岩石学报  2012, Vol. 28 Issue (11): 3623-3637   PDF    
内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义
刘利1,2, 张连昌1, 代堰锫1,2, 王长乐1,2, 李智泉1,3     
1. 中国科学院地质与地球物理研究所矿产资源研究重点实验室,北京 100029;
2. 中国科学院大学,北京 100049;
3. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083
摘要: 三合明BIF型铁矿位于华北克拉通西部陆块北缘,产出于固阳绿岩带。矿体赋存于新太古界色尔腾山群斜长角闪岩中。矿石主要呈粒状变晶结构、粒状-针柱状变晶结构,条带-条纹状构造;组成矿石的金属矿物主要为磁铁矿,非金属矿物主要为石英,次为角闪石等。对选自斜长角闪岩中的锆石进行SIMS U-Pb定年,具有核边结构、Th/U比大于0.4的锆石其核部给出了2562±14Ma的上交点年龄,可大致作为三合明BIF的形成时代。原岩恢复显示斜长角闪岩为正变质岩,Zr/Ti-Nb/Y图解显示为亚碱性玄武岩系列,Fe2O3T+TiO2-Al2O3-MgO图解落入高铁拉斑玄武岩区;斜长角闪岩主量元素特征与MORB相近,REE配分曲线和蛛网图都近于平坦,且介于N-MORB和E-MORB之间,LREE略微富集,Th、U相对亏损,Nb、Ta、Zr和Hf无明显异常;(La/Sm)N和Nb/U分别为0.76和50,由此推断原岩可能为T-MORB。Ti-V、Th-Hf-Ta构造环境判别图解中,分别落入MORB和弧后盆地的重叠区、N-MORB区。结合T-MORB形成的构造环境以及前人提出的岛弧叠加地幔柱模式,本文认为三合明BIF形成于弧后盆地并有地幔柱叠加的构造环境。铁矿石化学组分主要为SiO2、Fe2O3和FeO,较低的Al2O3(0.68%)、极低的TiO2(0.04%) 和HFSE表明只有极少量陆源碎屑物质的加入。铁矿石的球粒陨石标准化REE配分模式与固阳绿岩带底部的科马提岩极为相似,PAAS标准化的铁矿石REY配分模式与高温热液海水混合物相似,即LREE亏损,HREE富集((La/Yb)SN=0.34),具有明显的正Eu异常(δEu=2.33) 和微弱的正Y异常(δY=1.13),Y/Ho重量比29,摩尔比53。根据铁矿石兼具有与科马提岩和高温热液海水混合物相似的地球化学特征,本文推断海底高温热液淋滤科马提岩为三合明BIF型铁矿提供了大量的Fe和Si。
关键词: 三合明BIF型铁矿     锆石U-Pb年龄     地球化学     固阳绿岩带    
Formation age, geochemical signatures and geological significance of the Sanheming BIF-type iron deposit in the Guyang greenstone belt, Inner Mongolia
LIU Li1,2, ZHANG LianChang1, DAI YanPei1,2, WANG ChangLe1,2, LI ZhiQuan1,3     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. State Key Kaboratory of Geological Process and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Sanheming BIF-type iron deposit occurs in the Guyang greenstone belt, which is located in the northern margin of Western Block of the North China Craton. The iron deposit is hosted in the Mount Se'erteng Group of Neoarchean Erathem with its ore bodies interlayered with amphibolites. The majority of the ores are characterized by granular crystalloblastic texture or granular-columnar crystalloblastic texture and banded or laminated structure. The ore consists predominantly of magnetite and quartz, secondary nonmetallic minerals include amphibole. SIMS U-Pb dating of zircons from the amphibolite interlayer shows that cores of the zircons characterized by core-rim texture and with a Th/U ratio of higher than 0.4 have an upper intercept age of 2562±14Ma, which is approximately the depositional age of the Sanheming BIF. Diagrams for protolith reconstruction reveal that the amphibolites are ortho-amphibolite and they are plotted within sub-alkaline basalt series and high-iron tholeiite in the Zr/Ti-Nb/Y diagram and Fe2O3T+TiO2-Al2O3-MgO diagram, respectively. Major elements of the amphibolites are similar to those of MORB. Additionally, both REE profiles and spidergrams are flat in shape, roughly between those of N-MORB and E-MORB. LREE are slightly enriched with a (La/Yb)N ratio of 1.68, Th and U are relatively depleted, there are no apparent anomalies in terms of Nb, Ta, Zr and Hf, (La/Sm)N ratio and Nb/U ratio are 0.76 and 50, respectively. On the basis of such characteristics, it is deduced that protoliths of the amphibolites are T-MORB. Constraints from Ti-V and Th-Hf-Ta discrimination diagrams suggest the tectonic setting for the amphibolites are MORB or back-arc basin and N-MORB, respectively. Combining the general tectonic setting of T-MORB, i.e., mid-ocean ridge or back-arc basin, with the model of island arc-mantle plume interaction for the Guyang greenstone belt, it is speculated that the amphibolite interlayers were formed in a tectonic setting of back-arc basin, accomponied by mantle plume. The main chemical constituents of iron ore are SiO2, Fe2O3 and FeO. Extremely low content of Al2O3 (0.68%), TiO2(0.04%) and HFSE indicates that the involvement of continental detritus is minor. Chondrite-normalized REE profiles for the iron ores and those of the komatiites occurring at the bottom of Guyang greenstone belt are alike. PAAS-normalized REY profiles resemble that of the mixture of high-temperature hydrothermal fluid and seawater, the typical characteristics of which include the depletion of LREE, enrichment of HREE ((La/Yb)SN=0.34), strongly positive europium anomaly (δEu=2.33), slightly positive yttrium anomaly (δY=1.13), a Y/Ho weight ratio of 29 and mole ratio of 53. Based on the similar signatures to komatiite and the mixture of high-temperature hydrothermal fluid and seawater, it is inferred that Fe and Si of the Sanheming BIF-type iron deposit were supplied through the high-temperature hydrothermal leaching of komatiites.
Key words: Sanheming BIF-type iron deposit     Zircon U-Pb age     Geochemistry     Guyang greenstone belt    

条带状铁建造(BIF) 在全球古老克拉通广泛分布,它们是大多数太古宙绿岩带的重要组成部分,如西格陵兰Isua绿岩带、苏比利尔省Abitibi绿岩带、西澳Yilgarn和Pilbara克拉通的绿岩带等(Trendall, 2002)。绿岩带BIF通常含有火山岩夹层,表明火山活动与其有直接的成因联系,因此大都归为Algoma型BIF (Gross, 1980)。

华北克拉通北缘发育一系列晚太古代(2.5~2.7Ga) 绿岩带,包括辽宁清原绿岩带、鞍山-本溪绿岩带,鲁西雁翎关绿岩带,冀东遵化绿岩带,河南登封-舞阳绿岩带,山西五台绿岩带和内蒙固阳绿岩带。中国著名的BIF型铁矿大多产出于上述绿岩带中,如鞍山-本溪绿岩带的弓长岭、歪头山、南芬、齐大山铁矿,遵化绿岩带的水厂、石人沟和司家营铁矿,登封-舞阳绿岩带的舞阳铁矿,固阳绿岩带的公益明、三合明铁矿。就其形成时代而言,弓长岭黑云变粒岩碎屑锆石SHRIMP锆石U-Pb年龄2550Ma (万渝生和刘敦一,1993),齐大山黑云变粒岩单颗粒锆石U-Pb年龄2533Ma (王守伦和张瑞华,1995);水厂斜长角闪片麻岩SIMS锆石U-Pb年龄2547Ma (Zhang et al., 2011b),石人沟斜长角闪岩和片麻岩SIMS锆石U-Pb年龄分别为2541Ma和2553Ma (Zhang et al., 2011a);舞阳赵案庄铁铝榴石更长角闪片麻岩磷灰石U-Pb年龄2580Ma (罗明强,2009);固阳绿岩带斜长角闪岩LA-ICP-MS锆石U-Pb年龄为2515Ma (陈亮,2007),高镁闪长岩SHRIMP锆石U-Pb年龄2556Ma (简平等,2005)。

对于上述绿岩带的形成构造背景,大致有如下观点:李俊建等(1996)认为清原绿岩带形成于活动大陆边缘;Wang et al.(2004)根据五台绿岩带发育MORB型火山岩和埃达克岩,认为其形成于弧后盆地和俯冲带环境;Polat et al.(2006)基于发育鬣刺结构且具有地幔柱地球化学特征的变质科马提岩,提出雁翎关绿岩带与地幔柱作用有关;刘建忠等(2001)由公益明铁矿附近的斜长角闪岩的地球化学特征推断固阳绿岩带形成于大陆裂谷环境;陈亮(2007)据固阳绿岩带的科马提岩、拉斑玄武岩、高镁安山岩-富Nb火山岩组合,提出了岛弧-地幔柱相互作用模型。

以往对华北克拉通BIF型铁矿的研究主要集中在中部和东部规模较大的铁矿,如鞍本、冀东和山西,并已取得较深入的认识,而对北缘中段绿岩带BIF型铁矿的研究甚少,并且已有年龄数据相差较大、对矿床成因的认识也不够深入。三合明铁矿是内蒙古固阳绿岩带重要的BIF型铁矿之一。本文基于主量元素、微量元素及锆石年代学研究,对三合明BIF型铁矿的形成时代进行了限定,并对其形成构造背景和物质来源进行了探讨。

1 区域地质背景和矿床地质

在早太古代(3.0~3.8Ga),华北有若干古老的陆核。中-晚太古代(2.7~2.9Ga),陆壳围绕古老陆核巨量生长,形成了胶辽、许昌、迁怀、鄂尔多斯、徐淮、集宁和阿拉善这7个微陆块。晚太古代晚期(2.5~2.6Ga),上述微陆块拼合,发育强烈的火山作用和沉积作用,形成了晚太古代绿岩带,包括红透山、东五分子(固阳)、登封、五台山、雁翎关绿岩带(图 1a)。除雁翎关形成于2.6~2.7Ga外,其它都形成于2.5Ga左右,同时有大量壳熔花岗岩和TTG片麻岩的形成,广泛发育麻粒岩相-角闪岩相变质作用,并有镁铁质岩墙及花岗岩脉群的侵入,这些都标志着华北陆块的克拉通化。到晚太古代末,华北已经形成现今规模的古陆(Zhai and Santosh, 2011)。

图 1 华北克拉通太古宙微陆块和绿岩带示意图(a, 据Zhai and Santosh, 2011修改)、固阳绿岩带地质简图(b, 据陈志勇等,2007修改) 和三合明区域地质图(c, 据薛志刚等,2006修改) Fig. 1 Sketch map showing Neoarchean micro-blocks and greenstone belts of the North China Craton (a, after Zhai and Santosh, 2011), simplified geological map of the Guyang greenstone belt (b, after Chen et al., 2007) and regional geological map of Sanheming (c)

①薛志刚,王继刚,任培林.2006.内蒙古自治区达尔罕茂明安联合旗三合明东部矿区铁矿详查报告

固阳绿岩带(亦即东五分子绿岩带),是华北微陆块在晚太古代拼合时形成的重要绿岩带之一,位于华北克拉通北缘中段,以残留向形盆地的形式大致沿东西向展布,所属地层主要为新太古界色尔腾山群(图 1b)。色尔腾山群为一套经历了绿片岩相至低角闪岩相变质的火山-沉积岩系,据岩石组合类型可划分三个岩组,自下而上依次为:第一岩组为超镁铁质及镁铁质火山岩组合,夹有钙碱性火山岩及少量条带状硅铁建造;第二岩组为钙碱性长英质火山岩及火山碎屑岩组合,夹有拉斑玄武岩及少量泥质粉砂岩;第三岩组为长英质火山碎屑岩和不成熟的碎屑沉积岩组合,夹少量中基性火山熔岩和硅质灰岩(李树勋等,1987)。

太古宙BIF型铁矿是最重要的铁矿类型,固阳绿岩带色尔腾山群中发育多个该类型铁矿(图 1b),包括公益明、三合明、汗海子、东五分子、苏计沟、耳居图等。三合明BIF型铁矿位于内蒙古自治区包头市达尔罕茂明安联合镇(百灵庙) 东南石宝乡。矿区出露地层主要为新太古界色尔腾山群(图 1c),其岩层自下而上可分为下角闪岩段、下磁铁石英岩段、片岩段、中角闪岩段、上磁铁石英岩段、上角闪岩段。下角闪岩段为铁矿底板,岩性包括中细粒角闪岩、透闪岩、磁铁透闪片岩、石榴黑云片岩、条带状磁铁石英岩;下磁铁石英岩段为条带状磁铁贫矿夹磁铁透闪片岩、石英岩;片岩段为矿体顶板;中角闪岩段为角闪岩-斜长角闪岩夹石英岩、透闪岩、赤铁石英岩及透闪片岩透镜体;上磁铁石英岩段岩性包括透闪片岩、石榴黑云片岩、透镜状磁铁石英岩,中部为条带状磁铁贫矿夹薄层磁铁透闪岩,上部为磁铁透闪片岩夹似层状贫铁矿;上角闪岩段为巨厚层斜长角闪岩、黑云斜长角闪岩夹黑云石英片岩、石榴石英透闪岩、石英岩及磁铁透闪片岩透镜体或扁豆体。

矿区构造主要发育褶皱和断层(图 2a)。褶皱一般为单斜构造,局部出现倒转背斜。断裂构造包括北东向、北西向和北北西向3组断裂,这些断裂对矿体有一定破坏作用,但影响不大。区内岩浆岩主要有闪长岩、辉石闪长岩和煌斑岩,多呈脉状产出,规模较小。局部闪长岩脉斜交矿体侵入,或沿断层斜交侵入,使矿体错开(图 2a, b)。

图 2 三合明铁矿矿区地质图(a) 和19勘探线剖面图(b,据姚培慧,1993) Fig. 2 Geological map of the Sanheming iron deposit (a) and cross-section map of the prospecting line 19 (b, after Yao, 1993)

矿体呈层状或似层状赋存于新太古界色尔腾山群角闪岩中,呈近南北向展布,据层序可分为上、下两个层位。下含矿层的矿体产状受倒转背斜控制,西段矿体在南北两翼出露,走向北东40°,倾向南东,倾角正常翼为45°,倒转翼70°;东段矿体呈北西走向,倾向南西,倾角大于50°,受次级短轴倒转褶皱影响,矿体多次重复出现。上含矿层有两个主要矿体,其一长1100m以上,厚5.79~71.15m (平均35.34m),垂直延深390m;另一矿体长1100m,厚2~56.17m (平均厚22.87m),最大倾斜延深465m。

组成矿石的金属矿物主要有磁铁矿,次为赤铁矿和黄铁矿;非金属矿物主要为石英,次为角闪石、透闪石、黑云母等(图 3)。矿石主要呈自形-半自形-他形粒状变晶结构、粒状-针柱状变晶结构,粒径0.02~0.5mm,条带-条纹状构造(图 3)。

图 3 三合明铁矿矿体与斜长角闪岩夹层的剖面图(a)、斜长角闪岩显微照片(b) 和斜长角闪岩手标本照片(c) Fig. 3 Profile map of the iron ore bodies and the amphibolite interlayer in the Sanheming iron deposit (a), photomicrograph of the amphibolite (b) and photograph of the amphibolite specimen (c)
2 样品及分析方法

本文分析样品包括铁矿体夹层斜长角闪岩和BIF铁矿石(图 3)。斜长角闪岩样品编号为SHM-2、SHM-3-1、SHM-3-2、SHM-3-3;铁矿石样品编号为SHM-1-1、SHM-1-2、SHM-1-3、SHM-1-9、SHM-1-14。

利用从SHM-2中挑选的锆石进行SIMS U-Pb定年,SHM-3-1、SHM-3-2、SHM-3-3用作主量元素和微量元素分析。根据野外观察和室内显微镜下光薄片鉴定,斜长角闪岩特征如下:绿黑色、块状构造、细粒柱状变晶结构(图 3),组成矿物有普通角闪石、斜长石和磁铁矿,其中普通角闪石约占70%,呈长柱状或针柱状,横截面呈菱形,长柱状者可见一组完全解理,在其它横切面上可见两组闪石式解理,长柱状角闪石的大小集中在0.1~0.2mm×0.1~0.05mm,针柱状角闪石长0.06mm~0.12mm,菱形截面边长为0.04mm~0.06mm,多色性明显,少量普通角闪石中还包裹有自形-半自形磁铁矿,大小在0.02mm左右,斜长石占25%左右,他形粒状,大小为0.03mm~0.05mm,少部分斜长石中包裹有极小的针柱状普通角闪石,磁铁矿含量小于5%,主要呈团簇状分布(图 3)。

BIF铁矿石样品编号为SHM-1-1、SHM-1-2、SHM-1-3、SHM-1-9、SHM-1-14,用作主量元素和微量元素分析。铁矿石特征如下:黑灰色或绿灰色、条带-条纹状构造、细粒变晶结构,组成矿物包括磁铁矿、石英和角闪石(图 4)。铁条带和硅条带都较平整,延伸较远。铁条带宽0.3~1.5cm,由若干磁铁矿条纹(0.1~0.26mm)、石英条纹(0.14~0.53mm) 和角闪石条纹构成;硅条带宽0.4~2cm,磁铁矿和少量角闪石呈星点状散布于其中,在铁条带与硅条带过渡处磁铁矿呈稠密浸染状,部分硅条带中包含少量磁铁矿束。硅条带和铁条带中的磁铁矿呈半自形-他形粒状结构,但前者的粒径(0.04~0.08mm) 明显大于后者(0.02mm左右)。石英呈自形-半自形粒状结构,粒径约为0.04~0.14mm,晶粒之间紧密相嵌。角闪石单矿物呈柱状、针柱状,集合体呈放射状或束状,发育两组闪石式解理,具有微弱多色性。

图 4 三合明条带状铁建造手标本和显微镜下照片 (a)-三合明BIF的野外露头; (b)-呈条带状构造的三合明BIF; (c) 和(e)-条带状构造的三合明BIF的显微照片,暗色条带主要由磁铁矿组成,浅色条带由石英和硅酸盐组成; (d)-磁铁矿条带;(f)-硅质条带中的细粒磁铁矿,呈束状或浸染状分布; (g)-铁质条带和硅酸盐条带; (h)-铁质条带间的角闪石条带; (i)-硅质条带中的角闪石 Fig. 4 Photographs of the Sanheming banded iron formation specimens and their photomicrographs (a)-outcrop of the Sanheming banded iron formation in the field; (b)-Sanheming BIF characterized by banded structure; (c, e)-photomicrographs of Sanheming BIF, the dark-coloured band consists predominantly of magnetite and the light-coloured band is composed of quartz and silicate; (d)-magnetite band; (f)-fine-grained magnetite within the silicious band, which is arranged in a line or disseminatedly scattered; (g)-magnetite band and silicate band; (h)-amphibole band between the magnetite bands; (i)-amphibole within the silicious band

斜长角闪岩主量元素、微量元素和铁矿石微量元素分析在中国科学院地质与地球物理研究所完成,铁矿石主量元素分析在核工业北京地质研究院分析测试中心完成。斜长角闪岩的主量元素采用XRF-1500型X荧光光谱仪测试,RSD=0.1%~1%;铁矿石主量元素采用Phillips PW 2404型X荧光光谱仪分析,RSD < 2~3%;微量元素先按照酸溶法制备样品,再使用Element Ⅱ型ICP-MS (Element, Finnigan MAT) 进行测试,RSD < 2.5%。

锆石分选在河北省廊坊地质调查研究院完成。样品先常规粉碎、磁选和重选,再在双目显微镜下人工挑纯。在中国科学院地质与地球物理研究所锆石离子探针实验室将包裹体少、无明显裂隙且晶形较好的锆石和标准锆石一起粘贴在环氧树脂表面制成样品靶,然后对其抛光直至锆石露出一半晶面。对待测锆石进行透射光、反射光和阴极发光照相,以揭示其内部结构、帮助选定最佳的待测锆石部位。样品耙在真空下镀金以备分析。锆石的U、Th、Pb同位素分析在中国科学院地质与地球物理研究所的Cameca IMS-1280离子探子(SIMS) 上完成。实验流程和数据处理方法详见Li et al.(2009)。单点分析的同位素比值及年龄误差表示为1σ,加权平均年龄误差为95%置信度。数据处理采用Isoplot/Ex v. 2.49软件(Ludwig, 1999)。

3 分析结果 3.1 斜长角闪岩地球化学特征

表 1可以看出,斜长角闪岩的SiO2含量较低(平均46.55%)。全碱含量较低(平均3.27%),且Na2O含量高于K2O。Fe2O3T、MgO、Al2O3相对较富,含量分别为15.58%、5.58%、13.42%。TiO2、P2O5、MnO相对较贫,分别为1.83%、0.13%、0.24%。MgO与Al2O3和TiO2呈负相关,与Fe2O3T成正相关。Fe2O3T/MgO比值2.41~3.01(平均2.78)。

表 1 三合明铁矿斜长角闪岩和铁矿石的主量元素(wt%) 和微量元素(×10-6) 组成 Table 1 Major (wt%) and trace (×10-6) element data for the amphibolites and iron ores from the Sanheming iron deposit

为SHM-2、SHM-3-1、SHM-3-2、SHM-3-3;铁矿石样品编号为SHM-1-1、SHM-1-2、SHM-1-3、SHM-1-9、SHM-1-14。

三合明铁矿斜长角闪岩的大离子亲石元素Rb (8.66×10-6)、Ba (58×10-6)、Sr (232×10-6)、K (2904×10-6) 相对富集,而高场强元素Th (0.36×10-6)、U (0.084×10-6) 相对亏损,Nb (4.16×10-6)、Ta (0.31×10-6)、Zr (84×10-6)、Hf (2.6×10-6) 未表现出异常,Ti (11000×10-6) 具有微弱的正异常,Pb (1.21×10-6) 则显示出较明显的正异常(图 5)。REE总量较低(∑REE为40.4×10-6~56.5×10-6,平均为47.8×10-6)。LREE略有富集,HREE略有亏损。轻重稀土无明显分异((La/Yb)CN为1.35~2.09(平均1.68)),轻、中、重稀土内部分异也不明显((La/Nd)CN、(Sm/Ho)CN、(Er/Lu)CN平均为0.77、1.51、1.31)。无明显Eu异常(δEu为0.98~1.02,平均为1.00,δEu=2EuCN/(SmCN+GdCN)),也无明显Ce异常(δCe为0.94~0.98,平均为0.97,δCe=3CeCN/(2LaCN+NdCN))(图 6a)。

图 5 三合明铁矿斜长角闪岩、N-MORB和E-MORB的微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 5 Primitive mantle-normalized spidergrams for the amphibolites from the Sanheming iron deposit with those of N-MORB, E-MORB for comparison (normalization values after Sun and McDonough, 1989)

图 6 固阳绿岩带底部科马提岩(据陈亮,2007) 和三合明铁矿斜长角闪岩的REE配分曲线(a) 和三合明BIF型铁矿石的REE配分曲线(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE profiles for the amphibolites from the Sanheming iron deposit and the komatiites at the bottom of the Guyang greenstone belt (after Chen, 2007) (a) and for ores of the Sanheming banded iron formation (b) (normalization values after Sun and McDonough, 1989)
3.2 铁矿石地球化学特征

三合明铁矿石的主要组成为Fe2O3T(平均49.72%) 和SiO2(平均43.79%)(表 1),并且二者呈现出明显的负相关,Fe2O3T和SiO2总和平均为93.52%。FeO含量平均为22.31%。Al2O3含量较低(平均0.68%),与TiO2(平均0.04%) 呈正相关。Zr、Nb、Cr、V的含量分别为2.55×10-6、0.48×10-6、187×10-6、10.17×10-6。Nb和Zr均与TiO2和Al2O3呈正相关。

铁矿石的REE总量很低(平均18.0×10-6)。PAAS标准化的稀土配分模式显示出强烈的轻重稀土分异((La/Yb)SN=0.34)(图 7)。由于相邻REY元素可能具有异常高的浓度,因此按常规方法内插法或外推法计算出的异常(δCe=2(Ce)SN/(LaSN+PrSN),δEu=2(Eu)SN/(SmSN+GdSN),δGd=2(Gd)SN/(EuSN+TbSN)) 可能是假异常。本文采用Bau and Dulski (1996)提出的δEu=EuSN/(0.67SmSN+0.33TbSN)、Bolhar et al.(2004)提出的δCe=CeSN/(2PrSN-NdSN)、δLa=CeSN/(3PrSN-2NdSN)、δGd=GdSN/(2TbSN-DySN) 分别计算Eu异常、Ce异常、La异常和Gd异常,Y异常则仍采用常规算法(δY=2YSN/(DySN+HoSN))。结果显示,三合明铁矿石样品的Eu正异常强烈(δEu=1.64~2.73,平均2.33),具有微弱的Y正异常(δY=1.05~1.21,平均1.13)、La正异常(δLa=0.94~1.48,平均1.12)、Gd正异常(δGd=0.98~1.17,平均1.07) 和负Ce异常(δCe=0.76~1.09,平均0.94)。Y/Ho重量比平均为29,摩尔比53。

图 7 三合明铁矿石、大西洋中脊Broken Spur喷口高温(>350℃) 热液流体(Bau and Dulski, 1999)、南太平洋现代表层海水(Bolhar et al., 2004) 及热液海水(1:100) 混合溶液的稀土元素(+Y)(Dymek and Klein, 1988) 稀土元素配分模式图(标准化值据McLennan, 1989) Fig. 7 PAAS-normalized REY profiles for the ores of Sanheming iron deposit, high-temperature (>350℃) hydrothermal fluid of the Broken Spur vent in the mid-Atlantic ridge (Bau and Dulski, 1999), modern surface seawater of south Pacific (Bolhar et al., 2004) and the 1:100 mixture of hydrothermal and seawater (Dymek and Klein, 1988) (normalization values after McLennan, 1989)
3.3 SIMS锆石U-Pb定年结果

斜长角闪岩中的锆石呈淡褐色,透明,半自形-他形,长柱状、(近) 等轴状或其它不规则状。长柱状者大小为50×20μm~100×50μm,(近) 等轴状者粒径为30~40μm,不规则状者40×20μm~80×70μm。从CL图像中可以看出(图 8),大部分锆石(1、2、4、5、6、8、9、10、12、17) 具有核边结构,核部普遍发育振荡环带,其它锆石(7、11) 内部均匀,且呈暗色。大多锆石的最外侧都发育高亮度的窄边。本次共对14颗锆石进行了SIMS U-Pb定年,分析结果见表 2。除10以外,具有核边结构锆石的Th/U比均大于0.4,不具核边结构锆石的Th/U比较低(表 2)。从一致曲线图(图 9) 可以看出,大部分锆石的206Pb/238U和207Pb/235U都落在一致曲线下方,表明都或多或少有铅丢失。利用Th/U比大于0.4的锆石的206Pb/238U和207Pb/235U拟合出的不一致线所得的上交点年龄为2562±14Ma。

表 2 三合明铁矿斜长角闪岩夹层的SIMS锆石U-Pb数据 Table 2 SIMS U-Pb isotope data for zircons of the amphibolite from the Sanheming iron deposit

图 8 三合明铁矿斜长角闪岩的锆石阴极发光图 Fig. 8 Cathodoluminescence (CL) images of the dated zircons from the amphibolite in the Sanheming iron deposit

图 9 三合明铁矿斜长角闪岩的SIMS锆石U-Pb年龄的一致曲线图 Fig. 9 U-Pb concordia diagram for zircons of the amphibolite from the Sanheming iron deposit
4 讨论 4.1 三合明BIF的形成时代及构造环境

由于Algoma型BIF的成因与火山活动密切相关(Gross, 1980),因此一般认为对其火山岩围岩定年是限定条带状铁建造形成时代的最佳途径(Trendall et al., 1998; Tsikos et al., 2003)。三合明BIF的斜长角闪岩夹层中大部分锆石具有核边结构、且核部Th/U比大于0.4,表明极有可能是原来岩浆结晶形成的锆石。由于大部分锆石的206Pb/238U和207Pb/235U都落在一致曲线下方,说明都或多或少有铅的丢失,因而采用上交点年龄2562±14Ma作为核部锆石的形成年龄。斜长角闪岩呈夹层的形式产出于BIF中,它的形成时代与BIF接近,因此三合明BIF大致形成于2562±14Ma。

在变质变形过程中相对不活动元素构成的MgO-CaO-Fe2O3T和MnO-TiO2原岩恢复图解中,三合明斜长角闪岩均落入正斜长角闪岩区(图 10),表明其原岩为火成岩。根据平均46.55%的SiO2含量推测斜长角闪岩的原岩为基性火成岩。野外产状和钻孔图中的层位显示,角闪岩为顺层产出,并且手标本和显微镜下都未见辉长结构或辉绿结构,因此原岩很可能是玄武岩。

图 10 三合明铁矿斜长角闪岩的MgO-CaO-Fe2O3T图解(据Walker et al., 1960) 和MnO-TiO2图解(据Misra, 1971) Fig. 10 MgO-CaO-Fe2O3T (after Walker et al., 1960) and MnO-TiO2 (after Misra, 1971) discrimination diagrams for the amphibolites of the Sanheming iron deposit

由于Na和K在变质过程中易迁移,难以准确反映原岩特征,因此采用Zr/Ti-Nb/Y图解来判别岩石系列,结果显示三合明斜长角闪岩属亚碱性玄武岩系列(图 11)。在SiO2-Fe2O3T/MgO图解中,显示出拉斑玄武岩特征,并且在对太古宙变火山岩非常有效的Fe2O3T+TiO2-Al2O3-MgO亚碱性火山岩分类图解中,均落入拉斑玄武岩系列的高铁拉斑玄武岩区(图 12)。

图 11 三合明铁矿斜长角闪岩的Zr/Ti-Nb/Y图解(据Winchester and Floyd, 1977) Fig. 11 Zr/Ti-Nb/Y discrimination diagram for the amphibolites from the Sanheming iron deposit (after Winchester and Floyd, 1977)

图 12 三合明铁矿斜长角闪岩的SiO2-Fe2O3T/MgO图解(据Miyashiro, 1974) 和Fe2O3T+TiO2-Al2O3-MgO图解(据Jensen, 1976) HFT-高铁拉斑玄武岩; HMT-高镁拉斑玄武岩; TA-拉斑质安山岩; TD-拉斑质英安岩; TR-拉斑质流纹岩; CR-钙碱性流纹岩; CD-钙碱性英安岩; CA-钙碱性安山岩; CB-钙碱性玄武岩; BK-玄武质科马提岩; PK-橄榄质科马提岩 Fig. 12 SiO2-Fe2O3T/MgO (after Miyashiro, 1974) and Fe2O3T+TiO2-Al2O3-MgO discrimination diagrams for the amphibolites from the Sanheming iron deposit (after Jensen, 1976) HFT-FeO-high tholeiite; HMT-MgO-high tholeiite; TA-tholeiitic andesite; TD-tholeiitic dacite; TR-tholeiitic rhyolite; CR-calc-alkali rhyolite; CD-calc-alkali dacite; CA-calc-alkali andesite; CB-calc-alkali basalt; BK-basaltic komatiite; PK-peridolitic komatiite

从主量元素来看,SiO2含量平均为46.55%,TiO2为1.83%,Al2O3为13.42%,Fe2O3T为15.58%,MgO为5.58%,CaO为10.4%,Na2O为2.92%,K2O为0.35%,P2O5为0.13%,并且MgO与SiO2、TiO2、Al2O3、Na2O、K2O、P2O5呈负相关,与CaO、Fe2O3T呈正相关,这些特征都与MORB相近。从微量元素来看,球粒陨石标准化的REE配分模式近于平坦,LREE微弱富集((La/Yb)N平均为1.68),MREE略微富集,HREE轻微亏损(图 6a),可能是由于源区有尖晶石、石榴子石残留引起。富集Rb、Ba、Sr、K等大离子亲石元素(LILE),但需要说明的是,K、Rb、Ba与烧失量之间存在一定的正相关性,因此LILE的富集可能是后期变质作用造成的。原始地幔标准化的蛛网图近乎平坦(忽略遭受改造的LILE)(图 5),Th、U相对亏损,而Nb、Ta、Zr、Hf无明显异常,这与典型岛弧环境下形成的玄武岩有显著差异。Ba/TiO2比值平均为31.8,K2O/TiO2比值0.20,符合Reynolds et al.(1992)对T-MORB的定义(Ba/TiO2>10,K2O/TiO2>0.09),但Ba和K都是在变质过程中易发生迁移的元素,因此不能以此判断是否为T-MORB。然而图 5图 6a清晰地显示出三合明斜长角闪岩的REE配分曲线和蛛网图均介于N-MORB和E-MORB之间,REE和HFSE在变质作用过程中为不活泼元素,因此其原岩很可能为T-MORB。(La/Sm)N比值0.76,高于典型N-MORB (0.4~0.7),也表现为T-MORB的特征(Sun et al., 1979; Reynolds et al., 1992)。Nb/U比值50,明显不同于原始地幔(30) 和地壳(10),而与MORB和OIB (47) 相近(Hofmann et al., 1986)。Ti/Zr比值平均为131,高于典型MORB (95),可能是由于源区石榴子石的残留导致了该比值的升高。此外,同产出于固阳绿岩带的公益明铁矿中的斜长角闪岩εNd值平均为+4.362(刘建忠等,2001),表明其源区为亏损地幔。综上所述,三合明斜长角闪岩原岩很可能为T-MORB。

相同源区但不同构造背景下形成的玄武岩具有明显不同的地球化学特征,因此可根据玄武岩的地球化学特征来反推其形成的构造背景。T-MORB在现在的红海、大西洋、太平洋(Sun et al., 1979; Reynolds et al., 1992) 及一些弧后盆地的扩张脊都有发育,如红海洋中脊最中部发育N-MORB,而在N-MORB与陆壳的过渡部位发育T-MORB (Altherr et al., 1988),东太平洋洋中脊12°N~12°30′N中间段的轴部成群产出T-MORB,纬向上其它部位也有T-MORB零星分布(Reynolds et al., 1992)。因此,总体来看,T-MORB的形成构造背景主要有洋中脊、洋中脊与陆壳之间的过渡区域及弧后盆地。Ti、V、Th、Ta、Hf在变质作用过程中不活泼,在Ti-V、Th-Hf-Ta构造环境判别图解中,三合明斜长角闪岩分别落入MORB和弧后盆地的重叠区、N-MORB区(图 13)。但由于三合明斜长角闪岩具有与现今南Mariana海沟弧后盆地拉斑玄武岩(Gribble et al., 1996) 和部分南大西洋东Scotia中脊活动弧后扩张中心玄武岩(Fretzdorff et al., 2002) 极其相似的不相容元素特征,因此更可能形成于弧后盆地。

图 13 三合明铁矿斜长角闪岩的Th-Hf-Ta (据Wood, 1980) 和Ti-V (据Shervais, 1982) 判别图解 A-N型MORB; B-E型MORB和板内玄武岩; C-板内碱性玄武岩; D-火山弧玄武岩 Fig. 13 Th-Hf-Ta (after Wood, 1980) and Ti-V (after Shervais, 1982) discrimination diagrams for the amphibolites from the Sanheming iron deposit A-N-MORB; B-E-MORB and intraplate basalt; C-intraplate alkali basalt; D-volcanic arc basalt

判别构造环境通常需采用岩石组合,而不能单凭某一种岩石。固阳绿岩带产出多种火山岩,自下而上典型岩石类型包括科马提岩、玄武质科马提岩、拉斑玄武岩、高镁安山岩、富Nb玄武岩。其中,科马提岩可分为地球化学特征不同的两组,类似于玻安岩的一组来源于俯冲带流体交代过的地幔源区,类似于Abitibi绿岩带的Al亏损型科马提岩的一组与地幔柱有关;玄武质科马提岩地球化学特征类似于现代地幔柱环境下的富铁苦橄岩;拉斑玄武岩是岛弧环境下的初始岛弧岩浆作用产物;高镁安山岩是受到板片熔体充分交代的地幔楔部分熔融的产物,或是被地幔橄榄岩强烈混染过的板片熔体;富Nb玄武岩是受板片熔体交代的地幔橄榄岩在地温梯度增加或对流到地幔较深位置熔融的产物(陈亮,2007)。根据上述火山岩组合,陈亮(2007)提出了岛弧叠加地幔柱模式。本文基于斜长角闪岩弧后盆地的构造环境,并结合岛弧地幔柱相互作用模式,认为三合明BIF形成的构造环境为弧后盆地并有地幔柱的叠加。

4.2 三合明BIF的物质来源

前寒武纪BIF的物质来源颇具争议,至今尚无定论,目前有两种主导观点,一种认为来源于大陆风化,并由河流搬运至沉积盆地,另一种则认为BIF的物质来源于热液。

三合明BIF矿石的化学组分主要为SiO2、Fe2O3和FeO,二者总和90.30%~96.31%,平均为93.52%,而其它组分的含量较低,表明是相对纯净的化学沉积物,较低的Al2O3含量(0.33%~1.29%,平均0.68%)、极低的TiO2含量(0.02%~0.06%,平均0.04%) 和HFSE (如Zr、Hf、Y、Th) 指示只有极少量陆源碎屑物质的加入。

铁矿石的REE分异明显(图 7),LREE亏损,HREE富集((La/Yb)SN为0.202~0.438,平均0.339)。具有明显的正Eu异常(δEu=1.64~2.73,平均2.33) 和微弱的正Y异常(δY=1.05~1.21,平均1.13)、正La异常(δLa=0.94~1.48,平均1.12) 和正Gd异常(δGd=0.98~1.17,平均1.07),负Ce异常不明显(δCe=0.76~1.09,平均0.94)。这些特征与太古宙典型BIF非常相似,如西格陵兰Isua BIF (Frei and Polat, 2007)、辽宁鞍山本溪BIF (李志红等,2008)、巴西Raposos BIF (Klein, 2005) 等。前人研究表明,深海高温热液LREE富集,具有明显的正Eu异常(Danielson et al., 1992),现今海水LREE亏损,具有明显的正La和正Y异常、弱的正Gd异常以及显著的负Ce异常(Bau et al., 1995; Zhang and Nozaki, 1996; Bolhar et al., 2004)。Dymek and Klein (1988)模拟了高温海底热液与海水按1:100混合,所得的REE配分曲线如图 7所示,从中可以明显看出,三合明铁矿石的REY配分模式与上述混合物极为相似,同时值得注意的是,代表高温热液的正Eu异常在三合明铁矿石中非常显著,而代表海水的正Y、正La异常和负Ce异常则相对微弱。另外,海底喷口热液流体的Y/Ho重量比为28,摩尔比为52~55(Bau, 1996),现代海水Y/Ho重量比为44~65(Bau and Dulski, 1999),摩尔比为90~110(Zhang et al., 1994; Bau et al., 1997; Nozaki et al., 1997)。三合明铁矿石的Y/Ho重量比为27~31(平均29),摩尔比为50~58(平均53),略高于海底热液,可能是由少量表层高Y/Ho比值海水的混合引起。

三合明BIF型铁矿产于固阳绿岩带下部。固阳绿岩带底部是一套超基性-基性火山岩组合。早期学者对BIF物质来源的研究表明,Fe和SiO2主要来源于热液对海底火山岩的淋滤和萃取(Jacobsen et al., 1988; Derry and Jacobsen, 1990)。现今海底热液系统和蛇绿岩的研究表明,Fe能从洋壳中被淋滤出来,然后形成硫化物或非晶质铁氧化物再沉积在海底(Gillis and Banerjee, 2000)。Wang et al. (2009)的热力学计算结果表明,如果洋壳岩石Al含量较高,如现代大洋玄武岩,那么在热液蚀变过程中会形成大量绿泥石([(Fe, Mg)5Al2Si3O10(OH)8]),Fe2+被圈闭在绿泥石中,不能滤出;若Al含量较低,如科马提岩,热液蚀变会形成蛇纹石([Mg3(Si2O5)(OH)4]),Fe2+能被自由淋滤出。因此要形成富Fe-Si的热液流体,洋壳岩石的Al/(Fe+Mg) 比必须 < 2:5且Mg/Si比不能过高,因为Mg/Si比太高也同样会圈闭Si。满足上述条件的洋壳岩石只有科马提岩或科马提质玄武岩。从图 6a, b可以明显看出,球粒陨石标准化的三合明铁矿石REE配分模式与固阳绿岩带底部的科马提岩极其相似,二者都为右斜式,均具有明显的正Eu异常,说明BIF铁矿的物质来源可能与科马提岩有关。

综上所述,三合明BIF型铁矿兼具有与科马提岩和高温热液海水混合物相似的地球化学特征,这样的特征可能是通过高温热液淋滤科马提岩而获得。同时,铁矿石的地球化学特征也显示出有极少量陆源碎屑物质的加入。因此三合明BIF型铁矿的Fe和Si主要由海底高温热液淋滤科马提岩提供,只有极少量来源于大陆风化。

5 结论

(1) 斜长角闪岩夹层中的锆石定年结果为2562±14Ma,可近似代表三合明BIF型铁矿的形成时代。

(2) 斜长角闪岩顺层产出的野外产状、不具侵入岩结构的岩相学特征及介于N-MORB和E-MORB的主量元素、微量元素地球化学特征表明其原岩为T-MORB。结合T-MORB形成的构造环境以及前人提出的岛弧叠加地幔柱模式,推断三合明BIF可能形成于弧后盆地并有地幔柱叠加的构造环境。

(3) 铁矿石具有与固阳绿岩带底部科马提岩和高温热液海水混合物相似的REE (REY) 配分模式,推断三合明BIF型铁矿的Fe和Si主要由海底高温热液淋滤科马提岩提供。

致谢 在SIMS锆石U-Pb分析和微量元素分析的过程中,得到了李秋立副研究员、李献华研究员、靳新娣和李文君的帮助,在此表示衷心的感谢。同时感谢审稿人提出的宝贵意见。
参考文献
[] Altherr R, Henjes-Kunst F, Puchelt H, Baumann A. 1988. Volcanic activity in the Red Sea axial trough-evidence for a large mantle diapir?. Tectonophysics, 150(1-2): 121–133. DOI:10.1016/0040-1951(88)90298-3
[] Bau M, Dulski P, Möller P. 1995. Yttrium and holmium in South Pacific seawater: Vertical distribution and possible fractionation mechanisms. Chemie der Erde, 55: 1–15.
[] Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323–333. DOI:10.1007/s004100050159
[] Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37–55. DOI:10.1016/0301-9268(95)00087-9
[] Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1-2): 123–131. DOI:10.1016/S0304-4203(96)00091-6
[] Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the mid-Atlantic Ridge: Implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1-2): 77–90. DOI:10.1016/S0009-2541(98)00142-9
[] Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ. 2004. Characterization of Early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222(1): 43–60. DOI:10.1016/j.epsl.2004.02.016
[] Chen L. 2007. Geochemistry and chronology of the Guyang greenstone belt. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-40(in Chinese)
[] Chen ZY, Zheng FS, Wang Z, Li SW, Wang FK. 2007. The Sertengshan rock group in middle-west Inner Mongolia: Revision and its geological significance. Geology and Resources, 16(1): 1–7.
[] Danielson A, Möller P, Dulski P. 1992. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chemical Geology, 97(1-2): 89–100. DOI:10.1016/0009-2541(92)90137-T
[] Derry LA, Jacobsen SB. 1990. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 54(11): 2965–2977. DOI:10.1016/0016-7037(90)90114-Z
[] Dymek RF, Klein C. 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800Ma Isua supracrustal belt, West Greenland. Precambrian Research, 39(4): 247–302. DOI:10.1016/0301-9268(88)90022-8
[] Frei R, Polat A. 2007. Source heterogeneity for the major components of~3. 7Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth and Planetary Science Letters, 253(1-2): 266–281.
[] Fretzdorff S, Livermore RA, Devey CW, Leat PT, Stoffers P. 2002. Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean. Journal of Petrology, 43(8): 1435–1467. DOI:10.1093/petrology/43.8.1435
[] Gillis KM, Banerjee NR. 2000. Hydrothermal alteration patterns in supra-subduction zone ophiolites. Geological Society of America Special Papers, 349: 283–297.
[] Gribble RF, Stern RJ, Bloomer SH, Stüben D, O'Hearn T, Newman S. 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochimica et Cosmochimica Acta, 60(12): 2153–2166. DOI:10.1016/0016-7037(96)00078-6
[] Gross GA. 1980. A classification of iron-formation based on depositional environments. Canadian Mineralogist, 18: 215–222.
[] Hofmann AW, Jochum KP, Seufert M, White WM. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33–45. DOI:10.1016/0012-821X(86)90038-5
[] Jacobsen SB, Pimentel-Klose MR. 1988. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: The source of REE and Fe in Archean oceans. Earth and Planetary Science Letters, 87(1-2): 29–44. DOI:10.1016/0012-821X(88)90062-3
[] Jensen LS. 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines, Miscellaneous Paper, 1-66
[] Jian P, Zhang Q, Liu DY, Jin WJ, Jia XQ, Qian Q. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151–157.
[] Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90(10): 1473–1499. DOI:10.2138/am.2005.1871
[] Li JJ, Shen BF, Li SB, Mao DB, Luo H, Jin WS. 1996. Geology and geochemistry of Archean granite-greenstone belts in northern Liaoning Province and nouthern Jilin Province. Geochimica, 25(5): 458–467.
[] Li SX, Liu XS and Zhang LQ. 1987. Geological characteristics of the granite-greenstone in Se'ertengshan, Inner Mongolia. Journal of Changchun College of Geology (Metamorphic Geology): 81-102 (in Chinese with English abstract)
[] Li XH, Liu Y, Li QL, Guo GH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry Geophysics Geosystems, 10: Q04010
[] Li ZH, Zhu XK, Tang SH. 2008. Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source. Acta Petrologica et Mineralogica, 27(4): 285–290.
[] Liu JZ, Zhang FQ, Ouyang ZY, Li CL, Zou YL, Xu L. 2001. Study on geochemistry and chronology of Se'ertengshan greenstone, Inner Mongolia. Journal of Changchun University of Science and Technology, 31(3): 236–241.
[] Ludwig KR. 1999. Users Manual for Isoplot/Ex. Version 2. 34, A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-43
[] Luo MQ. 2009. Study on ore-controlling factors in Wuyang iron ore field in Henan Province. Journal of Henan Polytechnic University (Natural Science), 28(5): 577–582.
[] McLennan SM. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169–200.
[] Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. DOI:10.2475/ajs.274.4.321
[] Misra SN. 1971. Chemical distinction of high-grade ortho-and para-metabasites. Norsk Geologisk Tidsskrift, 51: 311–316.
[] Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2): 329–340. DOI:10.1016/S0012-821X(97)00034-4
[] Polat A, Kerrich R, Wyman DA. 1999. Geochemical diversity in oceanic komatiites and basalts from the Late Archean Wawa greenstone belt, Superior Province, Canada: Trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research, 94(3-4): 139–173. DOI:10.1016/S0301-9268(98)00110-7
[] Polat A, Li J, Fryer B, Kusky T, Gagnon J, Zhang S. 2006. Geochemical characteristics of the Neoarchean (2800~2700Ma) Taishan greenstone belt, North China Craton: Evidence for plume-craton interaction. Chemical Geology, 230(1-2): 60–87. DOI:10.1016/j.chemgeo.2005.11.012
[] Reynolds JR, Langmuir CH, Bender JF, Kastens KA, Ryan WBF. 1992. Spatial and temporal variability in the geochemistry of basalts from the East Pacific Rise. Nature, 359(6395): 493–499. DOI:10.1038/359493a0
[] Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101–118. DOI:10.1016/0012-821X(82)90120-0
[] Sun SS, Nesbitt RW, Sharaskin AY. 1979. Geochemical characteristics of mid-ocean ridge basalts. Earth and Planetary Science Letters, 44(1): 119–138. DOI:10.1016/0012-821X(79)90013-X
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Trendall AF, Basei MAS, Delaeter JR, Nelson DR. 1998. SHRIMP zircon U-Pb constraints on the age of the Carajás formation, Grão ParáGroup, Amazon Craton. Journal of South American Earth Sciences, 11(3): 265–277. DOI:10.1016/S0895-9811(98)00015-7
[] Trendall AF. 2002. The significance of iron-formation in the Precambrian stratigraphic record. Special Publications, International Association of Sedimentologists, 33: 33–66.
[] Tsikos H, Beukes NJ, Moore JM, Harris C. 2003. Deposition, diagenesis, and secondary enrichment of metals in the Palaeoproterozoic Hotazel iron formation, Kalahari manganese field, South Africa. Economic Geology, 98(7): 1449–1462.
[] Walker KR, Joplin GA, Lovering JF, Green R. 1960. Metamorphic and metasomatic convergence of basic igneous rocks and lime-magnesia sediments of the Precambrian of north-western Queensland. Journal of the Geological Society of Australia, 6(2): 149–177.
[] Wan YS, Liu DY. 1993. Ages of zircons from Mid-Archaean gneissic granite and fuchsite quartzite in the Gongchangling area, Liaoning. Geological Review(2): 36–41.
[] Wang SL, Zhang RH. 1995. U-Pb isotope age of individual zircon from biotite leptynite in the Qidashan iron deposit and its significance. Mineral Deposits, 14(3): 216–219.
[] Wang YF, Xu HF, Merino E, Konishi H. 2009. Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nature Geoscience, 2(11): 781–784. DOI:10.1038/ngeo652
[] Wang ZH, Wilde SA, Wang KY, Yu LJ. 2004. A MORB-arc basalt-adakite association in the 2. 5Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 131(3-4): 323–343.
[] Winchester JA, Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. DOI:10.1016/0009-2541(77)90057-2
[] Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11–30. DOI:10.1016/0012-821X(80)90116-8
[] Yao PH. 1993. Iron Deposits in China. Beijing: Metallurgical Industry Press, 1-662 (in Chinese)
[] Zhai MG, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhang J, Amakawa H, Nozaki Y. 1994. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophysical Research Letters, 21(24): 2677–2680. DOI:10.1029/94GL02404
[] Zhang J, Nozaki Y. 1996. Rare earth elements and yttrium in seawater: ICP-MS determination in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochimica et Cosmochimica Acta, 60(23): 4631–4644. DOI:10.1016/S0016-7037(96)00276-1
[] Zhang LC, Zhai MG, Zhang XJ, Xiang P, Dai YP, Wang CL and Pirajno F. 2011a. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Research, doi: 10.1016/j.precamres.2011.09.007
[] Zhang XJ, Zhang LC, Xiang P, Wan B, Pirajno F. 2011b. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137–148. DOI:10.1016/j.gr.2011.02.008
[] 陈亮. 2007.固阳绿岩带的地球化学和年代学.博士后出站报告.北京:中国科学院地质与地球物理研究所, 1-40
[] 陈志勇, 郑翻身, 王忠, 李四娃, 王富宽. 2007. 内蒙古中西部色尔腾山岩群的厘定及其地质意义. 地质与资源, 16(1): 1–7.
[] 简平, 张旗, 刘敦一, 金维浚, 贾秀勤, 钱青. 2005. 内蒙古固阳晚太古代赞岐岩(sanukite)--角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151–157.
[] 李俊建, 沈保丰, 李双保, 毛德宝, 骆辉, 金文山. 1996. 辽北-吉南地区太古宙花岗岩-绿岩带地质地球化学. 地球化学, 25(5): 458–467.
[] 李树勋, 刘喜山, 张履桥. 1987.内蒙古色尔腾山地区花岗岩-绿岩的地质特征.长春地质学院学报(变质地质学专辑): 81-102
[] 李志红, 朱祥坤, 唐索寒. 2008. 鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示. 岩石矿物学杂志, 27(4): 285–290.
[] 刘建忠, 张福勤, 欧阳自远, 李春来, 邹永廖, 徐琳. 2001. 内蒙古色尔腾山绿岩的地球化学、年代学研究. 长春科技大学学报, 31(3): 236–241.
[] 罗明强. 2009. 河南省舞阳铁矿田构造控矿研究. 河南理工大学学报(自然科学版), 28(5): 577–582.
[] 万渝生, 刘敦一. 1993. 辽宁弓长岭中太古代片麻状花岗岩和铬云母石英岩的锆石年龄. 地质论评, 2: 36–41.
[] 王守伦, 张瑞华. 1995. 齐大山铁矿黑云变粒岩单锆石年龄及意义. 矿床地质, 14(3): 216–219.
[] 姚培慧. 1993.中国铁矿志.北京:冶金工业出版社, 1-662