岩石学报  2013, Vol. 29 Issue (7): 2508-2536   PDF    
华北克拉通古元古代末-新元古代地质事件——来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据
胡波1, 翟明国2, 彭澎2, 刘富2, 第五春荣3, 王浩铮2, 张海东1     
1. 长安大学地球科学与资源学院,西部矿产资源与地质工程教育部重点实验室,西安 710054;
2. 中国科学院地质与地球物理研究所,北京 100029;
3. 西北大学地质学系,西安 710069
摘要: 华北克拉通是否同华南克拉通一样保存有与Rodinia超大陆聚合和裂解有关的年龄记录是理解华北克拉通元古宙构造演化的重要科学问题。本文对位于华北克拉通燕辽裂陷槽的北京西山地区的寒武系和侏罗系碎屑岩进行锆石LA-ICP-MS U-Pb年代学研究,目的是通过碎屑锆石年龄揭示华北克拉通前寒武纪尤其是古元古代末-新元古代重要地质事件。定年结果显示,北京西山寒武系徐庄组的钙质细砂岩中碎屑锆石年龄峰值主要集中在~1.38Ga和~1.14Ga。此外,还有~1.56Ga、~912Ma、~814Ma、~740Ma、~630Ma和~507Ma的年龄组。侏罗系窑坡组长石质岩屑细砂岩和粉砂质泥岩中碎屑锆石年龄峰值主要集中在~2.5Ga、1.88~1.8Ga、~1.74Ga、~1.6Ga和186Ma。此外,还有~2.77Ga、~2.0Ga、~1.2Ga、~488Ma、~256Ma和~233Ma的年龄组。这三个岩石具有较低的成分和结构成熟度,指示较近的物源区,其碎屑物质可能大部分来自华北克拉通内部和北缘,因此其碎屑锆石的年龄组可记录华北克拉通前寒武纪重要地质事件。~2.77Ga、~2.5Ga、2.1~2.0Ga和1.88~1.8Ga的年龄组分别对应华北克拉通早前寒武纪发生地壳生长、克拉通化、裂谷和造山等重要地质事件;~1.74Ga、~1.6Ga、~1.56Ga、~1.38Ga、~912Ma和~814Ma的年龄组记录了华北克拉通最终克拉通化后开始的古元古代末-新元古代的多期裂谷事件。与1.3~1.0Ga、~740Ma和~630Ma的年龄组相对应的岩石在华北克拉通出现甚少,而该时期的岩浆岩和变质岩在华南克拉通广泛发育,且可能与Rodinia超大陆汇聚和裂解的不同阶段相对应。华北克拉通显生宙碎屑岩中碎屑锆石保存的古元古代末-新元古代地质事件的记录对探讨华北克拉通在元古宙的地质演化及华北克拉通与华南克拉通的关系可提供重要的依据。
关键词: 碎屑锆石     U-Pb年龄     元古宙     北京西山     华北克拉通    
Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton: Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing
HU Bo1, ZHAI MingGuo2, PENG Peng2, LIU Fu2, DIWU ChunRong3, WANG HaoZheng2, ZHANG HaiDong1     
1. Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, College of Earth Science and Resources, Chang’an University, Xi’an 710054, China;
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Department of Geology, Northwest University, Xi’an 710069, China
Abstract: Whether any age records about the assemblage and rifting of the Rodinia supercontinent are preserved in the North China Craton (NCC) like in the South China Craton (SCC) is a key issue to understand the Proterozoic tectonic evolution of the NCC. This study focuses on LA-ICP-MS U-Pb dating of detrital zircons from the Cambrian and Jurassic clastic rocks in Western Hills of Beijing to reveal significant Precambrian, especially Late Paleoproterozoic to Neoproterozoic geological events of the NCC. U-Pb age data of detrital zircons show that age peaks of the detrital zircon grains of the calcareous fine sandstone from the Cambrian Xuzhuang Formation focus on ~1.38Ga and ~1.14Ga. There are also ~1.56Ga, ~912Ma, ~814Ma, ~740Ma, ~630Ma and ~507Ma age groups in this sandstone. The age peaks of the detrital zircon grains of the feldspar lithic fine sandstone and the silty mudstone from the Jurrasic Yaopo Formation focus on ~2.5Ga, 1.88~1.8Ga, ~1.74Ga, ~1.6Ga and 186Ma. Besides, there are ~2.77Ga, ~2.0Ga, ~1.2Ga, ~488Ma, ~256Ma and ~233Ma age groups. All the three rocks have low compositional and textural maturity, which indicates nearer provenances. So the detrital material of the three rocks may mainly derive from the interior and the north margin of the NCC, that means, the age groups of the detrital zircons may record significant Precambrian geological events of the NCC. Detrital zircon ages of ~2.77Ga, ~2.5Ga, 2.1~2.0Ga and 1.88~1.8Ga correspond respectively to Precambrian significant events of crustal growth, cratonization, rifting and orogenesis in the NCC; Detrital zircon ages of ~1.74Ga, ~1.6Ga, ~1.56Ga, ~1.38Ga, ~912Ma and ~814Ma record Late Paleoproterozoic to Neoproterozoic multi rifting events developing after the final cratonization at about 1.8Ga of the NCC. Magmatic and metamorphic rocks corresponding to 1.3~1.0Ga, ~740Ma and ~630Ma detrial zircon ages seldom crop out in the NCC, whereas develop broadly in the SCC and may correlate to various stages of assemblage and rifting of the Rodinia supercontinent. Age records of Late Paleoproterozoic to Neoproterozoic geological events of the NCC preserved in detrital zircons from the Phanerozoic clastic rocks in the NCC may provide significant evidences to discuss the geological evolution of the NCC in the Proterozoic and the relationship of the NCC and the SCC.
Key words: Detrital zircon     U-Pb age     Proterozoic     Western Hills of Beijing     North China Craton    

华北克拉通是中国最主要的克拉通之一, 记录了最早~3.8Ga的构造历史(图 1a, Liu et al., 1992, 2008a; Song et al., 1996; 万渝生等, 2001Wu et al., 2008)。华北克拉通的形成经历了三期重要的地质事件:~2.7Ga主要的陆壳生长, ~2.5Ga克拉通化事件和2.0~1.8Ga克拉通的最终形成(程裕淇和张寿广, 1982; 沈其韩等, 1992; 赵宗溥, 1993程裕淇, 1994白瑾等, 1996; 翟明国和卞爱国, 2000; Zhai et al., 2005; Zhai and Liu, 2003; Zhai and Santosh, 2011Zhao, 2001; Zhao et al., 2001, 2003a, b, 2005; Kusky and Li, 2003; Kusky et al., 2007a, b; Santosh, 2010)。古元古代末-新元古代, 华北克拉通进入稳定的地台发展阶段(赵宗溥, 1993翟明国和卞爱国, 2000; Zhai and Liu, 2003; 翟明国和彭澎, 2007Lu et al., 2002, 2008; Kusky and Li, 2003)。华北克拉通有火山岩夹层的典型的大陆裂谷沉积序列被称为长城系(1.8~1.6Ga)、蓟县系(1.6~1.0Ga)和青白口系(1.0~0.8Ga)(高振西等, 1934; 陈晋镳等, 1980; 全国地层委员会, 2001)。近年来在青白口系下马岭组中发现了~1.37Ga的凝灰岩(Gao et al., 2007, 2008)和侵入其中的~1.32Ga的辉绿岩床(李怀坤等, 2009Zhang et al., 2009, 2012), 因而Qiao et al.(2007)高林志等(2009)李怀坤等(2009)等建议建立一个以下马岭组为主的待建系, 时代为1.4~1.0Ga, 将蓟县系的时代划为1.6~1.4Ga。与华南克拉通元古宙沉积地层对比, 除在南缘零星出露一些震旦系, 华北克拉通整体缺乏南华纪(800~630Ma)和震旦纪(630~540Ma)地层(Zhai et al., 2003)。同样, 1.3~0.6Ga的岩浆岩和变质岩在华北克拉通也出露较少, 而在华南克拉通却分布广泛(Li et al., 1995, 1997, 2002, 2003; Li, 1997, 1999; 张传恒等, 2007Chu et al., 2005Zhang et al., 2005, 2008高林志等, 2010a), 也被一些学者认为是区分华南克拉通和华北克拉通的标志之一(Li et al., 2007b; Liu et al., 2008b)。1.3~0.6Ga的岩浆活动和变质作用被认为是与Rodinia超大陆的聚合和裂解相联系的, 尽管对聚合和裂解的具体时间及各大陆的位置仍有争议(Hoffman, 1991; Hoffmann et al., 2004Dalziel, 1991, 1997; Li et al., 1995, 2002, 2003; Fitzsimons, 2000; Karlstrom et al., 2001; Condie, 2001; Zhai, 2001; Rogers and Santosh, 2004; Lu et al., 2008; Rino et al., 2008李江海, 1998李江海和穆剑, 1999徐备, 2001陆松年等, 2004, 2005Condon et al., 2005Zhang et al., 2005Chu et al., 2005Gradstein et al., 2005)。近年对华北东缘和北缘新元古代沉积岩碎屑锆石(Luo et al., 2006Li et al., 2007b; 高林志等, 2010bGao et al., 2011Hu et al., 2012)及侵入岩中捕获锆石(Yang et al., 2004张华锋等, 2009)的研究揭示出1.3~1.0Ga的年龄记录, 在北朝鲜也发现了~1.2Ga的花岗岩体(Zhao et al., 2006)。华北地区陆续报道了900~800Ma的基性岩墙群和酸性火山岩(Peng, 2010Peng et al., 2011a, b; Wang et al., 2011, 2012柳永清等, 2005; 彭润民等, 2010)。1.3~0.8Ga的岩浆岩或锆石年龄记录在华北克拉通是否普遍存在, 还是具有局部性?华北克拉通有无0.8~0.6Ga的年龄记录?对这些问题的深入研究将对理解华北克拉通元古宙的演化及其与华南克拉通的关系都具有重要意义。碎屑沉积岩是其源区出露岩石的天然混合样品, 是探讨克拉通形成和演化的主要途径之一(Belousova et al., 2009; Wan et al., 2011a, bHawkesworth et al., 2010)。沉积岩中的碎屑锆石能够抗风化和磨蚀, 并且能保持U-Pb同位素体系较高的封闭温度, 通常可以保存源区曾经存在的岩石的年龄记录, 因而本文选择位于华北克拉通早前寒武纪基底和中晚元古代盖层发育较完整的燕辽裂陷槽中的北京西山地区为研究区, 对显生宙地层中的碎屑岩进行碎屑锆石U-Pb年代学研究, 目的是揭示华北克拉通前寒武纪地质事件, 特别是现今出露的岩石及中晚元古代沉积岩未能全面揭示的元古宙地质事件。

图 1 中国大地构造简图(a, 据Zhao et al., 2006修改)和华北克拉通前寒武纪地质简图(b, 据Peng et al., 2011b修改) Fig. 1 Tectonic map of China showing the location of the Tarim, North China and South China Cratons and the main orogens(a, modified after Zhao et al., 2006)and Archean-Paleoproterozoic basement and Late Paleoproterozoic to Neoproterozoic cover of the North China Craton(b, modified after Peng et al., 2011b)
1 区域地质背景

在华北克拉通前寒武纪结晶基底之上, 不整合覆盖着大面积的古-新元古代沉积盖层, 被划分为长城系(1800~1600Ma)、蓟县系(1600~1400Ma)、待建系下马岭组(1400~1000Ma)和青白口系(1000~800Ma)(全国地层委员会, 2001乔秀夫等, 2007高林志等, 2009, 2010a李怀坤等, 2009, 2010苏文博等, 2010), 主要分布于南部的熊耳裂陷槽、中部的燕辽裂陷槽、北缘裂谷和东缘裂谷(图 1, 翟明国和彭澎, 2007)。北京西山地区位于燕辽裂陷槽, 出露的地层有中元古代蓟县系雾迷山组-铁岭组、下马岭组和新元古代青白口系、寒武系、奥陶系、石炭系和侏罗系。地层走向由近东西向转近南北向呈弧形展布, 这些地层被中生代花岗质或闪长质岩体或岩脉侵入(图 2)。蓟县系雾迷山组为一套含叠层石的白云岩;洪水庄组主要为灰黑色炭质页岩;铁岭组主要为含叠层石的白云岩。下马岭组主要由灰绿色、灰黑色页岩、粘土岩和铁质粉砂岩组成。青白口系长龙山组主要由砾岩、石英砂岩、长石石英砂岩和钙质、粉砂质页岩组成;景儿峪组为一套中-薄层状微晶灰岩。下马岭组平行不整合于蓟县系铁岭组之上, 又被青白口系长龙山组平行不整合覆盖, 这两个不整合分别代表芹峪运动和蔚县运动(陈晋镳等, 1980)。寒武系平行不整合于青白口系之上, 主要为厚层状含三叶虫的碳酸盐岩, 部分夹薄层细碎屑岩(图 3图 4b)。奥陶系与寒武系整合接触, 主要由厚层状灰岩和白云岩组成。石炭系清水涧组在本地区出露不全, 平行不整合于奥陶系之上, 主要由含砾砂岩和泥岩组成。侏罗系呈角度不整合覆盖于蓟县系、青白口系、下马岭组、寒武-奥陶系和石炭系之上, 为一套火山-沉积岩, 火山岩以安山岩和玄武岩为主, 沉积岩包括凝灰岩、凝灰质砾岩、砂岩、凝灰质砂岩、杂砂岩、细砂岩、粉砂岩、泥岩和页岩等, 部分地层夹有煤线, 产植物化石。详细的地层组合见图 3

为研究显生宙沉积岩中碎屑锆石所揭示的前寒武纪地质事件, 本文分别在北京西山地区的侏罗系窑坡组和寒武系徐庄组中选取碎屑岩样品进行锆石U-Pb测年。样品08QY01和08QY03分别采自芹峪北侏罗系窑坡组夹于泥岩中的薄层长石质岩屑细砂岩和粉砂质泥岩(图 4a), 采样位置见图 2, GPS点为N40°03′56.2″, E115°51′16.6″, H607m。样品08QY03的层位在样品08QY01之上, 二者相距大约20cm(图 4a)。长石质岩屑细砂岩样品08QY01的主要组成为:火山岩碎屑45%, 石英30%, 斜长石10%, 基质10%。碎屑矿物呈次圆状-次棱角状, 有两组不同的粒径, 小的为0.1~ 0.2mm, 大的为0.3~0.4mm, 显示较差的磨圆和分选(图 5a, b)。粉砂质泥岩样品08QY03由非常细小(<0.05mm)的长英质矿物及黑云母、绢云母和粘土矿物等组成(图 5c)。样品08QY06采自芹峪东北寒武系徐庄组泥晶灰岩中夹的薄层紫红色钙质细砂岩(图 2图 4b), GPS点为N40°03′07.5″, E115°53′03.4″, H286 m。细砂岩碎屑矿物粒度为0.1~0.2mm, 主要矿物有方解石(50%)和石英(30%)以及少量斜长石(10%)和白云母(<5%)。方解石多呈次圆状-次棱角状, 部分由边缘-中部被蚀变分解而浑浊不清楚;石英和长石多呈棱角状, 显示出较差的磨圆(图 5d)。

图 2 北京西山雁翅地区地质简图(据北京市地质矿产局地质调查所, 1994修改) Fig. 2 Sketch geological map of Yanchi area, Western Hills, Beijing

① 北京市地质矿产局地质调查所. 1994. 1:5万雁翅幅地质图

图 3 北京西山雁翅地区地层柱状图(据北京市地质矿产局地质调查所, 1994修编) Fig. 3 Integrated stratigraphic column of Yanchi area, Western Hills, Beijing

图 4 研究区侏罗系窑坡组(a)、寒武系徐庄组(b)野外露头及采样位置 Fig. 4 Field outcrop of Jurassic Yaopo Formation(a), Cambrian Xuzhuang Formation(b)and the sample location

图 5 侏罗系窑坡组长石质岩屑细砂岩08QY01(a、b)和粉砂质泥岩08QY03(c)及寒武系徐庄组钙质细砂岩08QY06(d)的显微照片 (a)为单偏光, (b-d)为正交偏光.Lv-火山岩岩屑;Q-石英;Pl-斜长石;Cc-方解石 Fig. 5 Micrographs of feldspathic lithic fine sandstone sample 08QY01(a, b)and silty mudstone sample 08QY03(c)from the Jurassic Yaopo Formation and calcareous fine sandstone sample 08QY06(d)from the Cambrian Xuzhuang Formation Micrograph(a)is under the plane-polarized light and(b, c and d)are under the cross-polarized light. Lv-volcanic lithic fragment; Q-quartz; Pl-plagioclase; Cc-calcite
2 分析方法与数据处理

将野外采得的样品洗净泥土并晾干, 粉碎至60目以下, 先用磁选和重液方法粗选锆石, 然后在双目镜下将干净的锆石颗粒逐一挑出。将挑好的锆石颗粒粘在双面胶上, 固定于透明的环氧树脂中, 和树脂一起打磨抛光, 直至露出锆石的内部以适合LA-ICP-MS分析。抛光后的锆石分别进行透射光和反射光照相, 以观察其抛光面和内部结构情况。CL图像用来进一步反映锆石的内部结构特征。

样品的锆石CL图像在中国科学院地质与地球物理研究所扫描电镜实验室用LEO 1450VP扫描电镜拍摄, 锆石U-Pb同位素和元素含量在西北大学大陆动力学国家重点实验室使用带有Geolas 200M激光剥蚀系统的Agilent 7500a ICP-MS同时原位测定。哈佛大学的标准锆石91500作为计算U-Pb同位素的外标, 其参考值加权平均206Pb/238U年龄为1065.4±0.6Ma(Wiedenbeck et al., 1995);元素含量的计算采用硅酸盐玻璃NIST SRM 610为外标, 29Si为内标。锆石年龄测试用的激光束斑直径为20μm, 剥蚀深度为20~40μm。详细的仪器参数设置及分析技术见柳小明等(2007)

LA-ICP-MS测得的U-Pb同位素和元素含量原始数据使用GLITTER 4.0软件(Macquarie University)进行处理。由于LA-ICP-MS分析方法不能准确测量204Pb含量, 而且年轻的锆石(<1000Ma)放射性Pb的积累较少, 普通铅的存在会对测试结果带来很大误差, 因此在分析数据时, 首先剔除了204Pb含量明显高于背景值的数据, 然后在统计中将不谐和度大于10%的测试点剔除, 大部分参加统计的年龄数据是近似谐和的。另外, 由于年轻锆石中放射成因207Pb积累较少, 207Pb的分析结果易存在较大误差, 因此对年轻锆石(<1000Ma)使用206Pb/238U年龄。较老的锆石(>1000Ma)会存在一定程度的铅丢失, 但是207Pb和206Pb在相同的初始条件和共同的地质构造环境中具有同步变化的特征, 两者的比值保持相对稳定, 因此采用207Pb/206Pb年龄代表锆石的形成年龄(Black et al., 2003)。锆石的U-Pb年龄结果使用Isoplot3.0软件(Ludwig, 2003)计算。

3 锆石U-Pb测年结果 3.1 寒武系钙质细砂岩(样品08QY06)

采自寒武系徐庄组的钙质细砂岩样品08QY06中的大部分锆石粒度为50~90μm, 少数超过100μm。锆石外形呈次圆状和次棱角状, 多数保持较自形的棱柱状(图 6a), 指示较差的磨圆和较近的源区。在104颗锆石颗粒上分析了108个点(表 1)。其中76个不谐和度<10%的分析点被选出进行年龄统计。这些分析点的年龄分布于3556~489Ma, 大部分在1801~489Ma, 产生1460~1281Ma和1246~970Ma两个主要的年龄峰, 加权平均值分别为1378±32Ma(n=15)和1136±36Ma(n=23), 此外还有930~885Ma、843~782Ma、759~715Ma和525~489Ma的年龄组, 加权平均值分别为912±19Ma(n=6)、814±27Ma(n=6)、740±16Ma(n=6)和507±14Ma(n=7)。另外还有少数年龄分布在~1.56Ga和~630Ma(图 7a, b)。锆石的CL图像揭示1460~1281Ma的锆石大部分是具有震荡环带的岩浆锆石(图 6a), 它们的U、Th含量较高, 分别为203×10-6~625×10-6和66×10-6~527×10-6, Th/U除了一个极高的2.31外, 大部分在0.23~1.20(表 1图 8a)。1246~970Ma的锆石的CL图像显示大部分是具有震荡环带的岩浆锆石, U、Th含量较高, 分别为116×10-6~657×10-6和77×10-6~776×10-6;Th/U为0.44~1.53。其中少数几颗锆石具有均一的内部结构或核边结构, 这些内部均一的锆石或具核边结构的锆石的边部年龄集中在1193~1071Ma之间, 具有较低的Th/U(0.21~0.43), 可能为变质成因的锆石(如图 6a中测点66和67)。930~715Ma的锆石既有具震荡环带的岩浆锆石, 又有内部均一的或补丁状结构的可能为变质成因的锆石, 其中一颗锆石具有1277Ma的核部和809Ma的变质边(图 6a中测点46和47)。930~715Ma具震荡环带结构的锆石的U、Th含量不高, 但是有较高的Th/U, 分别为99×10-6~223×10-6、85×10-6~183×10-6和0.5~1.41;而具均一或补丁状结构的锆石有较高的U含量和较低的Th含量及Th/U, 分别为220×10-6~794×10-6、23×10-6~213×10-6和0.04~0.47(图 6c)。~1.56Ga的三个分析点是两颗锆石测试的结果, 这两颗锆石具有震荡环带结构, U、Th含量和Th/U分别为304×10-6~528×10-6、272×10-6~370×10-6和0.52~1.22。650~489Ma的锆石的CL图像显示它们大部分是具有震荡环带结构的岩浆锆石, 它们的U、Th含量和Th/U分别为123×10-6~432×10-6、120×10-6~585×10-6和0.65~1.60(图 6c)。除此之外, 碎屑锆石还记录了2469Ma、2089Ma及1801~1657Ma的年龄。一颗3556Ma的岩浆锆石是该地区目前发现的最古老的锆石, 它的U、Th含量和Th/U分别为250×10-6、173×10-6和0.69(表 1图 6a图 8a)。

表 1 北京西山地区寒武系徐庄组钙质细砂岩(样品08QY06)锆石LA-ICP-MS U-Pb分析结果 Table 1 LA-ICP-MS zircon U-Pb dating data of Cambrian calcareous fine sandstone (sample 08QY06) from Xuzhuang Formation in the Western Hills of Beijing

图 6 北京西山地区寒武系和侏罗系碎屑岩代表性碎屑锆石的CL图像 (a)-寒武系钙质细砂岩样品08QY06;(b)-侏罗系长石质岩屑细砂岩样品08QY01;(c)-侏罗系粉砂质泥岩样品08QY03.括号内为Th/U Fig. 6 CL images of representative detrital zircon grains from Cambrian and Jurassic clastic rocks in the Western Hills of Beijing (a)-Cambrian calcareous fine sandstone, sample 08QY06;(b)-Jurassic feldspathic lithic fine sandstone, sample 08QY01;(c)-Jurassic silty mudstone, sample 08QY03. Data in the brackets are Th/U ratios

图 7 北京西山地区寒武系和侏罗系碎屑锆石U-Pb谐和曲线图和年龄分布柱状图 (a、b)-寒武系钙质细砂岩样品08QY06;(c、d)-侏罗系长石质岩屑细砂岩样品08QY01;(e、f)-侏罗系粉砂质泥岩样品08QY03.图上只显示不谐和度小于10%的分析点.<1000Ma的分析点采用206Pb/238U年龄;>1000Ma的分析点采用207Pb/206Pb年龄 Fig. 7 U-Pb concordia diagrams and age histograms of the detrital zircons from the Cambrian and Jurassic clastic rocks in the Western Hills of Beijing showing their age distributions (a, b)-Cambrian calcareous fine sandstone, sample 08QY06;(c, d)-Jurassic feldspathic lithic fine sandstone, sample 08QY01;(e, f)-Jurassic silty mudstone, sample 08QY03. Results with discordance less than 10% from these samples are shown in these diagrams. Age data of <1000Ma are shown by 206Pb/238U age and those of >1000Ma are shown by 207Pb/206Pb age in age histograms

图 8 北京西山地区寒武系和侏罗系碎屑锆石的Th/U-年龄图 (a)-寒武系钙质细砂岩样品08QY06;(b)-侏罗系长石质岩屑细砂岩样品08QY01;(c)-侏罗系粉砂质泥岩样品08QY03.图上只显示不谐和度小于10%的分析点.<1000Ma的分析点采用206Pb/238U年龄;>1000Ma的分析点采用207Pb/206Pb年龄 Fig. 8 Th/U vs. age diagrams of detrital zircons from Cambrian and Jurassic clastic rocks in the Western Hills of Beijing (a)-Cambrian calcareous fine sandstone, sample 08QY06;(b)-Jurassic feldspathic lithic fine sandstone, sample 08QY01;(c)-Jurassic silty mudstone, sample 08QY03. Results with discordance less than 10% from these samples are shown in these diagrams. Data <1000Ma are shown by 206Pb/238U age and those >1000Ma are shown by 207Pb/206Pb age in these diagrams
3.2 侏罗系长石质岩屑细砂岩(样品08QY01)

采自芹峪北侏罗系的长石质岩屑细砂岩样品08QY01中的锆石颗粒大小不均一, 小的粒度约40~60μm, 大的约80~100μm, 最大的可达170μm。锆石外形呈次圆状和次棱角状(图 6b), 显示出较差的分选和磨圆。在67颗锆石颗粒上分析了68个点(表 2)。其中49个不谐和度<10%的分析点被选出进行年龄统计。这些分析点的年龄分布在2815~247Ma, 集中于2536~2440Ma和1902~1525Ma范围内(图 7c, d)。前者的加权平均年龄为2488±25Ma(n=8), 后者又可细分为两个主要的年龄峰(1806~1662Ma和1638~1525Ma)和一个次要的年龄组(1902~1861Ma), 加权平均值分别为1741±22Ma(n=15)、1596±30Ma(n=9)和1882±48Ma(n=3)。另外, 有少数锆石年龄分布于~2.77Ga、~1.2Ga、488Ma和256Ma(图 7c, d)。CL图像显示, 2536~2440Ma的锆石既有具震荡环带的岩浆锆石, 又有具均一和补丁状结构的变质锆石(图 6b)。这些锆石的U、Th含量不高, 但Th/U较高;分别为55×10-6~353×10-6、55×10-6~325×10-6和0.56~1.61(表 2图 8b)。1806~1662Ma的锆石内部结构种类较多, 有震荡环带、条带状、补丁状和均一结构的, 大多发光较暗, 但是它们的U、Th含量不高, 而Th/U较高, 分别为61×10-6~163×10-6、32×10-6~156×10-6和0.54~1.38(图 8b)。1638~1525Ma的锆石大多是具震荡环带的岩浆锆石, 但发光较暗。这些锆石大多U、Th含量不高, 但是Th/U较高, 分别为73×10-6~209×10-6、55×10-6~260×10-6和0.64~2.40(图 8b)。3颗~1.88 Ga的锆石CL图像显示出补丁状和均一的内部结构, 发光较暗, 但U、Th含量不高, 而Th/U较高, 分别为66×10-6~182×10-6、63×10-6~241×10-6和0.48~1.33(图 8b)。3颗~2.77Ga的锆石内部结构既有具震荡环带的, 又有均一状的, U、Th含量和Th/U分别为65×10-6~210×10-6、61×10-6~178×10-6和0.5~2.62。两颗~1.2Ga的锆石, 内部结构分别呈均一状和补丁状, 它们的U、Th含量和Th/U分别为137×10-6~472×10-6、90×10-6~154×10-6和0.33~0.66。两颗~488Ma的锆石均具有震荡环带结构, 但是一颗具较高的Th/U(0.81), 另一颗Th/U较低, 为0.04。4颗~256Ma的锆石既有震荡环带结构的岩浆锆石, 又有结构均一的锆石, 它们的U、Th含量较高, 分别为214×10-6~754×10-6和157×10-6~387×10-6, Th/U为0.22~1.81。除这些年龄组外, 碎屑锆石还记录了~2.3Ga、~2.0Ga和848Ma的年龄, 其中848Ma的锆石是一颗具震荡环带的岩浆锆石, 它的Th/U为0.43(图 6b)。

表 2 北京西山地区侏罗系长石质岩屑细砂岩(样品08QY01)锆石LA-ICP-MS U-Pb分析结果 Table 2 LA-ICP-MS zircon U-Pb dating data of Jurassic feldspathic lithic fine sandstone ( sample 08QY01) in the Western Hills of Beijing
3.3 侏罗系粉砂质泥岩(样品08QY03)

采自芹峪北侏罗系的粉砂质泥岩样品08QY03中的锆石多呈次棱角状, 其中部分呈长柱状自形晶。锆石颗粒较小, 多为40~70μm, 有些长柱状的锆石, 长轴可达100μm以上(图 6c)。该样品分选出的锆石数量不多, 共在51颗锆石颗粒上测试了54个点, 并且该样品分析点中不谐和的点较多, 因此只有23个不谐和度<10%的分析点被选出进行年龄统计。尽管统计点不多, 但仍然可以看出该样品的碎屑锆石记录了与长石质岩屑细砂岩样品08QY01相似的年龄信息(图 7)。碎屑锆石年龄主要分布于~1.8Ga和~186Ma。此外, 还有3颗~2.5Ga、1颗~2.0Ga、3颗~1.6Ga、1颗478Ma和2颗~230Ma的锆石(图 7e, f)。除了中生代的年龄组外, 其他年龄分布与粉砂岩样品08QY01基本一致。~1.8Ga的碎屑锆石年龄范围为1819~1790Ma, CL图像显示这些锆石有震荡环带和均一两种结构, 多数发光较暗, 但U、Th含量都不高, 而Th/U比较高, 分别为123×10-6~232×10-6、79×10-6~213×10-6和0.51~1.07(图 8c)。~186Ma的锆石有清晰的震荡环带结构和长柱状外形, 可能是火山岩锆石(图 6c)。这些锆石的U、Th含量和Th/U都较高, 分别为546×10-6~953×10-6、261×10-6~560×10-6和0.31~0.75(图 8c)。~2.5Ga的锆石为具补丁状结构的变质锆石, U、Th含量和Th/U分别为141×10-6~189×10-6、65×10-6~111×10-6和0.42~0.60(图 8c)。~1.6Ga的锆石具有震荡环带结构和条带状结构, 其中有一颗锆石具1790Ma的核部和1610Ma的生长边(图 7c中测点41和42)。除了这个1610Ma的生长边有较高的U含量(507×10-6)和较低的Th/U(0.17)外, 另外两个~1.6Ga的锆石均具较低的U、Th含量和较高的Th/U, 分别为70×10-6~72×10-6、62×10-6~71×10-6和0.88~0.99(表 3图 8c)。除这些锆石外, 其他年龄的锆石大多是具有震荡环带或扇形结构的岩浆锆石(图 6c)。

表 3 北京西山地区侏罗系粉砂质泥岩(样品08QY03)锆石LA-ICP-MS U-Pb分析结果 Table 3 LA-ICP-MS zircon U-Pb dating data of Jurassic silty mudstone ( sample 08QY03) in the Western Hills of Beijing
4 讨论 4.1 碎屑锆石的物源区

岩石学研究显示, 北京西山地区侏罗系的长石质岩屑细砂岩中含有45%的火山岩碎屑和10%的基质;寒武系的钙质细砂岩中含有50%的方解石, 体现出较低的成分成熟度。这两种岩石和侏罗系的粉砂质泥岩尽管粒度较细, 但其中的矿物和锆石多呈次圆状-次棱角状, 甚至棱角状, 碎屑矿物粒径大小不均匀, 锆石多为棱柱状或长柱状自形晶(图 5图 6), 显示出较差的分选及磨圆, 指示这些碎屑岩中的碎屑物质来源于较近的源区。华北克拉通自古元古代末克拉通化完成、中晚元古代发育裂陷槽之后, 于早古生代发育代表稳定的克拉通盆地陆表海环境的以厚层碳酸盐岩为主的沉积, 这一时期的构造和岩浆活动是微弱的(马永生, 1994梅冥相等, 1997程裕淇, 1994), 因北京西山地区位于华北克拉通的中部靠北, 可初步推断寒武系钙质细砂岩的碎屑沉积物可能大部分来自华北克拉通内部。寒武系钙质细砂岩样品08QY06中碎屑锆石的主要年龄峰值~1.38Ga和少数~2.5Ga、~2.1Ga、1.8~1.65Ga和~1.56Ga的年龄正对应华北克拉通新太古代-元古宙重要的构造-岩浆-热事件发生的时代(详见下文), 而数量较少的~507Ma的碎屑锆石年龄在华北目前未见报道, 可能是该时期的构造和岩浆活动较微弱的原因。燕山地区的早侏罗世盆地(包括南大岭组和窑坡组)是晚古生代-早中生代地台活化之后的平静期形成的弱伸展盆地(赵越等, 2002张岳桥等, 2007马寅生等, 2002孟庆任等, 2002)。窑坡组的泥岩和粉砂质泥岩组合代表半深水相的湖泊沉积环境(张岳桥等, 2007), 由于窑坡组的碎屑物质组成显示出较低的成分和结构成熟度, 其源区可能是较近的华北克拉通内部或北缘。窑坡组细碎屑岩中碎屑锆石~2.5Ga、~1.8Ga、~1.74Ga和~1.6Ga的年龄峰值及少量~2.77Ga和~1.88Ga的年龄组对应华北克拉通新太古代-古元古代重要的地质事件发生的时代, 华北克拉通应是提供这些碎屑物质的主要源区;少数~256Ma和~233Ma的碎屑锆石可能来自受古亚洲洋俯冲影响的华北北缘的岩浆岩(Zhang et al., 2009a);~186Ma早侏罗世的碎屑锆石具有清晰的震荡环带结构和长柱状外形, 是火山岩锆石常具有的特征, 它们可能来自窑坡组下伏的194~180Ma的南大岭组火山岩(赵越等, 2002, 2006)。

4.2 碎屑锆石记录的华北克拉通前寒武纪地质事件

北京西山地区寒武系和侏罗系中的碎屑锆石大部分来自华北克拉通内部, 少量来自其北缘, 因而这些碎屑锆石年龄可记录华北克拉通的地质事件, 特别是现今出露的岩石中尚未揭示出的前寒武纪地质事件。

4.2.1 最古老的锆石年龄

寒武系钙质细砂岩样品08QY06中3556Ma的岩浆型碎屑锆石年龄是北京西山地区目前发现最古老的锆石年龄。华北克拉通最古老的古太古代岩石出露于东北铁架山和冀东曹庄地区, 锆石U-Pb年龄主要为~3.8Ga和~3.3Ga(Liu et al., 1992, 2008a; Song et al., 1996; 万渝生等, 2001Wu et al., 2008)。研究区沉积岩中3556Ma的岩浆型碎屑锆石年龄以及同属燕辽裂陷槽的北京昌平地区的青白口系长龙山组中3372Ma的碎屑锆石年龄(任荣等, 2011)指示华北克拉通东部的古太古代岩石可能为这些碎屑岩的物源之一。

4.2.2 2.9~2.7Ga的地壳生长和~2.5Ga的克拉通化事件

尽管数量不多, 北京西山寒武系和侏罗系碎屑锆石还记录了~2.5Ga的年龄峰值和少量~2.77Ga的年龄(图 7)。CL图像显示, 这些锆石既有具震荡环带结构的岩浆成因的锆石, 又有内部均一和补丁状结构的变质成因的锆石(图 6), 这两种结构的锆石Th/U都比较高, 为0.42~2.62(图 8)。2.9~2.7Ga被认为是华北克拉通大规模陆壳生长的时期(张宗清, 1998Wu et al., 2005)。该时期的岩石有鲁西地区的绿岩带(Polat et al., 2006; Cheng and Kusky, 2007)以及鲁西、胶东、恒山、阜平、中条山、冀东、河南和内蒙等地的TTG片麻岩(Guan et al., 2002; Liu et al., 2009; Jahn et al., 2008Wilde et al., 2004Zhao et al., 2002Geng et al., 2006; Wan et al., 2011b; 董晓杰等, 2012; Zhu et al., 2013)。除北京西山寒武系和侏罗系碎屑锆石对2.9~2.7Ga事件的记录外, 华北古元古代末-新元古代沉积盆地碎屑锆石年龄分布也形成~2.7Ga的峰, 支持2.9~2.7Ga的岩石曾普遍存在(图 9)。华北克拉通许多正片麻岩, 包括形成于2.6~2.5Ga的TTG和花岗质片麻岩具有2.9~2.7Ga的Hf和Nd模式年龄, 被认为这些岩石的形成时代或原岩岩浆从地幔中抽取的时代是2.9~2.7Ga, 反映华北克拉通在该时期有大规模的大陆地壳形成(Liu et al., 2009; Jiang et al., 2010; Jahn et al., 2008)。~2.5Ga的碎屑锆石年龄峰值对应华北克拉通前寒武纪一期重要的构造-岩浆-热事件发生的时代。~2.5Ga也是华北古元古代末-新元古代沉积盆地碎屑锆石年龄中一个主要的年龄峰值(图 9)。华北克拉通~2.5Ga时发生广泛的变质作用和岩浆岩的侵入, 几乎所有老于2.6Ga的太古宙岩石都经历了~2.5Ga的高角闪岩相-麻粒岩相的变质作用(皮金, 1980Compston et al., 1983; Jahn and Zhang, 1984; Jahn et al., 1987, 2008伍家善等, 1991王楫等, 1995Song et al., 1996; Kröner et al., 1998), 并有大量TTG、紫苏花岗岩和花岗岩的侵位(Liu et al., 1990刘敦一等, 1997; 伍家善等, 1991Kröner et al., 1998, 2005a, b苏尚国等, 1999刘树文等, 2000, 2007; 王凯怡等, 2000张维杰等, 2000Guan et al., 2002路孝平等, 2004简平等, 2005万渝生等, 2005Zhao et al., 2002, 2008a, b; 高林志等, 2005)、镁铁质岩墙群的侵入(毛德宝等, 1999Guo et al., 2005)以及青龙、五台和固阳等花岗-绿岩带的形成(罗殿文等, 2000王凯怡等, 2000Wilde et al., 2004, 2005陈斌等, 2006)。该时期被认为是华北克拉通发生克拉通化的时期(伍家善等, 1991Zhai and Liu, 2003; 翟明国和卞爱国, 2000翟明国, 2004Zhai et al., 2005Zhai, 2011)。

图 9 华北克拉通古元古代末-新元古代沉积岩碎屑锆石207Pb/206Pb年龄分布图 碎屑锆石数据据Darby and Gehrels, 2006; Li et al., 2007a, b; Luo et al., 2006; Zhou et al., 2008; Wan et al., 2011a, b; Gao et al., 2011; Zhu et al., 2011; 万渝生等, 2003第五春荣等, 2011任荣等, 2011胡波等, 2009Hu et al., 2012 Fig. 9 207Pb/206Pb age histogram of detrital zircons from Late Paleoproterozoic to Neoproterozoic sedimentary rocks in the North China Craton Data after Darby and Gehrels, 2006; Li et al., 2007a, b; Luo et al., 2006; Zhou et al., 2008; Wan et al., 2003, 2011a, b; Gao et al., 2011; Zhu et al., 2011; Diwu et al., 2011Ren et al., 2011Hu et al., 2009, 2012
4.2.3 2.3~2.0Ga的裂谷和1.95~1.8Ga的造山带

北京西山寒武系和侏罗系碎屑锆石U-Pb年龄分布显示1.88~1.8Ga的年龄峰和少量2.1~2.0Ga的年龄。1.88~1.8Ga的碎屑锆石CL图像显示出既具有震荡环带, 又有补丁状和均一的内部结构, 发光较暗, 具较高的Th/U比(0.48~1.33), 分别指示锆石的岩浆和变质成因;2.1~2.0Ga的碎屑锆石都具有震荡环带结构, 指示其岩浆成因。这两组年龄分布特征与华北古元古代末-新元古代沉积盆地碎屑锆石U-Pb年龄分布相似, 后者具有中心为~1.85Ga的主要年龄峰和少量2.3~2.0Ga的岩浆成因的锆石(图 9)。华北克拉通在~2.5Ga克拉通化之后于2.3~2.0Ga经历了一次陆内拉伸-裂谷事件, 在华北北缘、东缘和中部形成丰镇、胶辽和晋豫三个裂谷带, 已有该时期具有伸展性质的基性岩墙、裂谷型火山岩和壳源A型花岗岩的报道(Zhao et al., 2002Peng et al., 2005Wilde and Zhao, 2005杜利林等, 2010; 赵瑞幅等, 2011于津海等, 2004孙大中等, 1991Li and Zhao, 2007; 路孝平等, 2004Lu et al., 2006; Liu et al., 2005Sun et al., 1992)。在1.95~1.8Ga这些裂谷带发生碰撞造山, 被称为丰镇、胶辽和晋豫活动带(翟明国, 2004翟明国和彭澎, 2007Zhai et al., 2010; Zhai, 2011)。华北克拉通在1.95~1.8Ga发生的大规模变质事件及与变质作用有关的花岗岩和伟晶岩脉的侵入是对碰撞造山作用的指示。华北克拉通太古宙的TTG片麻岩、花岗片麻岩及其中的基性麻粒岩岩墙和透镜体、绿岩带火山-沉积岩以及古元古代早期的沉积岩和花岗质岩石在1.95~1.8Ga曾普遍发生绿片岩相-麻粒岩相不同程度的变质作用(如Liu et al., 1985, 2006; 卢功一和黄静好, 1987孙大中等, 1991; 郭敬辉等, 1994毛德宝等, 1999王凯怡等, 2000翟明国和卞爱国, 2000; Wang et al., 2003; 郭敬辉和翟明国, 2000; Guan et al., 2002; Zhao et al., 2002, 2008aLuo et al., 2004; Guo et al., 2005Peng et al., 2005Kröner et al., 2005a, b, 2006; Lu et al., 2006; Xia et al., 2006a, b; Wan et al., 2006a, b; 吴昌华等, 2006赵兰等, 2006Tang et al., 2007; 刘树文等, 2007;等), 伴随高级变质作用有深熔紫苏辉石花岗岩、含石榴石S型花岗岩和伟晶岩脉的侵入(郭敬辉等, 1999a, b, 2002王凯怡等, 2001耿元生等, 2004Kröner et al., 2006Zhao et al., 2008a, b)。

4.2.4 古元古代末-新元古代多期裂谷事件

北京西山寒武系和侏罗系碎屑锆石U-Pb年龄除记录~186Ma和~233Ma中生代及~256Ma和488~507Ma古生代的年龄外, 前寒武纪的年龄主要分布于1806~630Ma, 产生~1.74Ga、~1.6Ga、~1.38Ga和1.2~1.14Ga的年龄峰及少数~1.56Ga、~912Ma、~814Ma、~740Ma和~630Ma的年龄组(图 7)。此外, 侏罗系窑坡组下伏南大岭组玄武岩中也有~830Ma的继承锆石(赵越等, 2006)。华北克拉通分布于熊耳裂陷槽、燕辽裂陷槽、北缘裂谷和东缘裂谷的古元古代末-新元古代地层中的碎屑锆石U-Pb年龄除具~2.7Ga、~2.5Ga和~1.85Ga的峰值之外, 还分布在1.8~1.0Ga, 集中于~1.6Ga和~1.2Ga(图 9)。古元古代末-新元古代华北克拉通发育与这些裂谷或裂陷槽的裂解作用相对应的岩浆活动, 如1.78Ga的基性岩墙群和熊耳群火山岩(Wang et al., 2004Hou et al., 2006Peng et al., 2005, 2006, 2008, 2012Peng, 2010; 徐勇航等, 2007赵太平等, 2002, 2004a, 2005, 2007Cui et al., 2011)、1.75~1.6Ga的非造山岩浆岩和裂谷型火山岩(Rämö et al., 1995任富根等, 2000陆松年和李惠民, 1991陆松年等, 2003Lu et al., 2002, 2008赵太平等, 2004b杨进辉等, 2005刘振锋等, 2006任康绪等, 2006Zhai et al., 2007; Zhang et al., 2007; 高维等, 2008Zhao and Zhou, 2009Jiang et al., 2011Wang et al., 2013李怀坤等, 1995, 2011Li et al., 2007a高林志等, 2008, 2009)、1.56Ga、1.43Ga、1.37Ga和1.32Ga的火山岩或基性岩床(墙)(高林志等, 2007, 2008, 2009; Gao et al., 2007李怀坤等, 2009, 2010Zhang et al., 2009b, 2012Su et al., 2008苏文博等, 2010)以及900~800Ma基性岩墙群和酸性火山岩(Peng, 2010Peng et al., 2011a, b; Wang et al., 2011, 2012柳永清等, 2005; 彭润民等, 2010)。北京西山寒武系和侏罗系1806~ 1281Ma的碎屑锆石除了部分~1.8Ga的锆石具有条带状、补丁状和内部均一的结构外, 大部分是具有震荡环带的岩浆成因的锆石, 发光较暗, Th/U较高, 多数为0.23~1.38。~912Ma和~814Ma的碎屑锆石既有具震荡环带的岩浆成因的锆石, 也有具补丁状结构或内部均一的变质成因的锆石, 前者Th/U较高, 为0.5~1.41, 后者较低, 为0.04~0.47。为1806~800Ma岩浆型碎屑锆石提供物源区的可能是上述的华北克拉通古元古代末-新元古代的岩浆岩。

一些学者假设华北克拉通参与了Columbia超大陆的演化(Zhao et al., 2002Wilde et al., 2002Li and Zhao, 2007), 但是对超大陆裂解的响应时间存在争议, 基于对上述古元古代末-新元古代岩浆活动性质的不同理解, 大体有三种认识:古元古代晚期-中元古代早期(~1.78Ga, 赵太平等, 2004aPeng et al., 2008)、中元古代中期(~1.62Ga, Zhao et al., 2002)和中元古代中晚期(1.35~1.31Ga, Hou et al., 2008Zhang et al., 2009b)。另外, 900~800Ma的岩浆活动由于峰期时代与Rodinia超大陆裂解的时限可以对应, 彭润民等(2010)提出这一岩浆活动可能记录了相关过程。该时期狼山地区形成了伸展构造体制下的拉张盆地, 并有酸性火山岩的活动及一些与热水喷流成矿作用密切相关的大型-超大型Pb、Zn、Cu矿床形成(Zhai et al., 2004; 彭润民等, 2000, 2010)。尽管在前寒武纪的沉积岩中尚未发现该时期的锆石年龄记录, 但是北京西山地区寒武系和侏罗系中的碎屑锆石以及侏罗系火山岩中的继承锆石却对该时期的岩浆和变质事件信息有很好的保存。古元古代末-新元古代的岩浆活动和碎屑锆石年龄的记录, 指示华北克拉通在古元古代末-新元古代可能经历了一个多期、持续的裂谷事件, 并有一些与大陆裂谷和非造山岩浆有关的成矿记录, 如大庙大型钒钛磁铁矿、白云鄂博超大型稀土矿床和狼山铅锌铜铁硫化物矿床等(翟明国, 2010Zhai and Santosh, 2013)。

值得指出的是, 北京西山寒武系和侏罗系碎屑锆石还记录了1.2~1.14Ga以及~740Ma和~630Ma的年龄信息。钙质细砂岩样品08QY06中1246~970Ma的锆石大部分是具有震荡环带的岩浆锆石, Th/U含量较高, 为0.44~1.53;少数具均一的内部结构, 或者为具核边结构的锆石, 具均一结构的边部(图 6a), 年龄多集中在1193~1071Ma之间, 其Th/U相对较低, 为0.21~0.43, 可能为变质成因。而长石质岩屑细砂岩样品08QY01中两颗~1.2Ga的锆石, 内部结构分别呈均一状和补丁状, 其Th/U含量与08QY06中变质成因锆石的Th/U接近, 为0.33~0.66, 可能为变质成因。因而, 在寒武系和侏罗系的碎屑锆石中, 1.2~1.14Ga的锆石可能既有岩浆成因、又有变质成因的。华北克拉通目前发现的1.3~1.0Ga的岩石很少, 只有北朝鲜Nangrim地块北部的一个结晶年龄为1195Ma的含角闪石的花岗岩体(Zhao et al., 2006)。1.3~1.0Ga的年龄记录多出现在华北东缘和北缘的沉积岩碎屑锆石中(Luo et al., 2006Li et al., 2007b; 高林志等, 2010bGao et al., 2011Hu et al., 2012)和侵入岩的捕获锆石中(Yang et al., 2004张华锋等, 2009)。在华北中部燕辽裂陷槽青白口系的碎屑锆石中也未发现该时期的年龄记录(Wan et al., 2011a; Gao et al., 2011; 第五春荣等, 2011任荣等, 2011Sun et al., 2012)。1.3~1.0Ga的地质事件通常被认为是与Rodinia超大陆聚合有关的格林威尔造山期的事件(Hoffman, 1991; Dalziel, 1991, 1997; Li et al., 1995, 2002, Fitzsimons, 2000; Karlstrom et al., 2001; Condie, 2001; Zhai, 2001李江海, 1998李江海和穆剑, 1999徐备, 2001陆松年等, 2004Lu et al., 2008)。在华南克拉通, 大量地质体对该事件过程的记录较为完整, 大量岩浆作用(Li et al., 1995; Li, 1999; 张传恒等, 2007)、俯冲洋壳残块(Li, 1997; Li et al., 1997)以及变质作用(Li et al., 2002)共同见证了华夏与扬子板块的碰撞拼合过程。华北克拉通却因长期缺乏可信的年代学资料, 导致其是否参与过Rodinia超大陆的汇聚及在超大陆的位置等问题仍存疑问(Lu et al., 2008; 陆松年等, 2004)。北京西山寒武系和侏罗系碎屑锆石以及华北北缘及东缘新元古代沉积岩中显著的1.3~1.0Ga年龄峰(图 7图 9)指示在华北克拉通可能存在该时期的岩石为这些碎屑锆石提供来源, 虽然其位置、规模和性质尚不清楚。这些可能存在的1.3~1.0Ga的岩石是华北克拉通与其他陆块拼合事件的反映还是华北克拉通中-新元古代多期裂谷某些阶段的反映, 尚需进一步研究, 但至少能为讨论华北克拉通在全球超大陆中的位置和演化提供线索。

寒武系钙质细砂岩样品08QY06中~740Ma的碎屑锆石部分具有震荡环带结构和较高的Th/U(0.5~1.41), 指示其岩浆成因;部分具补丁状或均一的内部结构, 并具较低的Th/U(0.04~0.47), 指示其变质成因。~630Ma的锆石CL图像显示它们是具震荡环带结构的岩浆锆石, 具较高的Th/U(0.65~ 1.6)。碎屑锆石记录的这两个时期的岩浆岩或变质岩目前在华北克拉通未见报道, 也未见同时期的地层(相当于南华-震旦系)。而这两期事件在华南克拉通较为发育, ~740Ma被认为是与Rodinia超大陆裂解相关的火山岩和侵入岩活动的时期(Li et al., 2003);~630Ma的火山岩在南沱组中发育, 并被界定为南华系与震旦系的界限(Chu et al., 2005Zhang et al., 2005, 2008高林志等, 2010a及其中的文献), 也是国际地层成冰系(Cryogenian)的顶界(Hoffmann et al., 2004Condon et al., 2005Zhang et al., 2005Chu et al., 2005Gradstein et al., 2005陆松年等, 2005)。华北克拉通~740Ma和~630Ma碎屑锆石的发现可为在华北克拉通寻找南华-震旦纪的地层及探讨华北克拉通和华南克拉通的关系提供依据。

5 结论

北京西山寒武系徐庄组的钙质细砂岩中碎屑锆石年龄峰值主要集中在~1.38Ga和~1.14Ga。此外, 还有~1.56Ga、~912Ma、~814Ma、~740Ma、~630Ma和~507Ma的年龄组。侏罗系窑坡组长石质岩屑细砂岩和粉砂质泥岩中碎屑锆石年龄峰值主要集中在~2.5Ga、1.88~1.8Ga、~1.74Ga、~1.6Ga和186Ma。此外, 还有~2.77Ga、~2.0Ga、~1.2Ga、~488Ma、~256Ma和~233Ma的年龄组。这些碎屑物质大部分来源于华北克拉通内部或北缘。寒武系和侏罗系中的碎屑锆石年龄记录了华北克拉通前寒武纪重要的地质事件。~2.77Ga、~2.5Ga、2.1~2.0Ga和1.88~1.8Ga的年龄组分别对应华北克拉通早前寒武纪发生地壳生长、克拉通化、裂谷和造山等重要地质事件, ~1.74Ga、~1.6Ga、~1.56Ga、~1.38Ga、~912Ma和~814Ma的年龄组记录了华北克拉通最终克拉通化后开始的古元古代末-新元古代的多期裂谷事件。与1.3~1.0Ga、~740Ma和~630Ma的年龄组相对应的岩石在华北克拉通出现甚少, 而该时期的岩浆岩和变质岩在华南克拉通广泛发育, 且可能与Rodinia超大陆的汇聚和裂解的不同阶段相对应。华北克拉通显生宙碎屑岩中碎屑锆石保存的古元古代末-新元古代地质事件的记录对探讨华北克拉通在元古宙的地质演化及华北克拉通与华南克拉通的关系可提供重要的依据。

致谢 本研究的野外工作得到王芳博士、马旭东博士、赵瑞幅博士的大力帮助;成文过程中得到郭敬辉研究员、范宏瑞研究员、赵太平研究员和陈福坤教授的有益指导;审稿人张拴宏研究员和胡国辉博士对本文提出了建设性的意见和建议;在此一并表示衷心的感谢!
参考文献
[] Bai J, Huang XG, Wang HC, Guo JJ, Yan YY, Xiu QY, Dai FY, Xu WZ, Wang GF. 1996. The Precambrian Crustal Evolution of China. 2nd Edition.Beijing: Geological Publishing House: 20–162.
[] Belousova EA, Reid AJ, Griffin WL, O’Reilly SY. 2009. Rejuvenation vs. Recycling of Archean crust in the gawler craton, South Australia: Evidence from U-Pb and Hf isotopes in detrital zircon.Lithos, 113(3-4): 570–582.
[] Black LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ, Foudoulis C. 2003. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards. Chemical Geology, 200(1-2): 171–188. DOI:10.1016/S0009-2541(03)00166-9
[] Chen B, Liu SW, Geng YS, Liu CQ. 2006. Zircon U-Pb ages, Hf isotopes and significance of the Late Archean-Paleoproterozoic granitoids from the Wutai-Luliang terrain, North China. Acta Petrologica Sinica, 22(2): 296–304.
[] Chen JB, Zhang HM, Zhu SX, Zhao Z and Wang ZG. 1980. Study on Sinian suberathem in Jixian. In: Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences (ed.). Sinian Suberathem in China. Tianjin: Tianjin Science and Technology Publishing House, 56-114 (in Chinese)
[] Cheng SH, Kusky T. 2007. Komatiites from West Shandong, North China craton: Implications for plume tectonics. Gondwana Research, 12(1-2): 77–83. DOI:10.1016/j.gr.2006.10.015
[] Cheng YQ, Zhang SG. 1982. Notes on the metamorphic series and metamorphic: Belts of various metamorphic epochs of China and related problems. Regional Geology of China(2): 1–14.
[] Cheng YQ. 1994. Regional Geology of China. Beijing: Geological Publishing House: 90-163.
[] Chu XL, Todt W, Zhang QR, Chen FK, Huang J. 2005. U-Pb zircon age for the Nanhua-Sinian boundary. Chinese Science Bulletin, 50(7): 716–718. DOI:10.1360/982005-155
[] Compston W, Zhong FD, Foster JJ, Collerson KD, Bai J, Sun DZ. 1983. Rubidium-strontium geochronology of Precambrian rocks from the Yenshan region, North China. Precambrian Research, 22(3-4): 175–202. DOI:10.1016/0301-9268(83)90048-7
[] Condie KC. 2001. Continental growth during formation of Rodinia at 1.35~0.9Ga. Gondwana Research, 4(1): 5–16. DOI:10.1016/S1342-937X(05)70650-X
[] Condon D, Zhu MY, Bowring S, Wang W, Yang AH, Jin YG. 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. DOI:10.1126/science.1107765
[] Cui ML, Zhang BL, Zhang LC. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China craton: Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong’er Group. Gondwana Research, 20(1): 184–193. DOI:10.1016/j.gr.2011.01.010
[] Dalziel IWD. 1991. Pacific margins of Laurentia and east Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology, 19(6): 598–601. DOI:10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
[] Dalziel IWD. 1997. Overview: Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin, 109(1): 16–42. DOI:10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2
[] Darby BJ, Gehrels G. 2006. Detrital zircon reference for the North China block. Journal of Asian Earth Sciences, 26: 637–648. DOI:10.1016/j.jseaes.2004.12.005
[] Fitzsimons ICW. 2000. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology, 28(10): 879–882. DOI:10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2
[] Diwu CR, Sun Y, Liu YJ, Han W, Dai MN, Li YX. 2011. The protolith nature of quartz sandstone from Changlongshan Formation in Liujiang area, Qinhuangdao City: Evidence of U-Pb and Hf-isotope from detrital zircons. Acta Petrologica et Mineralogica, 30(1): 1–12.
[] Dong XJ, Xu ZY, Liu ZH and Sha Q. 2012. 2.7Ga granitic gneiss in the northern foot of Daqingshan Mountain, central Inner Mongolia, and its geological implications. Earth Science, 37(Suppl.1): 45-52 (in Chinese with English abstract)
[] Du LL, Yang CH, Guo JH, Wang W, Ren LD, Wan YS, Geng YS. 2010. The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton: SHRIMP zircon U-Pb dating of basaltic andesite. Chinese Science Bulletin, 55(17): 1782–1789. DOI:10.1007/s11434-009-3611-8
[] Gao LZ, Zhao T, Wan YS, Zhao X, Ma YS, Yang SZ. 2005. Zircon shrimp U-Pb age of the Yuntaishan Procambrian metamorphic basement, Jiaozuo, Henan, China. Geological Bulletin of China, 24(12): 1089–1093.
[] Gao LZ, Zhang CH, Shi XY, Zhou HR, Wang ZQ, Song B. 2007. A new SHRIMP age of the Xiamaling Formation in the North China Plate and its geological significance. Acta Geologica Sinica, 81(6): 1103–1109. DOI:10.1111/acgs.2007.81.issue-6
[] Gao LZ, Zhang CH, Shi XY, Zhou HR, Wang ZQ. 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26(3): 249–255.
[] Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ, Liu YM. 2008. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chinese Science Bulletin, 53(17): 2665–2671.
[] Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F, Song B. 2008. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica, 29(3): 366–376.
[] Gao LZ, Zhang CH, Liu PJ, Ding XZ, Wang ZQ, Zhang YJ. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433–446.
[] Gao LZ, Dai CG, Liu YX, Wang M, Wang XH, Chen JS, Ding XZ, Zhang CH, Cao Q, Liu JH. 2010a. Zircon SHRIMP U-Pb dating of tuff bed of the Sibao Group in southeastern Guizhou-northern Guangxi area, China and its stratigraphic implication. Geological Bulletin of China, 29(9): 1259–1267.
[] Gao LZ, Zhang CH, Chen SM, Liu PJ, Ding XZ, Liu YX, Dong CY, Song B. 2010b. Detrital zircon SHRIMP U-Pb age from the Diaoyutai Formation, Xihe Group in Liaodong Peninsula, China and its geological significance. Geological Bulletin of China, 29(8): 1113–1122.
[] Gao LZ, Liu PJ, Yin CY, Zhang CH, Ding XZ, Liu YX, Song B. 2011. Detrital zircon dating of meso- and neoproterozoic rocks in North China and its implications. Acta Geologica Sinica, 85(2): 271–282. DOI:10.1111/acgs.2011.85.issue-2
[] Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM, Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China, 27(6): 793–798.
[] Gao ZX, Xiong YX, Gao P. 1934. Sinian strata in northern China. Journal of Chinese Geology Society, 13: 243–288.
[] Geng YS, Yang CH, Song B, Wan YS. 2004. Post-Orogenic granites with an age of 1800Ma in Luliang area, North China Craton: Constraints from isotopic geochronology and geochemistry. Geological Journal of China Universities, 10(4): 477–487.
[] Geng YS, Liu FL, Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica, 80(6): 819–833.
[] Gradstein FM, Ogg JG, Smith AG. 2005. A Geologic Time Scale 2004. Cambridge: Cambridge University Press: 1-384.
[] Guan H, Sun M, Wilde SA, Zhou XH, Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the North China Craton. Precambrian Research, 113(1-2): 1–18. DOI:10.1016/S0301-9268(01)00197-8
[] Guo JH, Zhai MG, Li YG, Yan YH and Zhang WH. 1994. Isotopic ages and their tectonic significance of metamorphic rocks from middle part of the early Precambrian granulite belt, north China craton. In: Qian XL and Wang RM (eds.). Geological Evolution of the Granulite Terrain in North Part of the North China Craton. Beijing: Seismological Press, 130-144 (in Chinese with English abstract)
[] Guo JH, Zhai MG, Li YG, Li JH. 1999a. Metamorphism, Pt paths and tectonic significance of garnet amphibolite and granulite from Hengshan, North China Craton. Scientia Geologica Sinica, 34(3): 311–325.
[] Guo JH, Shi X, Bian AG, Xu RH, Zhai MG, Li YG. 1999b. Pb isotopic composition of feldspar and U-Pb age of zircon from Early Proterozoic granite in Sanggan area, North China craton: Metamorphism, crustal melting and tectono-thermal event. Acta Petrologica Sinica, 15(2): 199–207.
[] Guo JH, Zhai MG. 2001. Sm-Nd age dating of high-pressure granulites and amphibolite from Sanggan area, North China craton. Chinese Science Bulletin, 46(2): 106–111. DOI:10.1007/BF03187002
[] Guo JH, Zhai MG, Xu RH. 2001. Timing of the granulite facies metamorphism in the Sanggan area, North China Craton: Zircon U-Pb geochronology. Science in China (Series D), 44(11): 1010–1018. DOI:10.1007/BF02875394
[] Guo JH, Sun M, Chen FK, Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24(5): 629–642. DOI:10.1016/j.jseaes.2004.01.017
[] Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemo AIS and Storey CD. 2010 The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229-248
[] Hoffman PF. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out?. Science, 252(5011): 1409–1412. DOI:10.1126/science.252.5011.1409
[] Hoffmann KH, Condon DJ, Bowring SA, Crowley JL. 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 32(9): 817–820. DOI:10.1130/G20519.1
[] Hou GT, Liu YL, Li JH. 2006. Evidence for ~1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392–401. DOI:10.1016/j.jseaes.2005.05.001
[] Hou GT, Li JH, Yang MH, Yao WH, Wang CC, Wand YX. 2008. Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China craton. Gondwana Research, 13(1): 103–116. DOI:10.1016/j.gr.2007.06.005
[] Hu B, Zhai MG, Guo JH, Peng P, Liu F, Liu S. 2009. LA-ICP-MS U-Pb geochronology of detrital zircons from the Huade Group in the northern margin of the North China Craton and its tectonic signifcance. Acta Petrologica Sinca, 25(1): 193–211.
[] Hu B, Zhai MG, Li TS, Li Z, Peng P, Guo JH, Kusky TM. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22(3-4): 828–842. DOI:10.1016/j.gr.2012.03.005
[] Jahn BM and Zhang ZQ. 1984. Radiometric ages (Rb-Sr, Sm-Nd, U-Pb) and REE geochemistry of Archaean granulite gneisses from eastern Hebei Province, China. In: Kröner A, Hanson GN and Goodwin AM (eds.). Archaean Geochemistry. Berlin: Springer, 204-234
[] Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH, Liu DY. 1987. 3.5Ga old amphibolites from eastern Hebei Province, China: Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Research, 34(3-4): 311–346. DOI:10.1016/0301-9268(87)90006-4
[] Jahn BM, Liu DY, Wan YS, Song B, Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232–269. DOI:10.2475/03.2008.03
[] Jian P, Zhang Q, Liu DY, Jin WJ, Jia XQ, Qian Q. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151–157.
[] Jiang N, Guo JH, Zhai MG, Zhang SQ. 2010. ~2.7Ga crust growth in the North China craton. Precambrian Research, 179(1-4): 37–49. DOI:10.1016/j.precamres.2010.02.010
[] Jiang N, Guo JH, Zhai MG. 2011. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton. Journal of Asia Earth Science, 42.
[] Karlstrom KE, häll KI, Harlan SS, Williams ML, Mclelland J, Geissman JW. 2001. Long-lived (1.8~1.0Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research, 111(1-4): 5–30. DOI:10.1016/S0301-9268(01)00154-1
[] Kröner A, Cui WY, Wang WY, Wang CQ, Nemchin AA. 1998. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences, 16(5-6): 519–532. DOI:10.1016/S0743-9547(98)00033-6
[] Kröner A, Wilde SA, Li JH, Wang KY. 2005a. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577–595. DOI:10.1016/j.jseaes.2004.01.001
[] Kröner A, Wilde SA, O’Brien PJ, Li JH, Passchier CW, Walte NP, Liu DY. 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of northern China. Acta Geologica Sinica, 79(5): 605–629.
[] Kröner A, Wilde SA, Zhao GC, O’Brien PJ, Sun M, Liu DY, Wan YS, Liu SW, Guo JH. 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45–67. DOI:10.1016/j.precamres.2006.01.008
[] Kusky TM, Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397. DOI:10.1016/S1367-9120(03)00071-3
[] Kusky T, Li JH, Santosh M. 2007a. The Paleoproterozoic North Hebei Orogen: North China Craton’s collisional suture with the Columbia Supercontinent. In: Zhai MG, Xiao WJ, Kusky TM and Santosh M (eds.).Tectonic Evolution of China and Adjacent Crustal Fragments.Special Issue of Gondwana Research, 12(1-2): 4–28.
[] Kusky TM, Windley BF, Zhai MG. 2007b. Tectonic evolution of the North China Block: From orogen to craton to orogen. In: Zhai MG, Windley BF, Kusky TM and Meng QR (eds.).Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia.Geological Society, London, Special Publications, 280(1): 1–34.
[] Li HK, Li HM, Lu SN. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications. Geochimica, 24(1): 43–48.
[] Li HK, Lu SN, Li HM, Sun LX, Xiang ZQ, Geng JZ, Zhou HY. 2009. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geological Bulletin of China, 28(10): 1396–1404.
[] Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S, Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131–2140.
[] Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC, Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108–120.
[] Li JH. 1998. Supercontinent cycle in the Precambrian and its implication for the plate tectonics. Earth Science Frontiers, 5(1): 141–151.
[] Li JH, Mu J. 1999. Tectonic constraints from Chinese cratonic blocks for the reconstruction of Rodinia. Scientia Geologica Sinica, 34(3): 259–272.
[] Li QL, Chen FK, Guo JH, Li XL, Yang YH, Siebel W. 2007a. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): Evidence for Early Proterozoic evolution of the northern North China Craton. Journal of Asian Earth Sciences, 30(3-4): 573–590. DOI:10.1016/j.jseaes.2007.01.006
[] Li SZ, Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaqji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China craton. Precambrian Research, 158(1-2): 1–16. DOI:10.1016/j.precamres.2007.04.001
[] Li XH. 1997. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323–337. DOI:10.2343/geochemj.31.323
[] Li XH, Zhao JX, McCulloch MT, Zhou GQ, Xing FM. 1997. Geochemical and Sm-Nd isotopic study of Neoproterozoic ophiolites from southeastern China: Petrogenesis and tectonic implications. Precambrian Research, 81(1-2): 129–144. DOI:10.1016/S0301-9268(96)00032-0
[] Li XH. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia. Precambrian Research, 97(1-2): 43–57. DOI:10.1016/S0301-9268(99)00020-0
[] Li XH, Chen FK, Guo JH, Li QL, Xie LW, Siebel W. 2007b. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochemical Journal, 41(1): 29–45. DOI:10.2343/geochemj.41.29
[] Li ZX, Zhang L, Powell CMCA. 1995. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia. Geology, 23(5): 407–410. DOI:10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
[] Li ZX, Li XH, Zhou HW, Kinny PD. 2002. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163–166. DOI:10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
[] Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85–109. DOI:10.1016/S0301-9268(02)00208-5
[] Liu DY, Page RW, Compston W, Wu JS. 1985. U-Pb zircon geochronology of Late Archean metamorphic rocks in the Taihangshan-Wutaishan area, North China. Precambrian Research, 27(1-3): 85–109. DOI:10.1016/0301-9268(85)90007-5
[] Liu DY, Shen QY, Zhang ZQ, Jahn BM, Auvray B. 1990. Archean crustal evolution in China: U-Pb geochronology of the Qianxi Complex. Precambrian Research, 48(3): 223–244. DOI:10.1016/0301-9268(90)90010-N
[] Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of ≥3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339–342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[] Liu DY, Geng YS, Song B. 1997. Late Archean crustal accretion and reworking in northwestern Hebei Province: Isochronological evidence. Acta Geoscientia Sinica, 18(3): 226–232.
[] Liu DY, Wilde S, Wan YS, Wu JS, Zhou HY, Dong CY, Yin XY. 2008a. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China craton. American Journal of Science, 308(3): 200–231. DOI:10.2475/03.2008.02
[] Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Zhang YX, Gao LZ. 2009. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1-2): 140–154. DOI:10.1016/j.chemgeo.2008.10.041
[] Liu SW, Liang HH, Zhao GC, Hua YG, Jian AH. 2000. Isotopic chronology and geological events of Precambrian complex in Taihangshan region. Science in China (Series D), 43(4): 386–393. DOI:10.1007/BF02959449
[] Liu SW, Pan YM, Xie QL, Zhang J, Li QG, Yang B. 2005. Geochemistry of the Paleoproterozonic Nanying granitic gneisses in the Fuping Complex: Implications for the tectonic evolution of the Central Zone, North China Craton. Journal of Asian Earth Sciences, 24(5): 643–658. DOI:10.1016/j.jseaes.2003.10.010
[] Liu SW, Zhao GC, Wilde SA, Shu GM, Sun M, Li QG, Tian W, Zhang J. 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai complexes: Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research, 148(3-4): 205–225. DOI:10.1016/j.precamres.2006.04.003
[] Liu SW, Lu YJ, Feng YG, Liu XM, Yan QR, Zhang C, Tian W. 2007. Zircon and monazite geochronology of the Hongqiyingzi complex, northern Hebei, China. Geological Bulletin of China, 26(9): 1086–1100.
[] Liu XM, Gao S, Diwu CR, Yuan HL, Hu ZC. 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size. Chinese Science Bulletin, 52(9): 1257–1264. DOI:10.1007/s11434-007-0160-x
[] Liu XM, Gao S, Diwu CR, Ling WL. 2008b. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science, 308(4): 421–468. DOI:10.2475/04.2008.02
[] Liu YQ, Gao LZ, Liu YX, Song B, Wang ZX. 2006. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block. Chinese Science Bulletin, 51(19): 2357–2382.
[] Liu ZF, Wang JM, Lu JB, Zheng GS. 2006. Geological features and age of the Wenquan rapakivi granite, Chicheng County, Hebei. Geology in China, 33(5): 1052–1058.
[] Lu GY, Huang JH. 1987. New Rb-Sr isotope data of low-grade metamorphic rocks in eastern Hebei and their geological significance. Regional Geology of China(3): 219–224.
[] Lu SN, Li HM. 1991. A precise U-Pb single zircon age determination for the volcanic of Dahongyu Formation Changcheng system in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22(1): 137–146.
[] Lu SN, Yang CL, Li HK, Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123–131. DOI:10.1016/S1342-937X(05)70896-0
[] Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY, Chen ZH. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762–768.
[] Lu SN, Li HK, Chen ZH, Yu HF, Jin W, Guo KY. 2004. Relationship between Neoproterozoic cratons of China and the Rodinia. Earth Science Frontiers, 11(2): 515–523.
[] Lu SN, Wang HC, Li HK. 2005. Unscramble the ISC 2004 and special reference to Precambrian from 2004 to 2008. Journal of Stratigraphy, 29(2): 180–187.
[] Lu SN, Zhao GC, Wang HC, Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77–93. DOI:10.1016/j.precamres.2007.04.017
[] Lu XP, Wu FY, Lin JQ, Sun DY, Zhang YB, Guo CL. 2004. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the north China craton. Chinese Journal of Geology, 39(1): 123–138.
[] Lu XP, Wu FY, Guo JH, Wilde SA, Yang JH, Liu XM, Zhang XO. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern Block in the North China Craton. Precambrian Research, 146(3-4): 138–164. DOI:10.1016/j.precamres.2006.01.009
[] Ludwig KR. 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1–71.
[] Luo DW, Qi HL, Dong GC, Chen D. 2000. Geological Characteristics of Archean Granites-Greenstone Belts near the Qinglonghe and Studies on the Metallogenic Regularity. Beijing: Geological Publishing House: 1-83.
[] Luo Y, Sun M, Zhao GC, Li SZ, Xu P, Ye K, Xia XP. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3-4): 349–371. DOI:10.1016/j.precamres.2004.07.002
[] Luo Y, Sun M, Zhao GC, Li SZ, Xia XP. 2006. LA-ICP-MS U-Pb zircon geochronology of the Yushulazi Group in the Eastern Block, North China Craton. International Geology Review, 48(9): 828–840. DOI:10.2747/0020-6814.48.9.828
[] Ma YS. 1994. Late Cambrian sedimentary cycles in the north part of the North China platform. Geological Review, 40(2): 165–172.
[] Ma YS, Cui SQ, Zeng QL, Wu ML. 2002. Yanshanian compression and extension in the Yanshan area. Geological Bulletin of China, 21(4-5): 218–223.
[] Mao DB, Zhong CT, Chen ZH, Lin YX, Li HM, Hu XD. 1999. The isotope ages and their geological implications of high-pressure basic granulites in north region of Chengde, Hebei Province, China. Acta Petrologica Sinica, 15(4): 524–534.
[] Mei MX, Ma YS, Mei SL, Hu JZ. 1997. Framwork of Cambrian sedimentary sequence and evolution of Carbonate platform in North China. Geoscience, 11(3): 275–282.
[] Meng QR, Hu JM, Yuan XJ, Jin JQ. 2002. Structure, evolution and origin of Late Mesozoic extensional basins in the China-Mongolia border region. Geological Bulletin of China, 21(4-5): 224–231.
[] National Commission on Stratigraphy. 2001. Guide of Chinese Stratigraphic and Instruction of the Guide. Beijing: Geological Publishing House: 1-59.
[] Peng P, Zhai MG, Zhang HF, Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492–508. DOI:10.2747/0020-6814.47.5.492
[] Peng P, Zhai MG and Guo JH. 2006. 1.80~1.75Ga mafic dyke swarms in the central North China craton: Implications for a plume-related break-up event. In: Hanski E, Mertanen S, Rämö T and Vuollo J (eds.). Dyke Swarms: Time Markers of Crustal Evolution. London: Taylor & Francis, 99-112
[] Peng P, Zhai MG, Ernst RE, Guo JH, Liu F, Hu B. 2008. A 1.78Ga large igneous province in the North China craton: The Xiong’er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260–280. DOI:10.1016/j.lithos.2007.07.006
[] Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78Ga magmatism in the North China craton. In: Kusky TM, Zhai MG and Xiao WJ (eds.).The Evolving Continents: Understanding Processes of Continental Growth.Geological Society, London, Special Publications, 338: 163–178.
[] Peng P, Bleeker W, Ernst R E, Söderlund U, McNicoll V. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210–221. DOI:10.1016/j.lithos.2011.08.018
[] Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS, Zhang YB. 2011b. Neoproterozoic (~900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20(1): 243–354. DOI:10.1016/j.gr.2010.12.011
[] Peng P, Liu F, Zhai MG, Guo JH. 2012. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105–110. DOI:10.1007/s11434-011-4771-x
[] Peng RM, Zhai YS, Wang ZG. 2000. Ore-controlling synchronous faults of Mesoproterozoic Dongshengmiao and Jiashengpan sedex-type ore deposits, Inner Mongolia. Earth Science, 25(4): 404–409.
[] Peng RM, Zhai YS, Wang JP, Chen XF, Liu Q, Lu JY, Shi YX, Wang G, Li SB, Wang LG, Ma YT, Zhang P. 2010. Discovery of Neoproterozoic acid volcanic rock in the southwestern section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611–2620. DOI:10.1360/972010-266
[] Pidgeon RT. 1980. 2480Ma old zircons from granulite facies rocks from East Hebei Province, North China. Geological Review, 26(3): 198–202.
[] Polat A, Li J, Fryer B, Kusky T, Gagnon J, Zhang S. 2006. Geochemical characteristics of the Neoarchean (2800~2700Ma) Taishan greenstone belt, North China Craton: Evidence for plume-craton interaction. Chemical Geology, 230(1-2): 60–87. DOI:10.1016/j.chemgeo.2005.11.012
[] Qiao XF, Gao LZ, Zhang CH. 2007. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503–509.
[] Rämö OT, Haapala I, Vaasjoki M, Yu JH, Fu HQ. 1995. 1700Ma Shachang complex, Northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9): 815–818. DOI:10.1130/0091-7613(1995)023<0815:MSCNCP>2.3.CO;2
[] Ren FG, Li HM, Yin YJ, Li SB, Ding SY, Chen ZH. 2000. The upper chronological limit of Xionger Group’s volcanic rock series, and its geological significance. Progress in Precambrian Research, 23(3): 140–146.
[] Ren KX, Yan GH, Cai JH, Mou BL, Li FT, Wang YB, Chu ZY. 2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica, 22(2): 377–386.
[] Ren R, Han BF, Zhang ZC, Li JF, Yang YH, Zhang YB. 2011. Zircon U-Pb and Hf isotopic studies of basement gneiss and overlying Meso-Neoproterozoic sedimentary rocks from the Changping area, Beijing, and their geological implications. Acta Petrologica Sinica, 27(6): 1721–1745.
[] Rino S, Kon Y, Sato W, Maruyama S, Santosh M, Zhao D. 2008. The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research, 14(1-2): 51–72. DOI:10.1016/j.gr.2008.01.001
[] Rogers JJW, Santosh M. 2004. Continents and Supercontinents. New York: Oxford University Press: 1-289.
[] Santosh M. 2010. Assembling North China Craton within the Columbia Supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149–167. DOI:10.1016/j.precamres.2010.02.003
[] Shen QH, Xu HF, Zhang ZQ, et al. 1992. Early Precambrian Granulites in China. Beijing: Geological Publishing House: 389-400.
[] Song B, Nutman AP, Liu DY, Wu JS. 1996. 3800 to 2500 Ma crustal evolution in Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79–94. DOI:10.1016/0301-9268(95)00070-4
[] Su SG, Zhou R, Gu DL, Zhu GX. 1999. Characteristics, ages and geneses of charnockites in Yishui area, Shandong Province. Earth Science, 24(1): 57–62.
[] Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B, Santosh M. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543–553. DOI:10.1016/j.gr.2008.04.007
[] Su WB, Li HK, Huff WD, Ettensohn FR, Zhang SH, Zhou HY, Wan YS. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312–3323. DOI:10.1007/s11434-010-4007-5
[] Sun DZ, Li HM, Lin YX, Zhou HF, Zhao FQ, Tang M. 1991. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. : 216-231.
[] Sun DZ, Li HM, Lin YX, Zhou HF, Zhao FQ, Tang M. 1992. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta Geologica Sinica, 5(1): 23–37.
[] Sun JF, Yang JH, Wu FY, Wilde SA. 2012. Precambrian crustal evolution of the eastern North China Craton as revealed by U-Pb ages and Hf isotopes of detrital zircons from the Proterozoic Jing’eryu Formation. : 200-203.
[] Tang J, Zheng YF, Wu YB, Gong B, Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48–82. DOI:10.1016/j.precamres.2006.09.001
[] Wan YS, Song B, Liu DY, Li HM, Yang C, Zhang QD, Yang CH, Geng YS, Shen QH. 2001. Geochronology and geochemistry of 3.8~2.5Ga Ancient rock belt in the Dongshan scenic park, Anshan area. Acta Geologica Sinica, 75(3): 363–370.
[] Wan YS, Zhang QD, Song TR. 2003. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chinese Science Bulletin, 48(22): 2500–2506.
[] Wan YS, Song B, Yang C, Liu DY. 2005. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geologica Sinica, 79(1): 78–87.
[] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006a. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249–271. DOI:10.1016/j.precamres.2006.06.006
[] Wan YS, Wilde SA, Liu DY, Yang CX, Song B, Yin XY. 2006b. Further evidence for ~1.85Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gaondwana Research, 9(1-2): 189–197. DOI:10.1016/j.gr.2005.06.010
[] Wan YS, Liu DY, Wang W, Song TR, Kröner A, Dong CY, Zhou HY, Yin XY. 2011a. Provenance of Meso- to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research, 20(1): 219–242. DOI:10.1016/j.gr.2011.02.009
[] Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH and Diwu CR. 2011b. 2.7Ga juvenile crust formation in the North China craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research. 186(1-4): 169-180
[] Wang J, Lu SN, Li HM, Wang RZ, Sun YF, Li HK, Li SQ. 1995. Geochronologic framework of metamorphic rocks in the middle part of Inner Mongolia. Bulletin of the Tianjin Institute of Geology and Mineral Resources, 29: 1–76.
[] Wang KY, Hao J, Wilde SA, Cawood P. 2000. Reconsideration of some key geological problems of Late Archaean-Early Proterozoic in the Wutaishan-Hengshan area: Constraints from shrimp U-Pb Zircon data. Scientia Geologica Sinica, 35(2): 175–184.
[] Wang KY, Fan HR, Xie YH, Li HM. 2002. Zircon U-Pb dating of basement gneisses in the super-large Bayan Obo REE-Fe-Nb deposit, Inner Mongolia. Chinese Science Bulletin, 47(3): 243–247. DOI:10.1360/02tb9058
[] Wang QH, Yang DB, Xu WL. 2012. Neoproterozoic basic magmatism in the southeast margin of North China Craton: Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China (Earth Sciences), 55(9): 1461–1479. DOI:10.1007/s11430-011-4237-7
[] Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH, Guo RR. 2013. Geochemistry and zircon U-Pb-Hf isotopes of the Late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos: 162–163.
[] Wang XL, Jiang SY, Dai BZ, Griffin WL, Dai MN, Yang YH. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca. 830Ma) gabbros on the southern margin of the North China Craton.Precambrian Research, 190(1-4): 35–47.
[] Wang YJ, Fan WM, Zhang Y, Guo F. 2003. Structural evolution and 40Ar/39Ar dating of the Zanhuang metamorphic domain in the North China Craton: Constraints on Paleoproterozoic tectonothermal overprinting. Precambrian Research, 122(1-4): 159–182. DOI:10.1016/S0301-9268(02)00210-3
[] Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF, Peng TP. 2004. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China craton.Precambrian Research, 135(1-2): 55–77.
[] Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Speigel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1–23. DOI:10.1111/ggr.1995.19.issue-1
[] Wilde SA, Zhao GC, Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85–94. DOI:10.1016/S1342-937X(05)70892-3
[] Wilde SA, Cawood PA, Wang KY, Nemchin A, Zhao GC. 2004. Determining Precambrian crustal evolution in China: A case study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. In: Malps J, Fletcher CJ, Ali JR and Aitchison JC (eds.).Aspects of the Tectonic Evolution of China.London, Geological Society Special Publication, 226: 5–25.
[] Wilde SA, Zhao GC. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519–522. DOI:10.1016/j.jseaes.2004.06.004
[] Wilde SA, Cawood PA, Wang KY, Nemchin AA. 2005. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597–613. DOI:10.1016/j.jseaes.2003.11.006
[] Wu CH, Sun M, Li HM, Zhao GC, Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton: Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica, 22(11): 2639–2654.
[] Wu FY, Zhao GC, Wilde SA, et al. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523–545. DOI:10.1016/j.jseaes.2003.10.011
[] Wu FY, Zhang YB, Yang JH, Xie LW, Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339–362. DOI:10.1016/j.precamres.2008.10.002
[] Wu JS, Geng YS, Shen QH, Liu DY, Li ZL, Zhao DM. 1991. The Major Geological Events of the Early Precambrian in the North China. Beijing: Geological Publishing House: 1-115.
[] Xia XP, Sun M, Zhao GC, Luo Y. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199–212. DOI:10.1016/j.precamres.2005.11.004
[] Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JH, Luo Y. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581–593. DOI:10.1016/j.epsl.2005.11.024
[] Xu B. 2001. Recent study of the Rodinia Supercontinent evolution and its main goal. Geological Science and Technology Information, 20(1): 15–19.
[] Xu YH, Zhao TP, Peng P, Zhai MG, Qi L, Luo Y. 2007. Geochemical characteristics and geological significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Lüliang area, Shanxi Province. Acta Petrologica Sinica, 23(5): 1123–1132.
[] Yang JH, Wu FY, Zhang YB, Zhang Q, Wilde SA. 2004. Identification of Mesoproterozoic zircons in a Triassic dolerite from the Liaodong Peninsula, Northeast China. Chinese Science Bulletin, 49(18): 1958–1962. DOI:10.1007/BF03184289
[] Yang JH, Wu FY, Liu XM, Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica, 21(6): 1633–1644.
[] Yu JH, Wang DZ, Wang CY, Wang LJ. 2004. Paleoproterozoic granitic magmatism and metamorphism in middle part of Lüliang range, Shanxi Province. Geological Journal of China Universities, 10(4): 500–513.
[] Zhai MG, Bian AG, Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.): 219–232.
[] Zhai MG. 2001. Signature of North China Block in supercontinent Rodinia. Gondwana Research, 4(4): 838–839. DOI:10.1016/S1342-937X(05)70619-5
[] Zhai MG, Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Research, 122(1-4): 183–199. DOI:10.1016/S0301-9268(02)00211-5
[] Zhai MG, Shao JA, Hao J, Peng P. 2003. Geological signature and possible position of the North China block in the Supercontinent Rodinia. Gondwana Research, 6(2): 171–183. DOI:10.1016/S1342-937X(05)70968-0
[] Zhai MG. 2004. 2.1~1.7Ga geological event group and its geotectonic significance. Acta Petrologica Sinica, 20(6): 1343–1354.
[] Zhai MG, Guo JH, Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547–561. DOI:10.1016/j.jseaes.2004.01.018
[] Zhai MG, Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665–2682.
[] Zhai MG, Guo JH, Peng P, Hu B. 2007. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine, 144(3): 547–552. DOI:10.1017/S0016756807003287
[] Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24–36.
[] Zhai MG, Li TS, Peng P, Hu B, Liu F, Zhang YB. 2010. Precambrian key tectonic events and evolution of the North China craton. Geological Society, London, Special Publications, 338(1): 235–262. DOI:10.1144/SP338.12
[] Zhai MG. 2011. Cratonization and the ancient North China Continent: A summary and review. Science China (Earth Sciences), 54(8): 1110–1120. DOI:10.1007/s11430-011-4250-x
[] Zhai MG, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhai MG, Santosh M. 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24(1): 275–297. DOI:10.1016/j.gr.2013.02.007
[] Zhai YS, Deng J, Tang ZL, Xiao RG, Song HL, Peng RM, Sun ZS, Wang JP. 2004. Metallogenic systems on the paleocontinental margin of the North China Craton. Acta Geologica Sinica, 78(2): 592–603.
[] Zhang CH, Gao LZ, Wu ZJ, Shi XY, Yan QR, Li DJ. 2007. SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan: Evidence for Grenvillian orogeny in South China. Chinese Science Bulletin, 52(11): 1517–1525. DOI:10.1007/s11434-007-0225-x
[] Zhang HF, Zhou ZG, Liu WC, Li ZZ, Zhang YM, Liu CF. 2009. Grenvill tectono-thermal event record in the Bainaimiao area, Inner Mongolia, China: Evidence from zircon LA-ICP-MS U-Pb dating of quart monzodiorite dike. Acta Petrologica Sinica, 25(6): 1512–1518.
[] Zhang S, Jiang G, Zhang J, Song B, Kennedy MJ, Christie-Blick N. 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic glaciations. Geology, 33(3): 473–476.
[] Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM. 2007. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3-4): 287–312. DOI:10.1016/j.precamres.2007.02.008
[] Zhang SH, Jiang GQ, Han YG. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20(4): 289–294. DOI:10.1111/ter.2008.20.issue-4
[] Zhang SH, Zhao Y, Song B, Hu JM, Liu SW, Yang YH, Chen FK, Liu XM, Liu J. 2009a. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geological Society of American Bulletin, 121(1-2): 181–200.
[] Zhang SH, Zhao Y, Yang ZY, He ZF, Wu H. 2009b. The 1.35Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(1-2): 588–600.
[] Zhang SH, Zhao Y, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research: 222–223.
[] Zhang WJ, Li L, Geng MS. 2000. Petrology and dating of Neo-Archaean intrusive rocks from Guyang area, Inner Mongolia. Earth Science, 25(3): 221–226.
[] Zhang YQ, Dong SW, Zhao Y, Zhang T. 2007. Jurassic tectonics of North China: A synthetic view. Acta Geologica Sinica, 81(11): 1462–1480.
[] Zhang ZQ. 1998. On main growth epoch of Early Precambrian crust of the North China craton based on the Sm-Nd isotopic characteristics. In: Cheng YQ (ed.). Corpus on Early Precambrian Research of the North China Craton. Beijing: Geological Publishing House, 133-136 (in Chinese with English abstract)
[] Zhao GC. 2001. Palaeoproterozoic assembly of the North China Craton. Geological Magazine, 138(1): 87–91. DOI:10.1017/S0016756801005040
[] Zhao GC, Wilde SA, Cawood PA, Sun M. 2001. Archaean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45–73. DOI:10.1016/S0301-9268(00)00154-6
[] Zhao GC, Wilde SA, Cawood PA, Sun M. 2002. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science, 302(3): 191–226. DOI:10.2475/ajs.302.3.191
[] Zhao GC, Sun M, Wilde SA. 2003a. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23–38. DOI:10.1360/03yd9003
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2003b. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia supercontinent: Records in the North China Craton. Gondwana Research, 6(3): 417–434. DOI:10.1016/S1342-937X(05)70996-5
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC, Cao L, Wilde SA, Sun M, Choe WJ, Li SZ. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251(3-4): 365–379. DOI:10.1016/j.epsl.2006.09.021
[] Zhao GC, Wilde SA, Sun M, Guo JH, Kröner A, Li SZ, Li XP, Zhang J. 2008a. SHRIMP U-Pb zircon geochronology of the Huai’an complex: Constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. American Journal of Science, 308(3): 270–303. DOI:10.2475/03.2008.04
[] Zhao GC, Wilde SA, Sun M, Li SZ, Li XP, Zhang J. 2008b. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4): 213–226. DOI:10.1016/j.precamres.2007.07.004
[] Zhao L, Zhang JJ, Liu SW. 2006. Syn-deformational granites of the Longquanguan ductile shear zone and their monazite electronic microprobe dating. Acta Petrologica et Mineralogica, 25(3): 210–218.
[] Zhao RF, Guo JH, Peng P, Liu F. 2011. 2.1Ga crustal remelting event in Hengshan Complex: Evidence from zircon U-Pb dating and Hf-Nd isotopic study on potassic granites. Acta Petrologica Sinica, 27(6): 1607–1623.
[] Zhao TP, Jin CW, Zhai MG, Xia B, Zhou MF. 2002. Geochemistry and petrogenesis of the Xiong’er Group in the southern regions of the North China Craton. Acta Petrologica Sinica, 18(1): 59–69.
[] Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX, Wan YS. 2004a. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495–2502. DOI:10.1007/BF03183721
[] Zhao TP, Chen FK, Zhai MG, Xia B. 2004b. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685–690.
[] Zhao TP, Wang JP, Zhang ZH, et al. 2005. Proterozoic Geology of Mt. Wangwushan and Adjacent Areas, China.Beijing: Land Published House: 1–140.
[] Zhao TP, Xu YH, Zhai MG. 2007. Petrogenesis and tectonic setting of the Paleoproterozoic Xiong’er Group in the southern part of the North China Craton: A review. Geological Journal of China Universities, 13(2): 191–206.
[] Zhao TP, Zhou MF. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36(2-3): 183–195. DOI:10.1016/j.jseaes.2009.05.005
[] Zhao Y, Cui SQ, Guo T, Xu G. 2002. Evolution of a Jurassic basin of the Western Hills, Beijing, North China and its tectonic implications. Geological Bulletin of China, 21(4-5): 211–217.
[] Zhao Y, Song B, Zhang SH, Liu J. 2006. Geochronology of the inherited zircons from Jurassic Nandaling basalt of the Western Hills of Beijing, North China: Its implications. Earth Science Frontiers, 13(2): 184–190.
[] Zhao ZP. 1993. Precambrian Crustal Evolution of the Sino-Korean Paraplatform. Beijing: Science Press: 3-384.
[] Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ, Cheng H. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160: 323–340. DOI:10.1016/j.precamres.2007.08.004
[] Zhu XY, Chen FK, Li SQ, Yang YZ, Nie H, Siebel W, Zhai MG. 2011. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20: 194–204. DOI:10.1016/j.gr.2010.12.009
[] Zhu XY, Zhai MG, Chen FK, Lv B, Wang W, Peng P, Hu B. 2013. An ~2.7Ga Crustal growth in the North China Craton: Evidence from zircon U-Pb ages and Hf isotopes of the Sushui Complex in the Zhongtiao Terrane. The Journal of Geology, 121(3). DOI:10.1086/669977
[] 白瑾, 黄学元, 王惠初, 郭进京, 颜耀阳, 修群业, 戴凤岩, 徐文蒸, 王官福. 1996. 中国早前寒武纪地壳演化. 第2版.北京: 地质出版社: 20-162.
[] 陈斌, 刘树文, 耿元生, 刘超群. 2006. 吕梁-五台地区晚太古宙-古元古代花岗质岩石锆石U-Pb 年代学和Hf同位素性质及其地质意义. 岩石学报, 22(2): 296–304.
[] 陈晋镳, 张惠民, 朱士兴, 赵震, 王振刚. 1980. 蓟县震旦亚界的研究. 见: 中国地质科学院天津地质矿产研究所编. 中国震旦亚界. 天津: 天津科学技术出版社, 56-114
[] 程裕淇, 张寿广. 1982. 略论我国不同变质时期的变质岩系、变质带和若干有关问题. 中国区域地质, (2): 1-14
[] 程裕淇. 1994. 中国区域地质概论. 北京: 地质出版社: 90-163.
[] 第五春荣, 孙勇, 刘养杰, 韩伟, 戴梦宁, 李永项. 2011. 秦皇岛柳江地区长龙山组石英砂岩物质源区组成——来自碎屑锆石U-Pb-Hf 同位素的证据. 岩石矿物学杂志, 30(1): 1–12.
[] 董晓杰, 徐仲元, 刘正宏, 沙茜. 2012. 内蒙古大青山北麓2.7Ga花岗质片麻岩的发现及其地质意义. 地球科学, 37(S1): 45–52.
[] 杜利林, 杨崇辉, 郭敬辉, 王伟, 任留东, 万渝生, 耿元生. 2010. 五台地区滹沱群底界时代: 玄武安山岩SHRIMP锆石U-Pb 定年. 科学通报, 55(3): 246–254.
[] 高林志, 赵汀, 万渝生, 赵逊, 马寅生, 杨守政. 2005. 河南焦作云台山早前寒武纪变质基底锆石SHRIMP U-Pb 年龄. 地质通报, 24(12): 1089–1093.
[] 高林志, 张传恒, 史晓颖, 周洪瑞, 王自强. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报, 26(3): 249–255.
[] 高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 唐烽, 宋彪. 2008. 华北古陆中、新元古代年代地层框架——SHRIMP锆石年龄新依据. 地球学报, 29(3): 366–376.
[] 高林志, 张传恒, 刘鹏举, 丁孝忠, 王自强, 张彦杰. 2009. 华北-江南地区中、新元古代地层格架的再认识. 地球学报, 30(4): 433–446.
[] 高林志, 戴传固, 刘燕学, 王敏, 王雪华, 陈建书, 丁孝忠, 张传恒, 曹茜, 刘建辉. 2010a. 黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义. 地质通报, 29(9): 1259–1267.
[] 高林志, 张传恒, 陈寿铭, 刘鹏举, 丁孝忠, 刘燕学, 董春燕, 宋彪. 2010b. 辽东半岛细河群沉积岩碎屑锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 29(8): 1113–1122.
[] 高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报, 27(6): 793–798.
[] 高振西, 熊永先, 高平. 1934. 中国北部震旦系地层. 中国地质学会志, 13: 243–288.
[] 耿元生, 杨崇辉, 宋彪, 万渝生. 2004. 吕梁地区18亿年的后造山花岗岩: 同位素年代和地球化学制约. 高校地质学报, 10(4): 477–487.
[] 郭敬辉, 翟明国, 李永刚, 阎月华, 张雯华. 1994. 晋冀内蒙交界地区早前寒武纪变质杂岩同位素年代及其构造意义. 见: 钱祥麟, 王仁民主编. 华北北部麻粒岩带地质演化. 北京: 地震出版社, 130-144
[] 郭敬辉, 翟明国, 李永刚, 李江海. 1999a. 恒山西段石榴石角闪岩和麻粒岩的变质作用、Pt轨迹及构造意义. 地质科学, 34(3): 311–325.
[] 郭敬辉, 石昕, 卞爱国, 许荣华, 翟明国, 李永刚. 1999b. 桑干地区早元古代花岗岩长石Pb同位素组成和锆石U-Pb 年龄: 变质与地壳熔融作用及构造-热事件演化. 岩石学报, 15(2): 199–207.
[] 郭敬辉, 翟明国. 2000. 华北克拉通桑干地区高压麻粒岩变质作用的Sm-Nd年代学. 科学通报, 45(19): 2055–2061.
[] 郭敬辉, 翟明国, 许荣华. 2002. 华北桑干地区大规模麻粒岩相变质作用的时代: 锆石U-Pb年代学. 中国科学(D辑), 32(1): 10–18.
[] 胡波, 翟明国, 郭敬辉, 彭澎, 刘富, 刘爽. 2009. 华北克拉通北缘化德群中碎屑锆石的LA-ICP-MS U-Pb年龄及其构造意义. 岩石学报, 25(1): 193–211.
[] 简平, 张旗, 刘敦一, 金维浚, 贾秀勤, 钱青. 2005. 内蒙古固阳晚太古代赞岐岩(sanukite)-角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151–157.
[] 李怀坤, 李惠民, 陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学, 24(1): 43–48.
[] 李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约. 地质通报, 28(10): 1396–1404.
[] 李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131–2140.
[] 李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma: 来自北京密云花岗斑岩岩脉锆石LA-MC-ICP MS U-Pb年龄的约束. 地学前缘, 18(3): 108–120.
[] 李江海. 1998. 前寒武纪的超大陆旋回及其板块构造演化意义. 地学前缘, 5(1): 141–151.
[] 李江海, 穆剑. 1999. 我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约. 地质科学, 34(3): 259–272.
[] 刘敦一, 耿元生, 宋彪. 1997. 冀西北地区晚太古代大陆地壳的增生和再造——同位素年代学证据. 地球学报, 18(3): 226–232.
[] 刘树文, 梁海华, 赵国春, 华永刚, 简安华. 2000. 太行山早前寒武纪杂岩的同位素年代学和地质事件. 中国科学(D辑), 30(1): 18–24.
[] 刘树文, 吕勇军, 凤永刚, 柳小明, 闫全人, 张臣, 田伟. 2007. 冀北红旗营子杂岩的锆石、独居石年代学及地质意义. 地质通报, 26(9): 1086–1100.
[] 柳小明, 高山, 第五春荣, 袁洪林, 胡兆初. 2007. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定. 科学通报, 52(2): 228–235.
[] 柳永清, 高林志, 刘燕学, 宋彪, 王宗秀. 2005. 徐淮地区新元古代初期镁铁质岩浆事件的锆石U-Pb 定年. 科学通报, 50(21): 2514–2521.
[] 刘振锋, 王继明, 吕金波, 郑桂森. 2006. 河北省赤城县温泉环斑花岗岩的地质特征及形成时代. 中国地质, 33(5): 1052–1058.
[] 卢功一, 黄静好. 1987. 冀东浅变质岩铷锶同位素年龄新成果及其地质意义. 中国区域地质(3): 219–224.
[] 陆松年, 李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22(1): 137–146.
[] 陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762–768.
[] 陆松年, 李怀坤, 陈志宏, 于海峰, 金巍, 郭坤一. 2004. 新元古时期中国古大陆与罗迪尼亚超大陆的关系. 地学前缘, 11(2): 515–523.
[] 陆松年, 王惠初, 李怀坤. 2005. 解读国际地层委员会2004年前寒武纪地层表及2004~2008年参考方案. 地层学杂志, 29(2): 180–187.
[] 路孝平, 吴福元, 林景仟, 孙德有, 张艳斌, 郭春丽. 2004. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架. 地质科学, 39(1): 123–138.
[] 罗殿文, 齐鸿烈, 董国臣, 陈达. 2000. 青龙河太古宙花岗岩-绿岩带地质特征及金矿成矿规律研究. 北京: 地质出版社: 1-83.
[] 马永生. 1994. 华北北部晚寒武世沉积旋回分析. 地质论评, 40(2): 165–172.
[] 马寅生, 崔盛芹, 曾庆利, 吴满路. 2002. 燕山地区燕山期的挤压与伸展作用. 地质通报, 21(4-5): 218–223.
[] 毛德宝, 钟长汀, 陈志宏, 林源贤, 李惠民, 胡小蝶. 1999. 承德北部高压基性麻粒岩的同位素年龄及其地质意义. 岩石学报, 15(4): 524–534.
[] 梅冥相, 马永生, 梅仕龙, 胡建中. 1997. 华北寒武系层序地层格架及碳酸盐台地演化. 现代地质, 11(3): 275–282.
[] 孟庆任, 胡建民, 袁选俊, 靳久强. 2002. 中蒙边界地区晚中生代伸展盆地的结构、演化与成因. 地质通报, 21(4-5): 224–231.
[] 全国地层委员会编. 2001. 中国地层指南及中国地层指南说明书(修订版). 北京: 地质出版社, 1-59
[] 彭润民, 翟裕生, 王志刚. 2000. 内蒙古东升庙、甲生盘中元古代SEDEX矿床同生断裂活动及其控矿特征. 地球科学, 25(4): 404–409.
[] 彭润民, 翟裕生, 王建平, 陈喜峰, 刘强, 吕军阳, 石永兴, 王刚, 李慎斌, 王立功, 马玉涛, 张鹏. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义. 科学通报, 55(26): 2611–2620.
[] 皮金(PidgeonRT). 1980. 冀东太古界麻粒岩相岩石中锆石的同位素年龄. 地质论评, 26(3): 198–202.
[] 乔秀夫, 高林志, 张传恒. 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503–509.
[] 任富根, 李惠民, 殷艳杰, 李双保, 丁士应, 陈志宏. 2000. 熊耳群火山岩系的上限年龄及其地质意义. 前寒武纪研究进展, 23(3): 140–146.
[] 任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报, 22(2): 377–386.
[] 任荣, 韩宝福, 张志诚, 李建锋, 杨岳衡, 张艳斌. 2011. 北京昌平地区基底片麻岩和中-新元古代盖层锆石U-Pb年龄和Hf同位素研究及其地质意义. 岩石学报, 27(6): 1721–1745.
[] 沈其韩, 许惠芬, 张宗清, 等. 1992. 中国早前寒武纪麻粒岩. 北京: 地质出版社: 389-400.
[] 苏尚国, 周若, 顾德林, 朱更新. 1999. 山东沂水紫苏花岗岩特征、形成时代及成因探讨. 地球科学, 24(1): 57–62.
[] 苏文博, 李怀坤, HuffWD, EttensohnFR, 张世红, 周红英, 万渝生. 2010. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义. 科学通报, 55(22): 2197–2206.
[] 孙大中, 李惠民, 林源贤, 周慧芳, 赵凤清, 唐敏. 1991. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究. 地质学报(3): 216–231.
[] 万渝生, 宋彪, 刘敦一, 李惠民, 杨淳, 张巧大, 杨崇辉, 耿元生, 沈其韩. 2001. 鞍山东山风景区3.8~2.5Ga古老岩带的同位素地质年代学和地球化学. 地质学报, 75(3): 363–370.
[] 万渝生, 张巧大, 宋天锐. 2003. 北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定. 科学通报, 48(18): 1970–1975.
[] 万渝生, 宋彪, 杨淳, 刘敦一. 2005. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb 年代学及其地质意义. 地质学报, 79(1): 78–87.
[] 王楫, 陆松年, 李惠民, 王汝铮, 孙玉芳, 李怀坤, 李双庆. 1995. 内蒙古中部变质岩同位素年代构造格架. 天津地质矿产研究所所刊, 29: 1–76.
[] 王凯怡, 郝杰, WildeSA, CawoodP. 2000. 山西五台山-恒山地区晚太古-早元古代若干关键地质问题的再认识: 单颗粒锆石离子探针质谱年龄提出的地质制约. 地质科学, 35(2): 175–184.
[] 王凯怡, 范宏瑞, 谢奕汉, 李惠民. 2001. 白云鄂博超大型REE-Fe-Nb矿床基底杂岩的锆石U-Pb年龄. 科学通报, 46(16): 1390–1394.
[] 吴昌华, 孙敏, 李惠民, 赵国春, 夏小平. 2006. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究. 岩石学报, 22(11): 2639–2654.
[] 伍家善, 耿元生, 沈其韩, 刘敦一, 厉子龙, 赵敦敏. 1991. 华北陆台早前寒武纪重大地质事件. 北京: 地质出版社: 1-115.
[] 徐备. 2001. Rodinia超大陆构造演化研究的新进展和主要目标. 地质科技情报, 20(1): 15–19.
[] 徐勇航, 赵太平, 彭澎, 翟明国, 漆亮, 罗彦. 2007. 山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义. 岩石学报, 23(5): 1123–1132.
[] 杨进辉, 吴福元, 柳小明, 谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf 同位素及其地质意义. 岩石学报, 21(6): 1633–1644.
[] 于津海, 王德滋, 王赐银, 王丽娟. 2004. 山西吕梁山中段元古代花岗质岩浆活动和变质作用. 高校地质学报, 10(4): 500–513.
[] 翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解. 中国科学(D辑), 30(S1): 129–137.
[] 翟明国. 2004. 华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨. 岩石学报, 20(6): 1343–1354.
[] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665–2682.
[] 翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24–36.
[] 张传恒, 高林志, 武振杰, 史晓颖, 阎全人, 李大建. 2007. 滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄: 华南格林威尔期造山的证据. 科学通报, 52(7): 818–824.
[] 张华锋, 周志广, 刘文灿, 李真真, 章永梅, 柳长峰. 2009. 内蒙古中部白乃庙地区格林威尔岩浆事件记录: 石英二长闪长岩脉锆石LA-ICP-MS U-Pb年龄证据. 岩石学报, 25(6): 1512–1518.
[] 张维杰, 李龙, 耿明山. 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代. 地球科学, 25(3): 221–226.
[] 张岳桥, 董树文, 赵越, 张田. 2007. 华北罗纪大地构造: 综评与新认识. 地质学报, 81(11): 1462–1480.
[] 张宗清. 1998. 从华北古陆早前寒武纪变质岩的Sm-Nd同位素特征论其地壳的主要生长时期. 见: 程裕淇主编. 华北地台早前寒武纪地质研究论文集. 北京: 地质出版社, 133-136
[] 赵兰, 张进江, 刘树文. 2006. 龙泉关韧性剪切带同变形花岗岩的构造特征及其独居石定年. 岩石矿物学杂志, 25(3): 210–218.
[] 赵瑞幅, 郭敬辉, 彭澎, 刘富. 2011. 恒山地区古元古代2.1Ga地壳重熔事件: 钾质花岗岩锆石U-Pb定年及Hf-Nd同位素研究. 岩石学报, 27(6): 1607–1623.
[] 赵太平, 金成伟, 翟明国, 夏斌, 周美夫. 2002. 华北陆块南部熊耳群火山岩的地球化学特征与成因. 岩石学报, 18(1): 59–69.
[] 赵太平, 翟明国, 夏斌, 李惠民, 张毅星, 万渝生. 2004a. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342–2349.
[] 赵太平, 陈福坤, 翟明国, 夏斌. 2004b. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义. 岩石学报, 20(3): 685–690.
[] 赵太平, 王建平, 张忠慧, 等. 2005. 中国王屋山及邻区元古宙地质研究. 北京: 中国大地出版社: 1-140.
[] 赵太平, 徐勇航, 翟明国. 2007. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境: 事实与争议. 高校地质学报, 13(2): 191–206.
[] 赵越, 崔盛芹, 郭涛, 徐刚. 2002. 北京西山侏罗纪盆地演化及其构造意义. 地质通报, 21(4-5): 211–217.
[] 赵越, 宋彪, 张拴宏, 刘健. 2006. 北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义. 地学前缘, 13(2): 184–190.
[] 赵宗溥. 1993. 中朝准地台前寒武纪地壳演化. 北京: 科学出版社: 3-384.