岩石学报  2013, Vol. 29 Issue (8): 2925-2935   PDF    
下扬子巢湖-泾县地区上二叠统大隆组泥页岩储层特征
陈平1, 张敏强2, 许永哲1, 刘金水2, 杜学斌1, 胡小辉1, 陆永潮1     
1. 中国地质大学 油气与构造教育部重点实验室,武汉 430074;
2. 中海石油(中国)有限公司上海分公司,上海 200030
摘要: 基于实测剖面资料,对下扬子巢湖-泾县地区上二叠统大隆组泥页岩储层特征进行了研究。结果表明,研究区大隆组厚12~35m,沉积时期处于水体贫氧-厌氧的静水还原环境,为一套黑色碳质硅质泥页岩建造。页岩中钙硅质脆性矿物含量为65%~93%,粘土矿物含量5%~30%,总有机碳含量在2.05%~13.9%,有机质成熟度为1.45%~2%,属于成熟-过成熟演化阶段。大隆组泥页岩储层孔隙度为0.476%,渗透率为0.001×10-3μm2,主要发育四类微孔(裂)隙:残余原生孔隙、次生溶蚀孔隙、次生晶间孔和微裂隙(缝)。“高硅、高脆、高有机质丰度、孔隙发育”的四大储集特性表明大隆组海相黑色岩系具良好的勘探开发前景。
关键词: 上二叠统     大隆组     页岩气     储层特征     下扬子巢湖-泾县地区    
The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze area
CHEN Ping1, ZHANG MinQiang2, XU YongZhe1, LIU JinShui2, DU XueBin1, HU XiaoHui1, LU YongChao1     
1. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China;
2. Shanghai Branch of CNOOC Ltd., Shanghai 200030, China
Abstract: Based on the measured outcrop profiles, the shale reservoir characteristics of Dalong Formation in Chaohu-Jingxian area were analyzed. The result shows that with a thickness of 12~35m, the Dalong Formation were deposited in a lean oxygen-anaerobic quiescent environment, and composed of black carbonaceous or siliceous shales. In the shales, the content of the calcareous or siliceous brittle minerals is about 65%~93%, the content of clay minerals is about 5%~30%, and the TOC content is about 2.05%~13.9%. The maturity of organic matter is about 1.45%~2%, reaching maturation to post maturation stage. The shale porosity of Dalong Formation is 0.476md, and the permeability is 0.001×10-3μm2. In addition, four kinds of micro-pore were identified: residual original pore, secondary dissolution pore, secondary intercrystalline pore and microfissure. With the feature of “high siliceous content, high bittleness, high TOC content and porous”, the black shales of Dalong Formation possess the characteristic of high quality source rocks and the good prospect of exploration and development.
Key words: Upper Permian     Dalong Formation     Shale gas     Reservoir characteristics     Chaohu-Jingxian, Lower Yangtze area    

作为异于常规气藏的一种新型非常规油气资源,页岩气被称作能源领域的一个重要的潜在资源,其以巨大的发展潜力已成为全球多元化能源格局中一个不容忽视的组成部分。据初步估算,我国页岩气地质资源潜力超过100万亿立方米,可采资源量与大约美国相当。虽然目前我国页岩气勘探工作刚刚起步,但是一旦实现勘探开发突破,页岩气将有望成为我国天然气能源的重要支柱(张金川等, 2008闫存章等, 2009陈尚斌等, 2010李世臻等,2010邹才能等,2010刘德华等, 2011姜福杰等,2012)。下扬子地区属我国重要页岩气资源远景区之一,区内中古生界富有机质泥页岩分布广泛,有机碳(TOC)含量较高,具备雄厚的成烃物质基础(刘东鹰,2003袁玉松等, 2005, 梁狄刚等, 2008林小云等, 2007高林和周雁,2009潘继平等,2011),上二叠统大隆组为该区页岩气勘探重要目的层位之一。国内学者对区内大隆组的地层、古生物、沉积环境及烃源岩等进行了探讨(牟能树,1965郭佩霞等,1987张克信等,2002雷勇等,2010徐曦等, 2011),但尚未从储层角度进行系统研究和刻画。页岩气储层的岩石类型、矿物组成(脆性矿物含量)、微-纳米级孔隙或裂隙以及有机碳含量和有机质成熟度对页岩气成藏和勘探开发具有重要的作用(刘宝珺等,1993; Kirk et al., 2012; Clarkson et al., 2013; Bustin and Bustin, 2012)。本文通过对下扬子地区上二叠统大隆组野外露头剖面进行野外实测和系统采样测试(图 1),在详细的岩石岩相学、沉积学、地球化学研究基础上,探讨大隆组泥页岩微观储层特征。

1 地质背景

下扬子区位于扬子地块的东北缘,西部以郯庐断裂为界,西北与鲁苏-千里岩隆起相连,西南到九江,以赣江断裂为界与中扬子区相邻,南部及东南部以江绍断裂为界向南黄海延伸。其构造演化经历了晚震旦世至三叠纪末期的稳定大陆板块边缘阶段和印支运动之后西太平洋大陆板块边缘阶段,根据喜山期构造运动特征将下扬子陆上地区分为苏皖构造带和江南隆起两个大的构造单元,其中苏皖构造带以持续性沉降为主要特征。下扬子地区古生界海相主要发育深水陆棚-盆地相沉积,地层发育良好,震旦纪-中二叠世为海相沉积,晚三叠世以后多为陆相沉积(吴根耀等,2003;马力等, 2004;蒋裕强等, 2010)。巢湖-泾县地区位于下扬子区西部,地处下扬子海盆边缘的深水陆棚上,在中晚二叠世时期属于较深水低能环境,非常适合细粒物质的沉积,沉积了一套以海相为主的地层单元,泥岩层最厚>40m。上二叠统大隆组岩性组合特征可分为3段:下段灰黑色薄层硅质岩、碳质硅质岩夹紫色页岩、碳质页岩,中段紫灰色泥岩夹深灰、灰黑色碳质页岩、硅质页岩;上段灰黑色薄层硅质碳质泥岩,近顶部夹灰质白云质泥灰岩。与上覆殷坑组呈不整合接触,与下伏龙潭组呈整合接触(图 1)。

图 1 下扬子巢湖-泾县地区二叠系沉积相、充填序列及野外剖面位置图 Fig. 1 Location map showing sedimentary facies, sequence and field outcrops of Permian in Chaohu-Jingxian, Lower Yangtze area
2 材料和方法

巢湖马家山剖面(N 31°37′32″,E 117°49′11″)和泾县昌桥剖面(N30°45.335′,E118°24.506′)均为人工采石场,二叠系大隆组出露较完整,界面清楚,风(氧)化程度微弱。样品采自巢湖马家山剖面(16个,编号MJSP2d-)和泾县昌桥剖面(21个,编号PdCq-),岩性为硅质、碳质页岩,个别为硅质岩(图 2)。马家山剖面大隆组厚16.5m,按岩性和组合特征可分为2段,下段下部为黑色薄层碳质页岩夹硅质岩,厚度为3m, 中部为灰色硅质岩,顶部为棕色泥岩;上段为一套厚11m黑色薄层碳质页岩。昌桥剖面大隆组厚12m,岩性主体为黑色硅质页岩,近上部为黑色硅质碳质页岩(图 3)。对以上样品进行镜下薄片观察研究表明,2个剖面大隆组岩石学特征相近:页岩碎屑矿物主要由微晶石英组成,呈纹层状或分散状、斑块状分布,硅质胶结为主体,昌桥剖面碳质页岩中碳质含量更高,可见少量硅化生物屑;马家山剖面硅质岩发育大量放射虫,大小混杂(图 4)。在野外露头及镜下观察基础上,选择15个样品对大隆组泥页岩样品常微量元素、矿物成分、粘土矿物组分、微观储集特征、有机碳含量及有机质成熟度等无机-有机参数进行测定分析,研究储层特征。有机碳、有机成熟度及岩石物性测试由中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所实验研究中心完成。常微量元素分析、矿物组分及扫描电镜分析由中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。

图 2 野外剖面柱状图及泥页岩样品分布 (a)-马家山剖面;(b)-昌桥剖面 Fig. 2 Bar charts of field section and distribution of mud shale samples (a)-Majiashan profile; (b)-Changqiao profile

图 3 野外剖面大隆组岩石类型野外剖面大隆组岩石类型 (a)-马家山剖面薄层状黑色碳质页岩,页理发育; (b)-马家山剖面中-薄层状硅质页岩; (c、d)-昌桥剖面薄层状黑色硅质碳质页岩,页理发育 Fig. 3 Rock types of field section in Dalong Formation (a)-laminated carbonaceous shale in Majiashan profile; (b)-laminated siliceous shale in Majiashan profile; (c, d)-laminated siliceous carbonaceous shale with lamellation developing on Changqiao profile

图 4 野外剖面大隆组岩石的岩相学特征 (a)-马家山剖面大隆组黑色硅质碳质页岩,纹理发育,正交偏光;(b)-马家山剖面灰黑色放射虫硅质页岩,见大量放射虫化石,多期裂陷发育,后期被硅质充填,单偏光;(c)-马家山剖面灰黑色中薄层硅质页岩,微晶石英呈斑块状分布,正交偏光;(d)-昌桥剖面黑色含硅质碳质页岩,有机质含量高,透光性差,可见硅化生物屑,单偏光 Fig. 4 Petrographic characteristics of field section rocks in Dalong Formation (a)-laminated siliceous carbonaceous shale in Changqiao profile with texture development, orthogonal polarization; (b)-grey-black radiolarian siliceous shale characterized by radiolarian fossils, multiphase fracture development, then later filled by silica, plainlight; (c)-dark grey laminated siliceous shale in Majiashan section with microcrystaline in the patch shape diatribution, orthogonal polarization; (d)-siliceous carbonaceous shale in Changqiao profile including high TOC, poor light quality, visible siliconization bioclast, plainlight
3 分析结果 3.1 主量及微量元素特征

本文所测试的泥页岩样品的主量和微量元素化学分析结果表明(表 1表 2),马家山剖面和泾县昌桥剖面主量元素均表现出高SiO2,低Al2O3 、CaO的特征。其中马家山SiO2含量56.47%~70.99%、平均60.33%,Al2O3含量为8.69%~15.71%, 其次为Fe2O3、K2O、CaO,含量在0.29%~5.27%之间。昌桥剖面SiO2含量为63.20%~84.30%,平均为70.67%,Al2O3含量3.66%~10.89%;CaO含量为最高为8.77%、其他均小于3%;其他(Fe2O3、TiO2、K2O、MgO)等不足1%或略大于1%。表 2中列出指征沉积环境古氧化还原条件及海平面变化的微量元素分析数据,V/(V+Ni)比值分布为0.67~0.91,平均0.79,V/Cr比值分布为1.3~4.88,平均3.44,Ni/Co比值分布为11.43~59.46,U/Th比值分布0.66~5.25,平均2.68,Ce异常值依照北美页岩组合(NASC)(Gromet, 1984)标准化,按log[3CeN/(2LaN+NdN)]计算获得,Ce异常值分布为0.27~0.32,平均0.30。

表 1 巢湖马家山剖面和泾县昌桥剖面大隆组全岩主量元素测试结果(wt%) Table 1 Test results of bulk composition in Dalong Formation from Changqiao section and Majiashan section (wt%)

表 2 巢湖马家山剖面和昌桥剖面大隆组微量元素测试结果(×10-6) Table 2 Test results of microelement in Dalong Formation from Changqiao section and Majiashan section(×10-6)
3.2 矿物组分特征

本文所测试的泥页岩样品的矿物成分X衍射分析结果表明(表 3),14个样品样品矿物组成一致,均以石英含量最高,次要成分为粘土矿物、长石,以及少量的方解石和黄铁矿,结合扫描电镜观察,还见有非晶质矿物、有机质等(图 5)。昌桥剖面大隆组石英含量(60%~82%,平均70.8%)高于马家山剖面(48%~81%,平均55.22%),而长石含量较之要低(昌桥剖面7%~15%,平均8.8%,马家山剖面2%~15%,平均13.56%),马家山剖面粘土矿物含量 (15%~30%,平均24.4%)则高于昌桥剖面(5%~20%,平均12%),粘土矿物主要为伊蒙间层和伊利石,个别出现绿泥石或高岭石。总体上2个剖面岩石硅质(硅)含量较高,粘土矿物(泥)含量低,脆性矿物(石英+长石+碳酸盐矿物)含量达65%~93%,这对后期的压裂改造形成裂缝十分有利。

表 3 巢湖马家山剖面和泾县昌桥剖面大隆组矿物组成测试结果(wt%) Table 3 Test results of mineral composition in Dalong Formation from Changqiao section and Majiashan section(wt%)

图 5 马家山、昌桥剖面矿物及有机质微观特征 (a)-昌桥剖面黑色硅质碳质页岩中草莓状黄铁矿;(b)-马家山剖面黑色碳质页岩中草莓状黄铁矿,球径大小不等,3~5μm; (c、d)-马家山剖面黑色碳质页岩中胶磷矿和沥青质) Fig. 5 Microscopic characteristics of mineral and organic matter in Dalong Formation (a)-framboidal pyrite in black siliceous shale in Changqiao section; (b)-framboidal pyrite in carbonaceous shale in Majiashan section with feature of different ball diameter sizes, 3~5μm; (c, d)-phosphorite and asphaltine in carbonaceous shale in Majiashan section
3.3 有机质丰度和有机质成熟度特征

页岩气储层中有机质丰度与成熟度对页岩气资源量有重要影响,有机碳含量与页岩气的生气率具较好的正相关性(Boyer et al., 2010; Loucks and Ruppel, 2007),是油气资源评价的基本参数。马家山剖面和昌桥剖面样品岩石热解分析揭示(图 6),马家山剖面有机质丰度总体很高(有机碳含量5.51%~13.9%,平均9.535%),属于优质烃源岩,昌桥剖面大隆组有机质丰度分布范围广(有机碳含量2.05%~11.20%,平均5.70%),低于马家山剖面,有机质丰度的差异与岩性密切相关,高有机碳值赋存于黑色碳质页岩和硅质碳质页岩中。马家山剖面样品测试有机质成熟度Ro为1.47%~1.48%,属成熟阶段,有机质类型为Ⅲ和Ⅱ2型;昌桥剖面大隆组样品测试有机质成熟度Ro>2%,属过成熟阶段,有机质类型为Ⅲ型。

图 6 马家山剖面(a)和昌桥剖面(b) TOC、Ro、有机质类型分布图 Fig. 6 Distribution maps of TOC, Ro and organic substance in Majiashan section (a) and Changqiao section (b)
3.4 储集空间及物性特征

研究证实,页岩中因含有大量的孔隙和裂缝故而可作为天然气储层(Loucks et al., 2009;徐跃通,1997; Rahm, 2011)。据其成因孔隙又可分为残余原生孔隙-晶间孔、有机质溶孔、粘土矿物伊利石化形成的微孔隙和矿物溶蚀形成的溶蚀孔等(Boyer et al., 2010; Zhao et al., 2012; Mohaghegh, 2013)。扫描电镜研究发现,大隆组泥页岩中孔隙和微裂缝 非常发育,石英粒间和粘土矿物晶间孔隙、次生溶孔及微裂缝等多种类型均可见(图 7),孔径多数在0.01~0.05mm,少数在0.05~0.60mm,微裂缝宽2~3μm,可为页岩气的游离富集提供储渗空间, 增加页岩气游离态天然气的含量,同时也有助于吸附态天然气的解析, 并成为页岩气运移、开采的通道。马家山剖面大隆组页岩一个样品孔隙度和渗透率值分别为0.476%和0.001mD。

图 7 野外剖面大隆组岩石中微孔隙和微裂缝特征 (a-d)-马家山剖面大隆组灰黑色硅质页岩, 其中:(a)-伊蒙混层粘土矿物晶间孔,(b)-溶孔、晶间孔及微裂缝, (c)-晶间孔及微裂缝, (d)-微裂缝;(e、f)-昌桥剖面大隆组黑色硅质页岩, 其中: (e)-晶间孔,(f)-晶间孔及微裂缝 Fig. 7 characteristics of microporosity and microfractures in Dalong Formation (a-d)-dark grey carbonaceous shale in Dalong Formation, Majiashan section: (a)-illite smectite mixed layer clay minerals intercrystal pore, (b)-dissolution pore, intercrystal pore and microfractures, (c)-intercrystal pore and microfractures, (d)-microfracture; (e, f)-black siliceous shale in Changqiao section: (e)-intercrystal pore; (f)-intercrystal pore and microfractures
3.5 沉积环境特征

前人对晚二叠世大隆组沉积环境研究主要集中于中上扬子地区,例如鄂东南、桂西南、黔南地区(蔡雄飞等, 2007;李红敬等, 2009;遇昊等,2012;陈践发等, 2006),对区内研究甚少。多数认同晚二叠世大隆组是海侵期的产物,沉积时期处于水体贫氧-厌氧的静水还原环境。区内大隆组页岩储层有机质丰度高属优质烃源岩,而海相优质烃源岩的形成受控于原始生产力、沉积速率、海平面变化、上升流、海底热液活动、沉积环境和保存条件等因素(谢树成等, 2007;李天义等,2008;Hatch and Leventhal, 1992)。本文在此根据指征古氧化还原条件、古气候、古盐度及海平面变化的微量元素参数特征,并结合标型矿物组分,分析大隆组优质烃源岩的形成环境。图 8为马家山剖面大隆组沉积环境参数图,根据判识古氧化还原条件V/(V+Ni)、U/Th、V/Cr和Ni/Co比值的相应标准(表 4),仅V/Cr比值在贫氧范围,其余均在厌氧范围,以及微体化石放射虫和黄铁矿的存在,表明马家山剖面大隆组沉积时期水体为贫氧-厌氧环境, 有利于有机质的保存和埋藏。古气候“C”值略高,反映较温暖的古气候,有利于生物生长活动,生产力较高,进而造成有机质丰度高。古盐度指标变化与相对海平面变化相近,变化幅度不大,反映水动力条件为静水环境,有利于粘土、有机质等悬浮细粒物质沉淀、积聚,与该层段发育黑色碳质页岩实际地质情况相吻合。昌桥剖面大隆组样品V/(V+Ni)、Ni/Co和U/Th比值分布均在厌氧范围,与马家山剖面一致。

图 8 马家山剖面大隆组沉积环境参数变化图 Fig. 8 Varitations of depositional environment parameter in Dalong Formation, Majiashan section

表 4 缺氧环境和富氧环境元素地球化学判识指标(据Jones and Manning, 1994) Table 4 Hypoxia and oxygen-enriched environments element geochemistry for identifying indicators (after Jones and Manning, 1994)
4 结论

(1) 巢湖-泾县地区大隆组泥页岩岩石类型为黑色-灰黑色碳质、硅质页岩和硅质岩。岩石学特征表明碎屑矿物主要由微晶石英组成,呈纹层状或分散状、斑块状分布,硅质胶结为主体,碳质页岩中黄铁矿普遍发育,硅质岩中见微体化石放射虫,可见少量硅化生物屑。

(2) 大隆组泥页岩中元素均表现出高SiO2,低Al2O3 、CaO的特征;总体上岩石硅质(硅)含量较高,粘土矿物(泥)含量低,脆性矿物(石英+长石+碳酸盐矿物)含量达65%~93%,对后期的压裂改造形成裂缝十分有利。

(3) 大隆组泥页岩中微孔隙和微裂缝非常发育,石英粒间和粘土矿物晶间孔隙、次生溶孔及微裂缝等多种类型均可见,孔径多数在0.01~0.05mm,微裂缝宽2~3μm,可为页岩气的游离富集提供储渗空间, 并成为页岩气运移、开采的通道。

(4) 马家山剖面大隆组泥页岩有机质丰度总体很高(有机碳含量5.51%~13.9%,平均9.535%),有机质类型为Ⅲ和Ⅱ2型,属于优质烃源岩,有机质成熟度为1.47%~1.48%,属成熟演化阶段;昌桥剖面大隆组有机质丰度分布范围广(有机碳含量2.05%~11.20%),有机质类型为Ⅲ型,有机质成熟度>2%,属过成熟演化阶段。有机质丰度的差异与岩石类型密切相关,高有机碳值赋存于黑色碳质页岩和硅质碳质页岩中。

(5) 巢湖-泾县大隆组沉积环境处于贫氧-厌氧的静水沉积环境,总体具有较温暖的古气候,有利于生物生长活动,生产力较高,相对海平面变化幅度不大,有利于粘土、有机质等悬浮细粒物质沉淀、积聚。

致谢 特别感谢中海石油(中国)有限公司上海分公司的领导和专家在资料收集及工作经费所给予的大力支持。
参考文献
[] Bustin AMM, Bustin RM. 2012. Importance of rock properties on the producibility of gas shales. International Journal of Coal Geology, 103: 132–147. DOI:10.1016/j.coal.2012.04.012
[] Boyer C, Kieschnick J and Lewis RE. 2010. Producing gas from its source [EB/OL]. [2010-08-20]http:www.slbsis.com.cn/toc/2006/Autumn2006-4.df
[] Cai XF, Zhang ZF, Peng XF, et al. 2007. Depositional characteristics of the Dalong Formation and the related potential hydrocarbon source rocks of Hubei, Hunan, Guizhou and Guangxi regions. Earth Science, 32(6): 774–780.
[] Chen JF, Zhang SC, Sun SL, et al. 2006. Main factors influencing marine carbonate source rock formation. Acta Geologica Sinica, 80(3): 467–472.
[] Chen SB, ZhuYM, Wang HY, et al. 2010. Research status and trends of shale gas in China. Acta Petrolei Sinica, 31(4): 689–694.
[] Clarkson CR, Solano N, Bustin RM, Bustin AMM, Chalmers GRL, He L, Melnichenko YB, Radliński AP, Blach TP. 2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103: 606–616. DOI:10.1016/j.fuel.2012.06.119
[] Gao L, Zhou Y. 2009. Evaluation and potential analysis on source rocks in Mesozoic and Paleozoic marine sequence, Middle-Lower Yangtze area. Petroleum Geology and Recovery Efficiency, 16(6): 30–33.
[] Guo PX, Hu FR, Wu HY, et al. 1987. On the Dalong Formation from Tongling, Anhui. Volcanology & Mineral Resources, 8(1): 80–91.
[] Hatch JR, Leventhal JS. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. Chemical Geology, 99(1-3): 65–82. DOI:10.1016/0009-2541(92)90031-Y
[] Jiang FJ, Pang XQ, Yang XC, et al. 2012. The main progress and problems of shale gas study and the potential prediction of shale gas exploration. Earth Science Frontiers, 19(2): 198–211.
[] Jiang YQ, Dong DZ, Qi L, et al. 2010. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, 30(10): 7–12.
[] Jones B, Manning DAC. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111–129. DOI:10.1016/0009-2541(94)90085-X
[] Kirk MF, Martini AM, Breecker DO, Colman DR, Takacs-Vesbach C, Petsch ST. 2012. Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir. Chemical Geology, 332-333: 15–25. DOI:10.1016/j.chemgeo.2012.08.032
[] Lei Y, Feng QL, Gui BW. 2010. Geobiological model for organic enrichment in the Upper Permian Dalong Formation of Pingdingshan section at Chaohu, Anhui. Journal of Palaeogeography, 12(2): 202–211.
[] Li HJ, Xie XN, Lin ZL, et al. 2009. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin. Geological Science and Technology Information, 28(2): 99–103.
[] Li SZ, Qiao DW, Feng ZG, et al. 2010. The status of worldwide shale gas exploration and its suggestion for China. Geological Bulletin of China, 29(6): 918–924.
[] Li TY, He S, Yang Z. 2008. The marine source rock formation conditions and control factors. Geological Science and Technology Information, 27(6): 63–70.
[] Liang DG, Guo TL, Chen JP, et al. 2008. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 1): Distribution of four suits of regional marine source rocks. Marine Origin Petroleum Geology, 13(2): 1–16.
[] Lin XY, Liu J, Chen ZL, et al. 2007. Marine source rock distribution and hydrocarbon generation potential in Middle and Lower Yangtze Region. Journal of Oil and Gas Technology, 29(3): 15–19.
[] Liu BJ, Xu XS, Pan XN, et al. 1993. China Southern Ancient Continental Sedimentary Crustal Evolution and Mineralization. Beijing: Science Press.
[] Liu DH, Xiao JL, Gu FJ. 2011. Current situation and research direction of shale gas development. Journal of Oil and Gas Technology, 33(1): 119–123.
[] Liu DY. 2003. Target of Meso-Paleozoic hydrocarbon exploration in Jiangsu-Anhui Lower Yangtze Region. Journal of Jianghan Petroleum Institute, 25(Z2): 46–47.
[] Loucks RG, Ruppel SC. 2007. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth basin, Texas. AAPG Bulletin, 91(4): 579–601. DOI:10.1306/11020606059
[] Loucks RG, Reed RM, Ruppel SC, Jarvie DM. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(12): 848–861. DOI:10.2110/jsr.2009.092
[] Ma L, Chen HJ, Gan KW, et al. 2004. Tectonics in South China and Marine Petroleum Geology (Volume One). Beijing: Geology Publishing House, 259: 259–364.
[] Mohaghegh SD. 2013. Reservoir modeling of shale formations. Journal of Natural Gas Science and Engineering, 12: 22–33. DOI:10.1016/j.jngse.2013.01.003
[] Mou NS. 1965. Dalong Formation in Jixianguan of Anqing and Yueshan of Huanning in Anhui Province. Geological Review, 23(3): 221–223.
[] Pan JP, Qiao DW, Li SZ, et al. 2011. Shale-gas geological conditions and exploration prospect of the Paleozoic marine strata in Lower Yangtze area, China. Geological Bulletin of China, 30(2-3): 337–343.
[] Rahm D. 2011. Regulating hydraulic fracturing in shale gas plays: The case of Texas. Energy Policy, 39(5): 2974–2981. DOI:10.1016/j.enpol.2011.03.009
[] Wu GY, Ma L, Chen HJ, et al. 2003. Tectonic evolution of the Su-Wan block, creation of the Su-Lu orogen and orogenesis-coupled basin developing. Geotectonica et Metallogenia, 27(4): 337–353.
[] Xie SC, Yin HF, Xie XN, et al. 2007. On the geobiological evaluation of hydrocarbon source rocks. Earth Science, 32(6): 727–740.
[] Xu X, Yang FL, Zhao WF. 2011. Analysis of characteristics of upper hydrocarbon play of Mesozoic-Paleozoic marine group, Lower Yangtze region. Offshore Oil, 31(4): 48–53.
[] Xu YT. 1997. Genetic geochemistry for the bedded silicalite in the Late Permian Dalong Formation and its sedimentary setting in Southeastern Hubei. Journal of Guilin Institute of Tecnology, 17(3): 204–212.
[] Yan CZ, Huang YZ, Ge CM, et al. 2009. Shale gas: Enormous potential of unconventional natural gas resources. Natural Gas Industry, 29(5): 1–6.
[] Yu H, Chen DZ, Wei HY, et al. 2012. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province. Acta Petrologica Sinica, 28(3): 1017–1027.
[] Yuan YS, Guo TL, Hu SB, et al. 2005. Tectonic-thermal evolution and hydrocarbon generation history of hydrocarbon source rock in Sunan area, Lower Yangtze Region. Progress in Natural Science, 15(6): 753–758.
[] Zhang JC, Xu B, Nie HK, et al. 2008. Exploration potential of shale gas resources in China. Natural Gas Industry, 28(6): 136–140.
[] Zhang KX, Liu JH, He WH, et al. 2002. Research on outcrop sequence stratigraphy of Permian in the Middle-Lower Yangtze Region. Earth Science, 2(1): 358–365.
[] Zhao YL, Zhang LH, Wu F. 2012. Pressure transient analysis for multi-fractured horizontal well in shale gas reservoirs. Journal of Petroleum Science and Engineering, 90-91: 31–38. DOI:10.1016/j.petrol.2012.04.006
[] Zou CN, Dong DZ, Wang SJ, et al. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641–653. DOI:10.1016/S1876-3804(11)60001-3
[] 蔡雄飞, 张志峰, 彭兴芳, 等. 2007. 鄂湘黔桂地区大隆组的沉积特征及与烃源岩的关系. 地球科学, 32(6): 774–780.
[] 陈践发, 张水昌, 孙省利, 等. 2006. 海相碳酸盐岩优质烃源岩发育的主要影响因素. 地质学报, 80(3): 467–472.
[] 陈尚斌, 朱炎铭, 王红岩, 等. 2010. 中国页岩气研究现状与发展趋势. 石油学报, 31(4): 689–694.
[] 高林, 周雁. 2009. 中下扬子区海相中-古生界烃源岩评价与潜力分析. 油气地质与采收率, 16(6): 30–33.
[] 郭佩霞, 胡福仁, 吴弘毅, 等. 1987. 安徽铜陵地区的大隆组. 资源调查与环境, 8(1): 80–91.
[] 姜福杰, 庞雄奇, 欧阳学成, 等. 2012. 世界页岩气研究概况及中国页岩气资源潜力分析. 地学前缘, 19(2): 198–211.
[] 蒋裕强, 董大忠, 漆麟, 等. 2010. 页岩气储层的基本特征及其评价. 天然气工业, 30(10): 7–12.
[] 雷勇, 冯庆来, 桂碧雯. 2010. 安徽巢湖平顶山剖面上二叠统大隆组有机质富集的地球生物学模式. 古地理学报, 12(2): 202–211.
[] 李红敬, 解习农, 林正良, 等. 2009. 四川盆地广元地区大隆组有机质富集规律. 地质科技情报, 28(2): 99–103.
[] 李世臻, 乔德武, 冯志刚, 等. 2010. 世界页岩气勘探开发现状及对中国的启示. 地质通报, 29(6): 918–924.
[] 李天义, 何生, 杨智. 2008. 海相优质烃源岩形成环境及其控制因素分析. 地质科技情报, 27(6): 63–70.
[] 梁狄刚, 郭彤楼, 陈建平, 等. 2008. 中国南方海相生烃成藏研究的若干新进展(一): 南方四套区域性海相烃源岩的分布. 海相油气地质, 13(2): 1–16.
[] 林小云, 刘建, 陈志良, 等. 2007. 中下扬子区海相烃源岩分布与生烃潜力评价. 石油天然气学报(江汉石油学院学报), 29(3): 15–19.
[] 刘宝珺, 许效松, 潘杏南, 等. 1993. 中国南方古大陆沉积地壳演化与成矿. 北京: 科学出版社.
[] 刘德华, 肖佳林, 关富佳. 2011. 页岩气开发技术现状及研究方向. 石油天然气学报, 33(1): 119–123.
[] 刘东鹰. 2003. 苏皖下扬子区中古生界油气勘探方向. 江汉石油学院学报, 25(Z2): 46–47.
[] 马力, 陈焕疆, 甘克文, 等. 2004. 中国南方大地构造和海相油气地质(上册). 北京: 地质出版社: 259-364.
[] 牟能树. 1965. 安徽安庆集贤关、怀宁月山的大隆组. 地质论评, 23(3): 221–223.
[] 潘继平, 乔德武, 李世臻, 等. 2011. 下扬子地区古生界页岩气地质条件与勘探前景. 地质通报, 30(2-3): 337–343.
[] 吴根耀, 马力, 陈焕疆, 等. 2003. 苏皖地块构造演化、苏鲁造山带形成及其耦合的盆地发育. 大地构造与成矿学, 27(4): 337–353.
[] 谢树成, 殷鸿福, 解习农, 等. 2007. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学, 32(6): 727–740.
[] 徐曦, 杨风丽, 赵文芳. 2011. 下扬子区海相中、古生界上油气成藏组合特征分析. 海洋石油, 31(4): 48–53.
[] 徐跃通. 1997. 鄂东南晚二叠世大隆组层状硅质岩成因地球化学及沉积环境. 桂林工学院学报, 17(3): 204–212.
[] 闫存章, 黄玉珍, 葛春梅, 等. 2009. 页岩气是潜力巨大的非常规天然气资源. 天然气工业, 29(5): 1–6.
[] 遇昊, 陈代钊, 韦恒叶, 等. 2012. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理. 岩石学报, 28(3): 1017–1027.
[] 袁玉松, 郭彤楼, 胡圣标, 等. 2005. 下扬子苏南地区构造-热演化及烃源岩成烃史研究——以圣科1井为例. 自然科学进展, 15(6): 753–758.
[] 张金川, 徐波, 聂海宽, 等. 2008. 中国页岩气资源勘探潜力. 天然气工业, 28(6): 136–140.
[] 张克信, 刘金华, 何卫红, 等. 2002. 中下扬子区二叠系露头层序地层研究. 地球科学, 2(1): 358–365.
[] 邹才能, 董大忠, 王社教, 等. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641–653.