2. 中国地质科学院地质力学研究所,北京 100081
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
阿尔泰构造带位于西伯利亚板块和哈萨克斯坦-准噶尔板块之间,属于西伯利亚板块南缘部分,是中亚巨型造山带的重要组成部分,长期以来受到国内外研究者的关注(王广耀等, 1983, 1984;Coleman,1989;肖序常等,1990; 肖序常和汤耀庆, 1991;何国琦等,1990; 何国琦和李茂松, 2001;Sengör et al., 1993; Federovskii et al., 1995; Sengör and Natal’in, 1996; 庄育勋,1994;李天德等,1996; 李天德和波里扬斯基,2001;胡霭琴等, 2002, 2006;Windley et al., 2002, 2007; 徐新,2003;Jahn et al., 2004; Xiao et al., 2004, 2009, 2010; 王涛等,2005;袁超等,2007;Long et al., 2010)。但阿尔泰构造带中是否存在前寒武纪大陆地壳基底一直存在争议(Coleman, 1989; 何国琦等,1990;胡霭琴,2002;李锦轶和徐新,2004;袁超等,2007;Sun et al., 2008; Jiang et al., 2011),其焦点问题是对阿尔泰构造带中变质地层的时代的认识存在很大的差异。一些人认为分布在阿尔泰构造带北带的变质地层时代为古-中元古代或新元古代(王广耀等, 1983, 1984;彭昌文,1989;高振家等,1993;新疆维吾尔自治区地质矿产局,1993;李天德等,1996; 李天德和波里扬斯基,2001;胡霭琴,2002;Windley et al., 2002; 李会军等,2006),另一些人则将同一套地层时代归为古生代(庄育勋,1994;胡霭琴等,2006;陈汉林等,2006;Sun et al., 2006; 袁超等,2007;Long et al., 2010),致使阿尔泰构造带的构造属性、构造划分以及构造演化具有不同的认识。
阿勒泰-青河韧性剪切带走向北西,将阿尔泰构造带划分为两个亚带,即南带和北带,南、北两侧地层存在显著差异(图 1)。韧性剪切带以北主要为中深变质的克木齐群和浅变质的喀纳斯群;韧性剪切带以南除分布较少的中深变质地层之外,主要为晚古生代浅变质的具岛弧性质的火山-沉积岩系(Sengör, 1996),以及代表古洋壳组合的海相基性火山岩和蛇绿岩组合(Wang et al., 2003; 王宗秀等,2003;肖文交等,2006)。近年来,一些研究者(胡霭琴等,2006;陈汉林等,2006;Sun et al., 2006; 袁超等,2007;Long et al., 2010; Jiang et al., 2011) 认为北带的浅变质地层(喀纳斯群) 和中深变质地层(克木齐群) 均为早古生代沉积地层,阿尔泰构造带为中亚造山带显生宙增生造山带的一部分,从而认为阿尔泰构造带不具有古老的前寒武纪基底。
作者对采自阿尔泰构造带北带浅变质的喀纳斯群碎屑锆石和侵入于喀纳斯群浅变质花岗岩进行锆石U-Pb年龄测定,很好的限定了喀纳斯群的形成时代范围。这项研究成果为认识阿尔泰构造带是否存在前寒武纪基底提供了重要依据。
2 区域地质概况阿勒泰-青河韧性剪切带呈北西向贯穿于阿尔泰构造带内部,长约500km,多数地段出露宽度为3~4km,局部地段出露达10km (图 1)。韧性剪切带主要由长英质糜棱岩、花岗质糜棱岩等组成,最深层的糜棱岩达二长石相(相当于高角闪岩相变质)。Charvet et al.(2003)研究认为阿尔泰-青河韧性剪切带在早二叠世发生大规模走滑运动,Briggs et al.(2007)研究得出阿尔泰-青河韧性剪切带共经历了450Ma和280Ma两期构造活动。以阿勒泰-青河韧性剪切带为界,阿尔泰构造带可划分为南北两个截然不同的次级构造单元,南北两侧的地层及结构存在显著差异。
北带相对简单,主要由分布于东南部和中部的克木齐群以及西北部的喀纳斯群组成。克木齐群为中元古代中深变质岩(新疆维吾尔自治区区域地层表编写组,1981;新疆维吾尔自治区地质矿产局,1993),由片麻岩、斜长角闪岩、大理岩等组成,片麻岩类岩石混合岩化强烈。喀纳斯群为一套巨厚的低绿片岩相浅变质碎屑岩系(新疆维吾尔自治区区域地层表编写组,1981;新疆维吾尔自治区地质矿产局,1993),主要由板岩、千枚岩、变质砂岩等组成。
阿尔泰构造带北带铁热克提和白哈巴地区,东锡勒克组和白哈巴组角度不整合覆盖于喀纳斯群之上,白哈巴组根据古生物资料定为晚奥陶世(何国琦等,2001;徐新,2003)。
南带成分及结构比北带复杂,除分布较少的中深变质地层之外,主要为泥盆纪-石炭纪的浅变质中酸性火山岩-沉积岩系,包括康布铁堡组、阿勒泰组、红山嘴组、喀喇额尔齐斯组等,具有岛弧性质(Sengör et al., 1996)。近年来,在南带多处发现变质玄武岩及具有蛇绿岩组合特征的基性超基性岩,代表古洋壳残片(Wang et al., 2003; 王宗秀等,2003;肖文交等,2006)。
阿尔泰构造带南带和北带都分布大量的花岗岩体,且大多数花岗岩年龄集中在泥盆系-石炭系(Windley et al., 2002; 童英等, 2005, 2007;王涛等,2005;韩宝福等,2006),这与阿尔泰构造带南带泥盆系-石炭系大量的中酸性火山岩地层出露相吻合。除此之外,南带和北带都分布有中奥陶世花岗岩体(袁超等,2005;Wang et al., 2006)。
3 样品岩石学特征喀纳斯群主要分布于阿尔泰构造带北带的西北部,为一套低绿片岩相浅变质碎屑岩系。沿喀纳斯湖一带喀纳斯群各组出露最齐全,从喀纳斯湖至贾登峪一线采样,GPS坐标从48°45.405′N、87°01.784′E至48°44.255′N、87°01.133′E,采集喀纳斯群浅变质碎屑岩样品(KA-Y2)。样品主要岩性为变质砂岩和绿泥石绢云母千枚岩。变质砂岩片理较发育,细粒变晶结构,主要矿物成分为黑云母(8%)、绿泥石(7%)、绢云母(2%)、石英(80%),副矿物主要有磁铁矿(2%)、绿帘石(1%)、磷灰石( < 1%) 和锆石(微量),喀纳斯群虽然变质程度不深,但变形作用强烈,镜下见黑云母、绿泥石、绢云母均为细小鳞片状且强烈定向排列。绿泥石绢云母千枚岩片理发育,细粒变晶结构,主要矿物成分为绿泥石(10%)、绢云母(55%)、石英(30%)、碳质(5%),副矿物为锆石(微量),碎屑岩受浅变质作用强烈绢云母化,黑云母、绿泥石、绢云母均为鳞片状且强烈定向排列。
在喀纳斯湖至贾登峪一线,见侵入喀纳斯群的小型花岗岩体,岩体与喀纳斯群一同经受了浅变质作用,采集侵入喀纳斯群的浅变质花岗岩岩体样品(KA-Y1),GPS坐标为48°42.498′N、87°02.145′E。样品岩性为变质花岗岩,中细粒变晶结构,主要组成矿物有绢云母(20%)、石英(25%)、长石(55%),副矿物为磁铁矿( < 1%) 和锆石(微量)。受浅变质作用影响,绢云母呈鳞片状且强烈定向排列;石英为他形粒状且普遍具波状消光,边缘溶蚀,边缘及裂缝中细粒化;长石多为钾长石,自形-半自形,且强烈绢云母化。
4 测试方法及测试结果 4.1 测试方法样品处理及分析测试均在西北大学大陆动力学国家重点实验室完成。首先使用常规的重液浮选和电磁分离方法挑选出锆石,然后将其镶嵌在环氧树脂中并抛光至锆石颗粒的一半, 再进行锆石的阴极发光(CL) 及LA-ICP-MS原位微量元素和同位素分析。锆石的阴极发光图像分析在西北大学电子探针仪上完成,锆石原位U-Pb年龄测定利用的是ICP-MS Elan6100DRC,同时测定锆石测点的微量元素,激光束斑直径为30 μm,激光剥蚀样品的深度为20~40μm。同位素测定时,普通铅根据Andersen (2002)的3D坐标法进行校正,样品的同位素比值及元素含量计算采用GLITTER (ver4.0, Macquarie University) 程序,年龄计算及谐和图的绘制用Isoplot (ver2.49)(Luddwig et al., 1991) 完成。详细分析步骤和数据处理方法参见文献(Yuan et al., 2004)。
4.2 测试结果 4.2.1 喀纳斯群浅变质碎屑岩(KA-Y2)喀纳斯群浅变质碎屑锆石外形为浑圆状或双椎状。从阴极发光图像(图 2) 来看,锆石内部结构复杂,总体具有多层内部显微结构,锆石主体发育岩浆锆石典型的韵律环带特征,且环带窄而密,表明喀纳斯群物源区岩石应是结晶温度较低的花岗质类的岩石。另外,受浅变质作用影响,部分锆石颗粒核部呈面状或扇状结构,边部还发育退变质的亮边。锆石磨圆较好,边部可见溶蚀现象。选择测点时避开受变质作用和搬运磨蚀影响的核部和边部,而在岩浆环带清晰的幔部打点。
对挑选出的锆石共进行了37次分析,测试结果见表 1和图 3。喀纳斯群碎屑锆石共37个测点,各测点在谐和图上出现三个聚集分布区域,据此将喀纳斯群碎屑锆石各测点分为三组(图 4)。从图 3、图 4得出,第一组共9个测点,其206Pb/238U年龄介于615~674Ma,206Pb/238U加权平均年龄为639±17Ma (1σ, MSWD=0.73)。第二组共19个测点,其206Pb/238U年龄介于566~602Ma,206Pb/238U加权平均年龄为589±10Ma (1σ, MSWD=0.20)。第三组共9个测点,其206Pb/238U年龄介于538~563Ma,206Pb/238U加权平均年龄为550±18Ma (1σ, MSWD=0.075)。喀纳斯群浅变质碎屑岩中锆石U含量变化于134.8×10-6~1061×10-6,Th含量变化于40.93×10-6~491.4×10-6,Th/U值为0.172~0.925,其中Th/U比值最高达0.925,符合典型岩浆锆石的Th/U比值(>0.4) 的特征,也表明了锆石为岩浆成因(Rubatto and Gebauer, 2000; Belousova et al., 2002; 吴元保和郑永飞,2004;钟玉芳等,2006)。
变质花岗岩岩体中的锆石属于岩浆锆石,为半自形-自形,粒径100~200um不等,多为柱状、双椎状等,阴极发光(CL) 图像(图 5) 揭示其内部具有与晶体生长边界基本一致的岩浆震荡环带结构,且锆石的震荡环带窄而密,符合岩浆锆石的基本特点。
对变质花岗岩样品挑出的锆石共进行了9次分析,有2个测点的数据在进行普通铅校正时出现错误被剔除,共得到7个有效测点,其测试结果见表 2和图 6。各测点的206Pb/238U年龄介于509~535Ma之间,聚集在一致线上极其周围的小区域内,其206Pb/238U加权平均年龄为523±19Ma (1σ, MSWD=0.16)。变质花岗岩岩体中锆石U含量变化于159.3×10-6~572.0×10-6,Th含量变化于48.81×10-6~114.6×10-6,Th/U值为0.175~0.489,Th/U值大于0.1。
参考锆石的CL图像,利用LA-ICP-MS对喀纳斯群碎屑岩锆石和变质花岗岩锆石进行原位微量元素分析,结果分别见表 3和表 4,图 7和图 8是对应的球粒陨石标准化稀土配分图。
虽然喀纳斯群碎屑岩锆石和变质花岗岩锆石的稀土配分样式总体上一致(图 7、图 8)。都表现为较强的Ce富集,轻微的Eu亏损;稀土总量和重稀土含量都较高,表现为重稀土明显富集型;二者Th/U值都较高,显示了锆石的岩浆成因。但是二者稀土总量、重稀土含量和Th/U值在量上存在差别,喀纳斯群碎屑岩中锆石稀土总量和重稀土含量分别为251.3×10-6~1240×10-6、239.3×10-6~1208×10-6,变质花岗岩锆石稀土总量和重稀土含量更高,分别为916.9×10-6~2771×10-6、900.2×10-6~2757×10-6。二者Th/U值也都较高,喀纳斯群锆石Th/U值为0.172~0.925,Th/U值大都大于0.4,符合岩浆成因锆石的特征,变质花岗岩锆石Th/U值为0.089~0.489,Th/U值大于0.1,显示了锆石的岩浆成因。
喀纳斯群碎屑岩锆石的稀土元素特征显示其碎屑岩物源为花岗岩岩体,其与侵入喀纳斯群的变质花岗岩锆石稀土元素特征的差异显示二者是不同期次岩浆作用的产物,进一步表明在喀纳斯群沉积之前,这些花岗岩体即已存在,并为后来喀纳斯群的沉积提供碎屑物源。
5 讨论阿尔泰构造带北带广泛分布喀纳斯群浅变质碎屑岩,由碎屑锆石各测点年龄分布图将其年龄分为三组(图 4),三组的加权平均年龄分别为639±17Ma、589±10Ma和550±18Ma,其最年轻的碎屑锆石年龄集中在550±18Ma左右,相当于国际地层表中的新元古代埃迪卡拉纪晚期(晚震旦世晚期),用此限定喀纳斯群地层年龄的下限(William, 2001; Dickinson and Gehrels, 2009)。而侵入喀纳斯群的花岗岩体的锆石年龄为523±19Ma,由此限定喀纳斯群地层时代的上限应为早寒武世。因此,喀纳斯群的沉积时代应为晚震旦世晚期-早寒武世,这与前人(王广耀等,1983;高振家等,1985;彭昌文,1989) 根据微古化石及其组合特征得出的喀纳斯群有震旦纪沉积的结论一致。另外,在阿尔泰构造带西北部铁热克提和白哈巴地区,东锡勒克组和白哈巴组角度不整合覆盖于喀纳斯群之上,而白哈巴组根据大量古生物资料定为晚奥陶世(何国琦和李茂松,2001;徐新,2003),也间接表明喀纳斯群的时代应该早于晚奥陶世,与本文将喀纳斯群时代定为晚震旦世晚期-早寒武世相符合。
喀纳斯群主要为一套巨厚陆缘碎屑岩建造,含微古植物化石(王广耀等,1983;高振家等,1985;彭昌文,1989),且无火山岩,支持前人认为喀纳斯群沉积于被动大陆边缘构造环境的观点(新疆维吾尔自治区区域地层表编写组,1981;何国琦等,1990;Chang et al., 1995; 李会军等,2006),由此也表明阿尔泰构造带存在前寒武纪大陆地壳基底。
喀纳斯群为沉积于晚元古代晚期-早古生代早期(550~523Ma) 被动大陆边缘上的浅海相沉积物,锆石阴极发光图像和微量元素特征均显示其为岩浆锆石,碎屑岩的物源主要为550~639Ma的花岗质岩体。但目前为止在阿尔泰构造带内部尚未发现前寒武纪花岗岩,那么这些碎屑物质来源于哪里?喀纳斯群沉积的被动大陆边缘的大陆又在哪里呢?喀纳斯群沉积时,阿尔泰构造带与西伯利亚板块南缘之间为萨拉伊尔洋(古亚洲洋的分支) 分隔(何国琦和李茂松,1996;Khain et al., 2002;2003;徐新,2003;Stern, 2005;李锦轶等,2006),喀纳斯群碎屑物质不可能来源于西伯利亚板块南缘。而现今在阿尔泰构造带南部和准噶尔地块北部发现的蛇绿岩时代都晚于喀纳斯群形成时代(张海祥等,2003;Wang et al., 2003; 王宗秀等,2003;简平等,2003; 肖文交等,2006),表明阿尔泰构造带南边的准噶尔洋主要打开和扩张时间在喀纳斯群沉积之后。因此,推测喀纳斯群沉积时,应该是南边的准噶尔地块作为阿尔泰被动大陆边缘的大陆为其提供碎屑物源,准噶尔地块很可能存在前寒武纪大陆地壳基底。
6 结论(1) 喀纳斯群浅变质碎屑岩碎屑锆石的最年轻年龄集中分布在550±18Ma左右,而侵入其中的变质花岗岩岩体的侵位年龄为523±19Ma,因此喀纳斯群的沉积时代应为晚震旦世-早寒武世(550~523Ma)。
(2) 喀纳斯群沉积于被动大陆边缘构造环境,其时代被确定为新元古代晚期-早古生代,表明阿尔泰构造带存在前寒武纪大陆地壳基底。
[] | Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X |
[] | Belousova E, Griffin W, O'Reilly SY, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602–622. DOI:10.1007/s00410-002-0364-7 |
[] | Briggs SM, Yin A, Manning CE, Chen ZL, Wang XF, Grove M. 2007. Late Paleozoic tectonic history of the Ertix fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. Geological Society of America Bulletin, 119(7-8): 944–960. DOI:10.1130/B26044.1 |
[] | Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House: 1-135. |
[] | Chang EZ, Colemna RG, Ying DX. 1995. Tectonic Transect Map across Russia-Mongolia-China. Stanford: Stanford University Press. |
[] | Chen HL, Yang SF, Li ZL, Xiao WJ, Li JL, Dong CW, Yu X. 2006. Geochemistry and tectonic setting of early Late Paleozoic felsic volcanic rocks from the Altai orogenic belt, North Xinjiang. Acta Geologica Sinica, 80(1): 38–42. DOI:10.1111/acgs.2006.80.issue-1 |
[] | Coleman RG. 1989. Continental growth of northwest China. Tectonics, 8(3): 621–635. DOI:10.1029/TC008i003p00621 |
[] | Dickinson WR, Gehrels GE. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115–125. DOI:10.1016/j.epsl.2009.09.013 |
[] | Federovskii VS, Khain EV, Vladimirov AG, Karkopolov SA, Gibsher AS, Izokh AE. 1995. Tectonics, metamorphism, and magmatism of collisional zones of the Central Asian Caledonides. Geotectonics, 29: 193–212. |
[] | Gao ZJ, Wang WY, Peng CW, Xiao B. 1985. Sinian Strata in Xinjiang. Urumqi: Xinjiang People's Publishing House: 1-173. |
[] | Gao ZJ, Chen JL, Lu SN, Peng CW, Qin ZY. 1993. The Precambrian Geology in Northern Xinjiang. Beijing: Geological Publishing House: 35-36. |
[] | Group for Compilation of Regional Stratigraphy of Xinjiang. 1981. Regional Stratigraphic Table of NW China: Xinjiang Uygur Autonomous Region Fascicule. Beijing: Geological Publishing House: 7-11. |
[] | Han BF, Ji JQ, Song B, Chen LH, Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part Ⅰ): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077–1086. |
[] | He GQ, Han BF, Yue YJ, Wang JH. 1990. Tectonic division and crustal evolution of Altay orogenic belt in China. Geoscience of Xinjiang(2): 9–20. |
[] | He GQ and Li MS. 1996. Study on Paleozoic ophiolites and their tectonic significance in Hinggan-Mongolian-North Xinjiang and adjacent area. In: Zhang Q (ed.). Study on Ophiolites and Geodynamics. Beijing: Geological Publishing House, 104-107 (in Chinese) |
[] | He GQ, Li MS. 2001. Significance of paleostructure and paleogeography of Ordovician-Silurian rock associations in northern Xinjiang, China. Acta Scientiarum Naturalium University Pekinensis, 37(1): 99–110. |
[] | Hu AQ, Zhang GX, Zhang QF, Li TD, Zhang JB. 2002. A review on ages of Precambrian metamorphic rocks from Altai orogen in Xinjiang, NW China. Chinese Journal of Geology, 37(2): 129–142. |
[] | Hu AQ, Wei GJ, Deng WF, Chen LL. 2006. SHRIMP zircon U-Pb dating and its significance for gneisses from the southwest area to Qinghe County in the Altai, China. Acta Petrologica Sinica, 22(1): 1–10. |
[] | Jahn BM, Windley BF, Natal'in BA, Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599–603. DOI:10.1016/S1367-9120(03)00124-X |
[] | Jian P, Liu DY, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ, Tao H. 2003. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite. Earth Science Frontiers, 10(4): 439–456. |
[] | Jiang YD, Sun M, Zhao GC, Yuan C, Xiao WJ, Xia XP, Long XP, Wu FY. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia. Precambrian Research, 189(1-2): 140–154. DOI:10.1016/j.precamres.2011.05.008 |
[] | Khain EV, Bibikova EV, Kroner A, Zhuravlev DZ, Sklyarov EV, Fedotova AA, Kravchenko-Berezhnoy IR. 2002. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letter, 199(3-4): 311–325. DOI:10.1016/S0012-821X(02)00587-3 |
[] | Khain EV, Bibikova EV, Salnikova EB, Kroner A, Gibsher AS, Didenko AN, Degtyarev KE, Fedotova AA. 2003. The Palaeo-Asian ocean in the Neoproterozoic and Early Palaeozoic: New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122(1-4): 329–358. DOI:10.1016/S0301-9268(02)00218-8 |
[] | Laurent-Charvet S, Charvet J, Monié P, Shu LS. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. Tectonics, 22(2): 1009. DOI:10.1029/2001TC901047 |
[] | Li HJ, He GQ, Wu TR, Wu B. 2006. Confirmation of Altai-Mongolia microcontinent and its implications. Acta Petrologica Sinica, 22(5): 1369–1379. |
[] | Li JY, Xu X. 2004. Major problems on geologic structures and metallogenesis of northern Xinjiang, Northwest China. Xinjiang Geology, 22(2): 119–124. |
[] | Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM, Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148–168. |
[] | Li TD, Qi ZM, Xiao SL and Wu BQ. 1996. New improvement of comparative study of geology and mineralization of Altai between China and Kazakhstan. In: Chinese Geological Society (eds.). Thesis Volume of the Symposium of the 8th Five Year Plan of Geoscience for Contribution to 30th IGC. Beijing: Metallurgical Industrial Publishing House, 256-259 |
[] | Li TD, Poliyangsiji BH. 2001. Tectonics and crustal evolution of Altai in China and Kazakstan. Xinjiang Geology, 19(1): 27–32. |
[] | Long XP, Yuan C, Sun M, Xiao WJ, Zhao GC, Wang YJ, Cai KD, Xia XP, Xie LW. 2010. Detrital zircon ages and Hf isotopes of the Early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophysics, 480(1-4): 213–231. DOI:10.1016/j.tecto.2009.10.013 |
[] | Luddwig KR. 1991. Isoplot: A plotting and regression program for radiogenic-isotope data. US Geological Survey Open file Report, 39: 91–445. |
[] | Peng CW. 1989. Discovery and geological significance of micropaleoflora from the Habahe Group in Baikaba district of Xinjiang. Xinjiang Geology, 7(4): 19–22. |
[] | Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps. Cathodoluminescence in Geoscience. Berlin, Heidelberg: Springer-Verlag: 373-400. |
[] | Sengör AMC, Natla'in BA, Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299–307. DOI:10.1038/364299a0 |
[] | Sengör AMC, Natal'in BA. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1): 263–337. DOI:10.1146/annurev.earth.24.1.263 |
[] | Stern RJ. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7): 557–560. DOI:10.1130/G21365.1 |
[] | Sun M, Yuan C, Xiao W, Long X, Xia X, Han C and Lin S. 2006. Granitic gneisses and gneissic granites from the central terrane of the Chinese Altai Orogen: Zircon ages and tectonic significance. Eos Trans. AGU, 87(36). West. Pac. Geophy. Meet. Suppl., Abstract V25A-06 |
[] | Sun M, Yuan C, Xiao WJ, Long XP, Xia XP, Zhao GC, Lin SF, Wu FY, Kroner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the Early to Middle Palaeozoic. Chemical Geology, 247(3-4): 352–383. DOI:10.1016/j.chemgeo.2007.10.026 |
[] | Tong Y, Wang T, Hong DW, Liu XM, Han BF. 2005. Zircon U-Pb age of syn-orogenic Tielieke pluton in the western part of Altay orogenic belt and its structural implications. Acta Geoscientica Sinica, 26(Suppl.): 74–77. |
[] | Tong Y, Wang T, Hang DW, Dai YJ, Han BF, Liu XM. 2007. Ages and origin of the Early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica, 23(8): 1933–1944. |
[] | Wang GY, Zhang YT. 1983. The discovery of Sinian strata in Xinjiang Altay and its significance. Regional Geology of China, 10(5): 117–119. |
[] | Wang GY, Zhang YT. 1984. Primiary division of the Sinian System in Altay Mountains of Xinjiang. Journal of Stratigraphy, 8(4): 296–300. |
[] | Wang T, Hong DW, Tong Y, Han BF, Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from altai orogen: Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640–650. |
[] | Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF, Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735–751. DOI:10.1086/507617 |
[] | Wang ZH, Sun S, Li JL, Hou QL, Qin KZ, Xiao WJ, Hao J. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and geochronological constrains from the ophiolites. Tectonics, 22(2): 1014. |
[] | Wang ZX, Zhou GZ, Li T. 2003. The consideration on ophiolite and interrelated issue in northern Xinjiang, northwestern China. Acta Petrologica Sinica, 19(4): 683–691. |
[] | William IS. 2001. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences, 48(4): 557–580. DOI:10.1046/j.1440-0952.2001.00883.x |
[] | Windley BF, Kroner A, Guo JH, Qu GS, Li YY, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719–739. DOI:10.1086/342866 |
[] | Windley BF, Alexeiev D, Xiao W, Krooner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. DOI:10.1144/0016-76492006-022 |
[] | Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589–1604. |
[] | Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin KZ, Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, 161(3): 339–342. DOI:10.1144/0016-764903-165 |
[] | Xiao WJ, Windley BF, Yan QR, Qin KZ, Chen HL, Yuan C, Sun M, Li JL, Sun S. 2006. SHRIMP zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications. Acta Geologica Sinica, 80(1): 32–37. |
[] | Xiao WJ, Windley BF, Yuan C, Sun M, Han CM, Lin SF, Chen HL, Yan QR, Liu DY, Qin KZ, Li JL, Sun S. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309(3): 221–270. DOI:10.2475/03.2009.02 |
[] | Xiao WJ, Huang BC, Han CM, Sun S, Li JL. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253–273. DOI:10.1016/j.gr.2010.01.007 |
[] | Xiao XC, Tang YQ, Li JY, Zhao M, Feng YM, Zhu BQ. 1990. On the tectonic evolution of the northern Xinjiang, Northwest China. Geoscience of Xinjiang (1). Beijing: Geological Publishing House: 47-68. |
[] | Xiao XC, Tang YQ. 1991. Tectonic Evolution of the Sourthern Margin of the Paleo-Asian Composite Megasuture. Beijing: Scientific and Technical Publishing House: 1-150. |
[] | Xu X. 2003. Altay movement and related geology. In: Chen YC and Wang JB (eds.). The Collected Papers on Geology and Minerals of Altay Mountain, Xinjiang Area, China. Beijing: Geological Publishing House, 1-11 (in Chinese) |
[] | Yuan C, Sun M, Xiao WJ, Xia XP, Chen HL, Li JL. 2005. Zircon U-Pb chronology and geochemistry of granites in southern margin of the Altai Mountains. 2005's National Symposium on Petrology and Geodynamics, Paper Abstracts, 418 (in Chinese) |
[] | Yuan C, Sun M, Long XP, Xia XP, Xiao WJ, Li XH, Lin SF, Cai KD. 2007. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23(7): 1635–1644. |
[] | Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. DOI:10.1111/ggr.2004.28.issue-3 |
[] | Zhang HX, Niu HC, Terada K, Yu XY, Sato H, Ito J. 2003. Zircon SHRIMP U-Pb dating on plagiogranite from the Kuerti ophiolite in Altay, North Xinjiang. Chinese Science Bulletin, 48(20): 2231–2235. DOI:10.1007/BF03182858 |
[] | Zhong YF, Ma CQ, She ZB. 2006. Geochemical characteristics of zircon and its applications in geosciences. Geological Science and Technology Information, 25(1): 27–40. |
[] | Zhuang YX. 1994. The pressure-temperature-space time (PTSt) evolution of metamorphism and development mechanism of the thermal-structure-gneiss domes in the Chinese Altaides. Acta Geologica Sinica, 68(1): 35–47. |
[] | 陈汉林, 杨树峰, 历子龙, 肖文交, 李继亮, 董传万, 余星. 2006. 阿尔泰晚古生代早期长英质火山岩的地球化学特征及构造背景. 地质学报, 80(1): 38–42. |
[] | 高振家, 王务严, 彭昌文, 肖兵. 1985. 新疆震旦系. 乌鲁木齐: 新疆人民出版社: 1-173. |
[] | 高振家, 陈晋镰, 陆松年, 彭昌文, 秦正永. 1993. 新疆北部前寒武系. 北京: 地质出版社: 35-36. |
[] | 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ):后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077–1086. |
[] | 何国琦, 韩宝福, 岳永君, 王嘉桁. 1990. 中国阿尔泰造山带的构造分区和地壳演化. 新疆地质科学(2): 9–20. |
[] | 何国琦, 李茂松. 1996.兴蒙-北疆及邻区古生代蛇绿岩的对比研究及其大地构造意义.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社, 104-107 |
[] | 何国琦, 李茂松. 2001. 中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义. 北京大学学报(自然科学版), 37(1): 99–110. |
[] | 胡霭琴, 张国新, 张前锋, 李天德, 张积斌. 2002. 阿尔泰造山带变质岩系时代问题的讨论. 地质科学, 37(2): 129–142. |
[] | 胡霭琴, 韦刚健, 邓文峰, 陈林丽. 2006. 阿尔泰地区青河县西南片麻岩中锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 22(1): 1–10. |
[] | 简平, 刘敦一, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年. 地学前缘, 10(4): 439–456. |
[] | 李会军, 何国琦, 吴泰然, 吴波. 2006. 阿尔泰-蒙古微大陆的确定及其意义. 岩石学报, 22(5): 1369–1379. |
[] | 李锦轶, 徐新. 2004. 新疆北部地质构造和成矿作用的主要问题. 新疆地质, 22(2): 119–124. |
[] | 李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148–168. |
[] | 李天德, 祁志明, 肖世录, 吴柏青. 1996.中国和哈萨克斯坦阿尔泰地质及成矿研究的新进展.见:中国地质学会编.献给三十届国际地质大会"八五"地质科技重要成果学术交流会议论文选集.北京:冶金工业出版社, 256-259 |
[] | 李天德, 波里扬斯基BH. 2001. 中国和哈萨克斯坦阿尔泰大地构造及地壳演化. 新疆地质, 19(1): 27–32. |
[] | 彭昌文. 1989. 新疆白哈巴地区哈巴河群的微古植物及其地层意义. 新疆地质, 7(4): 19–22. |
[] | 童英, 王涛, 洪大卫, 柳晓明, 韩宝福. 2005. 阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb年龄及其构造意. 地球学报, 26(增刊): 74–77. |
[] | 童英, 王涛, 洪大卫, 代雅建, 韩宝福, 柳晓明. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义. 岩石学报, 23(8): 1933–1944. |
[] | 王广耀, 张玉亭. 1983. 新疆阿尔泰震旦系的发现及其意义. 中国区域地质, 10(5): 117–119. |
[] | 王广耀, 张玉亭. 1984. 新疆阿尔泰震旦系的初步划分与对比. 地层学杂志, 8(4): 296–300. |
[] | 王涛, 洪大卫, 童英, 韩宝福, 石玉若. 2005. 中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义. 岩石学报, 21(3): 640–650. |
[] | 王宗秀, 周高志, 李涛. 2003. 对新疆北部蛇绿岩及相关问题的思考和认识. 岩石学报, 19(4): 683–691. |
[] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589–1604. |
[] | 肖文交, WindleyBF, 阎全人, 秦克章, 陈汉林, 袁超, 孙敏, 李继亮, 孙枢. 2006. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义. 地质学报, 80(1): 32–37. |
[] | 肖序常, 汤耀庆, 李锦铁, 赵民, 冯益民, 朱宝清. 1990.试论新疆北部大地构造演化.见:新疆地质科学(1).北京:地质出版社, 47-68 |
[] | 肖序常, 汤耀庆. 1991. 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社: 1-150. |
[] | 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社: 1-135. |
[] | 新疆维吾尔自治区区域地层表编写组. 1981. 西北地区区域地层表-新疆维吾尔自治区分册. 北京: 地质出版社: 7-11. |
[] | 徐新. 2003.阿尔泰运动及相关的地质问题.见:陈毓川, 王京彬主编.中国新疆阿尔泰山地质与矿产论文集.北京:地质出版社, 1-11 |
[] | 袁超, 孙敏, 肖文交, 夏小平, 陈汉林, 李继亮. 2005.阿尔泰山南缘花岗岩的锆石U-Pb年代学及其地球化学特征. 2005年全国岩石学与地球动力学研讨会论文摘要, 418 |
[] | 袁超, 孙敏, 龙晓平, 夏小平, 肖文交, 李献华, 林寿发, 蔡克大. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1636–1644. |
[] | 张海祥, 牛贺才, TeradaK, 于学元, SatoH, ItoJ. 2003. 新疆北部阿尔泰地区库尔提蛇绿岩中斜长花岗岩的SHRIMP年代学研究. 科学通报, 48(12): 1350–1354. |
[] | 钟玉芳, 马昌前, 佘振兵. 2006. 锆石地球化学特征及地质应用研究综述. 地质科技情报, 25(1): 27–40. |
[] | 庄育勋. 1994. 中国阿尔泰造山带变质作用PTSt演化和热-构造-片麻岩弯窿形成机制. 地质学报, 68(1): 35–47. |