锋, 王清华, 罗俊成, 贾承造, 魏国齐, 厉子龙, 何光玉, 胡安平. 2006. 塔里木板块早-中二叠世玄武质岩浆作用的沉积响应. 中国地质, 33(3): 545–552.
[] 姜常义, 贾承造, 李良辰, 张蓬勃, 卢登蓉, 白开寅. 2004. 新疆麻扎尔塔格地区铁富集型高镁岩浆的源区. 地质学报, 78(6): 770–780.
[] 厉子龙, 杨树锋, 陈汉林, LangmuirCH, 余星, 林秀斌, 励音骐. 2008. 塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约. 岩石学报, 24(5): 959–970.
[] 孙林华, 王岳军, 范蔚茗, 訾建威. 2008. 再论巴楚麻扎山正长岩体岩石成因和构造意义. 吉林大学学报(地球科学版), 38(1): 8–20.
[] 位荀, 徐义刚. 2011. 塔里木巴楚小海子正长岩杂岩体的岩石成因探讨. 岩石学报, 27(10): 2984–3004.
[] 徐义刚, 何斌, 罗震宇, 刘海泉. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25–39.
[] 杨树峰, 陈汉林, 董传万, 贾承造, 汪振国. 1996. 塔里木盆地二叠纪正长岩的发现及其地球动力学意义. 地球化学, 25(2): 121–128.
[] 杨树锋, 陈汉林, 冀登武, 厉子龙, 董传万, 贾承造, 魏国齐. 2005. 塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义. 高校地质学报, 11(4): 504–511.
[] 杨树峰, 厉子龙, 陈汉林, 肖文交, 余星, 林秀斌, 施锡贵. 2006. 塔里木二叠纪石英正长斑岩岩墙的发现及其构造意义. 岩石学报, 22(5): 1405–1412.