畜牧兽医学报  2021, Vol. 52 Issue (3): 576-587. DOI: 10.11843/j.issn.0366-6964.2021.03.002    PDF    
病原微生物荚膜多糖的生物学功能
谢黎卿, 杨洋, 彭远义, 李能章     
西南大学动物医学院 重庆市牧草与草食家畜重点实验室, 重庆 400700
摘要:荚膜多糖(capsular polysaccharide,CPS)是一种广泛存在于细菌、支原体、部分真菌等菌体表面的碳水化合物。同时,荚膜多糖有助于菌体抵抗干燥和低温等不利环境,并通过在菌体表面形成物理屏障阻碍宿主补体的杀伤与吞噬作用。在长期多种应激-压力环境下,病原菌已进化出多种免疫逃避机制并促进宿主感染;在非病原微生物中,荚膜多糖可正向调节宿主免疫作用,并拮抗机体免疫因子,保护宿主免受病原菌引起的炎症性疾病。本文将结合本团队的相关研究工作,对荚膜多糖的结构、合成调控机制、生物学功能、免疫逃避机制和致病机制,特别是荚膜多糖正向调节宿主免疫系统及其应用潜力等方面作一综述,为病原菌致病机制的研究和疫病的有效防控提供参考依据。
关键词荚膜多糖    合成调控机制    免疫逃避    致病机制    免疫调节    
Research Progress on the Function and Immunity of Capsular Polysaccharide
XIE Liqing, YANG Yang, PENG Yuanyi, LI Nengzhang     
Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400700, China
Abstract: Capsular polysaccharide (CPS) is a carbohydrate that is widely present on the surface of bacteria, mycoplasma, and some fungi. At the same time, CPS can help the bacteria resist the adverse environment such as dry and low temperature, and block the killing of host complement and phagocytosis by forming a physical barrier on the surface of bacteria. Under long-term multiple stress environments, pathogens have evolved a variety of immune escape mechanisms and promote host infection; among non-pathogenic microorganisms, CPS can positively regulate host immune function, and antagonize immune factors, to protect the host from inflammatory diseases caused by pathogens. This article will combine the relevant research works of our team to review the structure, synthesis regulatory mechanisms, biological function, immune evasion mechanism and pathogenic mechanism of CPS, especially the positive regulation of the host immune system by CPS and its application potential, to provide references for the research on pathogenic mechanisms of pathogenic bacteria and effective prevention and control of epidemic diseases.
Key words: capsular polysaccharide    regulatory mechanism of synthesis    immune escape    pathogenic mechanism    immune regulation    

荚膜多糖最早于1917年由Avery和Dochez[1]在研究肺炎链球菌(Streptococcus pneumoniae)时发现,后被证明这种物质是存在于微生物荚膜中的碳水化合物。荚膜多糖作为病原微生物最外层的保护成分,可有效保护菌体免受或少受多种杀菌、抑菌物质的损伤,有助于病原体在宿主内定植和为入侵宿主争取时间。当缺乏营养时,荚膜多糖还可转换为碳源或氮源,为细菌提供能源,有助于细菌在饥饿环境中生存[2]。目前,虽然对荚膜多糖结构多样性、生物合成及其免疫原性等方面进行了研究,但对荚膜多糖在病原菌黏附过程中的作用,特别是荚膜多糖的合成调控方面研究仍然欠缺;其次,研究主要集中在荚膜多糖对病原菌本身的作用,有助于病原菌的免疫逃避和致病作用机制方面,而对荚膜多糖与宿主免疫细胞因子的拮抗及促进宿主免疫调控方面的研究稍显不足。作者结合本团队的相关研究工作,对国内外荚膜多糖合成调控、生物学功能、免疫逃避机制和致病机制,以及荚膜多糖对宿主免疫调节作用相关研究进展进行综合阐述,为荚膜多糖的后续研究和利用荚膜多糖预防或治疗疾病提供借鉴。

1 荚膜多糖结构

荚膜多糖通过分子间氢键及其他非共价键紧密地连接到细胞表面,并在细胞周围形成荚膜[3],通常是宿主遇到的第一个菌体结构[4]。大部分荚膜多糖以2种或以上的单糖作为重复单元,连接成长且复杂的多糖链,再形成空间结构不同的多聚体。某些微生物荚膜多糖中还存在多肽及脂质,如炭疽杆菌(Bacillus anthracis)[5]、巨大芽胞杆菌(Bacillus magaterium)[2]。单糖的种类、主链的排列方式和空间结构等也会改变荚膜多糖性质。如肺炎链球菌血清型19F和19A具有非常相似的三糖重复单位,但二者构象存在明显的差异,19F型主要是延伸的构象,而19A型表现出很高的紧致发夹弯曲,这可能是19F型和19A型之间缺乏抗体交叉保护的原因[6]。此外,多糖链中还存在支链、有机或无机分子,这些因素使荚膜多糖结构更为复杂,并且碳水化合物的修饰对荚膜多糖的免疫原性也有重要影响[7]

2 荚膜多糖合成与调控 2.1 多糖合成相关基因

荚膜多糖合成相关基因主要包含荚膜多糖合成调节基因、糖基转移酶基因和转运基因,多糖的生物合成可分为ABC转运体-依赖途径、合酶-依赖途径和Wzy-依赖途径,不同微生物荚膜多糖合成相关基因各有特点。

大多数革兰阴性菌的荚膜多糖合成和转运相关基因都位于染色体上,且能够协同调节。本团队主要研究多杀性巴氏杆菌(Pasteurella multocida)荚膜多糖合成相关基因,以此为例阐述。多杀性巴氏杆菌的荚膜可分为A、B、D、E、F 5型,它们的荚膜合成基因簇包含3个区域[8-10]。其中,区域1和区域3(脑膜炎奈瑟菌中为C区和B区)分别编码荚膜转运所需的ABC转运蛋白(A、D、F型为hesABCD,B、E型为cexABCD)和荚膜锚定结合所需的蛋白(A、D、F型为phyAB,B、E型为lipAB),这些基因在5种血清型中具有同源性[9]。区域2 (脑膜炎奈瑟菌中的区域A)编码荚膜多糖合成相关基因,并且该区域具有血清型特异性[9]。A、D、F型的区域2位于区域1和3之间,包含4个基因,A型为hyaBCDE,D型为dcbBCFE,F型为fcbBCDE,其主要区别是hyaD、dcbF、fcbD分别编码了PmHAS(透明质酸合成酶)[11]、PmHS(肝素合成酶)[12]、PmPC(软骨素合成酶)[10];而B、E型的区域2位于区域3的lipAB基因之间,B型为bcbABCDEFGHI,E型为ecbABJKDEFGI,两者相对应基因所编码的产物也具有同源性[9, 13]

革兰阳性菌中肺炎链球菌和金黄色葡萄球菌(Staphylococcus aureus)的荚膜多糖合成相关基因研究最多。根据荚膜多糖结构和抗原性的差异,肺炎链球菌现已被证明可产生90多种荚膜类型,除血清3和37型的荚膜多糖合成由单个膜结合的糖基转移酶介导外[14],其余都由Wzy聚合酶所依赖的机制产生,并且Wzy血清型的荚膜多糖合成位点都位于染色体上dexB和aliA基因之间的同一区域[15]。荚膜多糖位点启动子序列(cpsp)和前4个基因cpsA至cpsD高度保守,参与荚膜多糖调控,cpsD下游基因具有血清型特异性,主要负责多糖的聚合和输出[16-17]。荚膜血清5和8型是金黄色葡萄球菌的主要类型,cap5和cap8荚膜多糖基因簇结构高度相似,它们的等位操纵子都由16个基因组成,从cap5/8A到cap5/8p,其基因产物参与荚膜的生物合成、O-乙酰化、运输和调节[18-19]。这16个基因中有12个在cap5和cap8操纵子之间是相同的,这可能是cap5和cap8荚膜多糖具有相似的三糖重复单元,只是O-乙酰化的位置和连接单糖位置不同的原因[20]cap8位点的分子特征表明,16个基因都是从第1个基因上游的初级启动子转录成一个大的转录单元,且位于初级cap8启动子235序列上游的1个10 bp反向重复序列已被证明是完整表达8型荚膜基因簇所必需的,这表明DNA结合调节因子也参与了荚膜合成调控[20]

2.2 荚膜多糖合成调控

快速适应外部环境变化对微生物的生存和增殖至关重要,荚膜多糖作为病原微生物荚膜的主要成分,是细菌定植和感染过程中不可或缺的部分。大部分受荚膜多糖保护的细菌细胞可不被吞噬细胞吞噬,而未被荚膜包裹的细胞才能黏附到宿主内皮细胞,因此细菌对荚膜多糖合成调控非常重要。在这个过程中,细菌对营养传感通路、转录因子网络和宿主环境有关的各种信号作出反应,为微生物提供更好的适应性。以下根据主要的信号转导机制述之。

2.2.1 群体感应系统调控   群体感应(QS)是微生物群体在其生长过程中,通过产生和扩散小的化学或信号分子来进行交流的机制,调控菌体基因表达,并且不同微生物种群间群体感应系统调控机制也不尽相同。转录因子Rgg群体感应系统广泛存在于低G+C革兰阳性菌中,以Rgg作为信息素疏水短肽(shp)的受体[21],如兽疫链球菌(Streptococcus zooepidemicus)中Rgg发挥转录激活因子的作用,诱导shp的表达,使shp发挥自身诱导剂作用,形成正反馈回路,调节兽疫链球菌荚膜多糖的产生和生物膜的形成,而Rgg/shp系统的失活降低了荚膜多糖的产生和生物被膜的形成[22]。创伤弧菌(Vibrio vulnificus)生物被膜形成晚期阶段,细菌细胞密度足够高时,AI-2群体感应系统的主调控因子SmcR通过与荚膜多糖基因簇的上游区域结合,诱导荚膜多糖的表达,从而限制生物被膜的大小[23]。此外,AI-2群体感应系统也参与金黄色葡萄球菌和肺炎链球菌荚膜多糖的合成调控[24-25]。本团队根据qseC蛋白和luxS蛋白分别属于AI-3和AI-2介导的群体感应系统为基础[26-28],利用同源重组技术构建了多杀性巴氏杆菌PmCQ2-ΔqseC敲除株及PmCQ2-ΔqseCΔluxS双敲除株,对比PmCQ2野生株与敲除株的荚膜多糖合成量、生物膜形成量及转录组数据,结果显示,敲除株的荚膜多糖合成量降低、生物膜形成量增加、荚膜多糖合成相关基因hyaDhyaE的表达量下调。这表明多杀性巴氏杆菌的群体感应系统与荚膜多糖的合成调控也存在一定联系,但具体的信号传导机制还需进一步研究。

2.2.2 双组分系统调控   双组分信号转导系统(TCSs)是微生物中感受和响应外界环境信号的机制之一,由跨膜的组氨酸激酶蛋白(HK)作为感应蛋白和细胞质内反应调节蛋白(RR)组成,在不同刺激下激活TCS导致HK发生自动磷酸化,随后将磷酸基转移到RR,磷酸化的RR通过改变基因表达使细菌产生适应性反应[29]。研究显示,当肺炎链球菌在入侵期间暴露于宿主血清时,VncR/S(调控因子VncR和激酶VncS)双组分系统中VncS能够感知血清中VncS配体血清乳铁蛋白(LF)并导致VncS磷酸化,磷酸化的VncS可为VncR提供磷酸基,而磷酸化的VncR又与其荚膜多糖位点启动子序列特异性结合,从而改变荚膜多糖基因的表达,使肺炎链球菌适应血液环境并有利于对宿主的侵袭[30]。YycF/G(调控因子YycF和激酶YycG)[31]、ComD/E(调控因子ComE和激酶ComD)[15]双组分系统也参与肺炎链球菌荚膜多糖的合成调控。ArlR/S(调控因子ArlS和激酶ArlR)[32]双组分系统通过正调控mgrA(mgrA是金黄色葡萄球菌5型和8型荚膜基因簇表达的主要激活因子),间接促进金黄色葡萄球菌荚膜多糖的合成[20]。RcsB/C(调控因子RcsB与激酶RcsC)是肠杆菌中非常典型的一种调控荚膜多糖基因簇表达的双组分系统[33],而RcsA/B(调控因子RcsA和调控因子Rcs)双组分调控蛋白是一种非典型的双组分系统。Rcs A/B通过转录调控荚膜多糖合成位点基因簇中的靶基因,潜在调控肺炎克雷伯菌(Klebsiella pneumoniae)rmp Awca Igmd等荚膜多糖合成基因的表达[34]。此外,荚膜多糖合成基因簇上的酪氨酸激酶CpsD可自身磷酸化(CpsD参与荚膜多糖水平磷酸化的调节),CpsD通过与腺苷酸激酶(SpAdK)生物物理相互作用,促进肺炎链球菌血清2型D39菌株荚膜多糖的合成[16],而大肠杆菌血清型K30的CpsD突变体会削弱自身荚膜多糖的合成水平[35-36]

2.2.3 第二信使调控   第二信使能够很敏感地感受外界环境的变化,在细胞信号转导中起重要作用,能间接调控荚膜多糖相关基因的表达。其中,环磷酸腺苷(cAMP)和环二鸟苷酸(cGMP)与荚膜多糖合成调控研究的比较多。研究显示,新生隐球菌(Cryptococcus neoformans)在可获得性铁离子减少时,铁调节因子Cir1通过调控编码cAMP/PKA(蛋白激酶A, PKA)信号通路各组成部分,调控其荚膜多糖的合成,但具体机制还不清楚[37]。ScrABC操纵子中ScrC蛋白(一种潜在的感觉蛋白)通过控制cGMP的形成和降解,反向调节荚膜多糖基因表达[38]。cGMP还可负调控肺炎克雷伯菌荚膜多糖的合成,降低细菌毒力[39]。实际上,cGMP在不同细菌中的主要共同作用是通过控制细菌在浮游生活方式和生物被膜生活方式之间的转变来调节细菌的生活方式[40],而荚膜多糖与生物被膜密切相关,这说明第二信使可潜在调控荚膜多糖的合成,但如何调节却知之甚少。

广泛的研究表明,营养物质、pH、二氧化碳和氧气可用性、渗透压、温度等环境因素都可影响荚膜多糖的合成调控[41-43]。综合分析来看,荚膜多糖的合成通常受多系统多因素调控,并非仅受一种信号转导调控,且多发生在转录水平。同时,不同机制组合也会产生不同的结果,如ComE虽然负调控肺炎链球菌荚膜多糖的合成,但在胞外葡萄糖浓度变化时,会转而正向调节荚膜多糖的合成[15]

3 荚膜多糖生物学功能及免疫逃避机制 3.1 耐干燥

荚膜具有高度水合性,而荚膜多糖通过形成保持水分的物理屏障来增强细菌脱水耐受性[44]。研究显示,鲍曼不动杆菌AB5075菌株可形成VIR-O不透明菌落,Tipton等[45]构建了该不透明菌落中菌株的荚膜多糖缺失株Δwzc,将这两种菌株置于干燥环境下12 d后,比较荚膜多糖缺失株与野生株耐干燥的能力,发现荚膜多糖缺失株的活力比野生型下降了约2.5倍(原文如此),当恢复Δwzc菌株合成荚膜多糖的能力时,这种丧失的活力得以恢复。干燥环境下,渗透压的改变也可能是细菌对荚膜多糖合成调控的原因,但具体机制还不清楚。

3.2 抗冻性

微生物能够在世界上所有环境中定居,包括一些极端环境(例如,强盐湖、冰面、火山),荚膜多糖有利于微生物在这些环境中生存。Vessella等[46]从0 ℃以下的北冰洋沉积物中分离出冷红科尔韦尔菌34H(Colwellia psychrerythraea 34H),这种细菌能够产生一种独特的荚膜多糖,多糖通过钉扎和固定冰粒边界来抑制冰的重结晶,从而保护细菌在低温环境下生存,其抗冻特性类似于著名的抗冻蛋白(glyco),可用于合成低温保护剂。

3.3 黏附与抗黏附

某些细菌荚膜多糖有选择的与特定细胞表面结合,使荚膜多糖具有黏附功能。如A族链球菌(Group A Streptococcus)荚膜多糖(主要成分为透明质酸)通过与透明质酸结合蛋白CD44特异性结合来介导细菌附着在宿主细胞上[47]。此外,初始黏附时,细菌将发出信号,启动特定基因的表达,促进黏附素的合成并伸出荚膜外形成菌毛,荚膜多糖减少并暴露黏附素受体位点,促进病原菌与宿主细胞的黏附,并在目标细胞表面形成小菌落群体[48-49]。研究显示,长双歧杆菌(Bifidobacterium longum)荚膜多糖缺失株ΔcpsD能够明显促进菌毛的形成[50],这表明荚膜多糖阻碍了细菌与靶细胞的黏附。

生物被膜黏附于宿主组织细胞表面,是病原菌在宿主内持续定殖和引起感染的主要策略之一,而细菌间的黏附是生物被膜形成的必要条件。生物被膜形成早期,细菌启动特定基因的表达,促进胞外多糖(EPS)的合成,荚膜多糖表达量下调;在生物被膜形成晚期或生物被膜引起宿主慢性感染时,细菌将促进荚膜多糖的合成,阻碍细菌间的黏附,使病原菌从生物被膜中脱落,调整生物被膜大小或促进宿主持续感染[23, 51]。本课题组前期从病牛肺中分离到1株荚膜多糖含量较少的A型多杀性巴氏杆菌弱毒株PmCQ6,与荚膜多糖含量较高的强毒株PmCQ2基因组进行比较,发现PmCQ6的1个荚膜多糖合成基因存在点突变。通过同源重组质粒构建点突变恢复株PmCQ6c并比较两者生物学特性,发现PmCQ6形成的生物被膜大约是PmCQ6c的3倍。假交替单胞菌(Pseudoalteromonas)荚膜多糖缺失株也表现出附着生物被膜的形成能力增强的现象[52]。此外,荚膜多糖还被证明在物理上阻断了大肠杆菌生物膜形成中所必需的黏附因子[49]。因此,荚膜多糖与生物被膜的形成呈负相关,抗黏附功能是其原因之一。

3.4 抵御补体杀伤

补体系统是免疫的重要组成部分,在宿主抵御病原体感染和产生炎症反应等方面起关键作用[53]。一方面,荚膜多糖减少调理素蛋白C3b在病原菌细胞表面沉积。当C3裂解过程发生在病原菌附近时,暴露的C3b硫酯键可与菌体表面蛋白质和多糖在短时间内发生稳定的共价结合,将入侵的病原菌标记为周围补体的焦点[4]。荚膜多糖通过形成外部屏障,阻碍C3b与荚膜下病原菌细胞表面的亲核靶标结合,从而逃避补体系统介导的杀伤作用[54]。同理,荚膜多糖通过掩蔽经典途径中菌体表面抗原的抗体识别位点,阻止抗原抗体复合物的形成,最终抑制C1相关补体反应[55-56]。另一方面,部分细菌荚膜多糖通过抑制膜攻击复合物(MAC)形成,防止病原菌细胞被MAC溶解[57-58]

3.5 抗吞噬

吞噬细胞能够摄取和摧毁入侵的病原菌,并在其表面呈递病原菌抗原,引发宿主产生先天性免疫反应。病原菌的荚膜通常会损害吞噬功能,生理pH条件下,大部分微生物荚膜带负电荷,可阻止带同种电荷的吞噬细胞的吞噬,并且菌体表面荚膜多糖表达量越高,荚膜越厚,抗吞噬作用就越强[59-61]。本课题组研究发现,A型多杀性巴氏杆菌PmCQ2和PmCQ6菌株在感染巨噬细胞时,对比二者进入巨噬细胞的数量,发现PmCQ6被吞噬进入细胞的百分比显著高于PmCQ2,表明荚膜多糖具有抗吞噬作用[62]。唾液酸化的荚膜多糖还可与宿主抑制性Siglecs(唾液酸结合免疫球蛋白型凝集素)结合,减少中性粒细胞的活化[63]。此外,某些细菌荚膜多糖具有酸碱电解质特性,可提供相当大的缓冲能力,通过干扰吞噬小体的形成而阻碍吞噬细胞的吞噬。如新生隐球菌荚膜多糖通过调节吞噬小体内的pH并干扰吞噬小体的酸化,从而阻碍吞噬作用[64]

3.6 抵抗阳离子抗菌肽

抗菌肽(antimicrobial peptide,AMPs)是天然免疫中具有杀菌活性的成分,且几乎所有抗菌肽都是阳性的,在宿主和病原体共同进化过程中,病原微生物已经发展出感知并启动对抗菌肽的适应性反应的能力,以抵抗它们的杀菌活性[65-66]。带负电荷的荚膜多糖可作为诱饵,结合带正电荷的阳离子抗菌肽,减少到达病原菌表面的抗菌肽数量[67],防止因抗菌肽破坏病原菌胞质膜结构而引起的膜两侧离子流通紊乱[68]。研究显示,人抗菌肽(LL-37)亚抑制浓度可上调A族链球菌CPS合成操纵子(HasABC)的表达[69]。进一步研究显示,脑膜炎奈瑟菌(Neisseria meningitidis,Nm)对LL-37也具有高度敏感性,其荚膜多糖的丧失使LL-37杀菌效果显著增强,LL-37的最小抑菌浓度(MIC)也出现了降低[70]

表 1 CPS生物学功能 Table 1 The biological function of CPS
4 荚膜多糖与免疫 4.1 荚膜多糖致病机制

大部分病原微生物荚膜多糖可诱导免疫反应,但某些荚膜多糖免疫原性极低[72]。如新生隐球菌荚膜多糖可与CD44受体结合,而CD44基因缺失小鼠增加了对新生隐球菌的抵抗力[73]。这类荚膜多糖与宿主细胞基质具有相同或类似的成分,使宿主很可能无法产生针对该靶标的抗体,这也许是病原菌抵御宿主特异性免疫反应并促进感染的重要原因。此外,荚膜多糖可诱导细胞凋亡,如绵羊肺炎支原体(Mycoplasma ovipneumoniae)荚膜多糖通过上调FAS/FASL信号蛋白和裂解caspase-8诱导外源性细胞凋亡,并激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径JNK和p38信号通路促进活性氧物种(ROS)依赖的内源性细胞凋亡,共同诱导绵羊气道上皮细胞凋亡[74]。本课题组早期研究发现,采用透明质酸酶处理PmCQ2和PmCQ6以减少菌体表面的荚膜多糖再感染巨噬细胞(A型多杀性巴氏杆菌荚膜多糖主要成分为透明质酸),与未用透明质酸酶处理的PmCQ2和PmCQ6感染的巨噬细胞相比,处理组上清中IL-1β、IL-6、TNF-α的分泌均显著降低,表明A型多杀性巴氏杆菌荚膜多糖对宿主免疫细胞因子的产生也有一定的影响[62]。本课题组最近研究证实,与PmCQ2感染的巨噬细胞相比,PmCQ6能诱导宿主产生更高水平的NLRP3转录、caspase-1活性和成熟IL-1β的分泌,主要原因可能是PmCQ2菌体表面荚膜比PmCQ6厚得多,同时荚膜还可能影响NLRP3炎症小体的激活[75],但具体机制有待进一步研究。

4.2 荚膜多糖抑制炎症反应

荚膜多糖是微生物表面的重要毒力因子,常以参与宿主的致病机制呈现,但部分微生物荚膜多糖也可正向调节宿主免疫反应,降低宿主炎症反应,保护宿主处于健康状态。以肠道微生物中的脆弱拟杆菌(Bacteroides fragilis)为例,其荚膜多糖在保护其自身逃避宿主免疫反应和适应肠道微环境的同时,还可通过调节肠道免疫信号通路产生细胞因子,减轻宿主炎症并增强肠上皮的功能,维持肠道内环境稳态[76-77]。脆弱拟杆菌能表达8种荚膜多糖(A~ H)[78],其中,免疫调节能力最强的是荚膜多糖A (PSA),PSA的四糖重复单元具有两性离子多糖结构(包含正电荷和负电荷),这种特殊的荚膜多糖结构使PSA可直接作为T细胞抗原来调节T细胞作用[79]。PSA诱导T细胞的活化必须通过抗原提呈细胞(APC)处理,递呈一段多糖(类似于提呈抗原肽的方式)到主要组织相容性复合体Ⅱ类(MHC-Ⅱ)分子上[79-80],多糖与T细胞上的α-β T细胞受体(TCR)相互作用,进而刺激CD4+T细胞产生IL-10[81],IL-10可以抑制肠道和全身(包括大脑)的致病性炎症[82](如图 1)。此外,PSA还可与T细胞上的Toll样受体2(TLR2)结合直接作用于FoxP3+调节性T细胞(Tregs),在促进IL-10产生的同时抑制辅助性T细胞17(Th17)反应和白细胞介素17(IL-17)的产生(IL-17可促进肠道脓肿的形成),保护宿主免受肠道炎症的影响,同时促进脆弱拟杆菌在宿主肠道中独特的黏膜生态位定植[83]。研究显示,无菌小鼠的辅助性T细胞2(Th2)扭曲分布,比常规动物表达更高水平的Th2型细胞因子[如白细胞介素4(IL-4)],这使宿主更容易被感染并产生过敏和炎症性疾病[84],而PSA可作用于辅助性T细胞1(Th1),诱导宿主建立适当的Th1/ Th2平衡来促进肠道或脾内的动态平衡和免疫系统的发育[80, 84],从而与宿主建立有益的共生关系。

图 1 PSA免疫调节通路及对宿主疾病的预防和治疗[80, 83, 85] Fig. 1 PSA immunoregulation pathway and prevention and treatment of host diseases[80, 83, 85]
5 荚膜多糖的应用 5.1 PSA在疾病预防与治疗中的应用

多糖被普遍地认为是不依赖于T细胞的抗原,不会诱导辅助性T细胞的激活和刺激B细胞中Ig类的转换或免疫记忆[86],但PSA现被证明可激活T细胞群,通过抑制致病性炎症细胞来预防各种炎症性疾病[87]。有研究显示,PSA能够介导免疫系统的发育,将无菌小鼠缺少的T细胞扩增到常规小鼠的水平[83]。实际上,PSA本身也能够抑制IL-1β诱导的人原代胎儿小肠细胞系(H4细胞)的炎症,预防坏死性小肠结肠炎(NEC)[88]。纯化的PSA还可用于预防H型肝炎引起的小鼠结肠炎[81]

除调节肠道炎症反应外,PSA也可用于预防或治疗肠道外疾病(例如脑、肺)。PSA通过与肠道驻留的浆母细胞结合,诱导CD4+T细胞和CD8+T细胞分泌IL-10和γ-干扰素(IFN-γ),从而减轻脑干炎症并预防致死性单纯疱疹病毒性脑炎(HSE)[85, 89]。研究显示,口服纯化的PSA对预防和治疗小鼠脑脊髓炎(EAE)也具有保护作用[87]。在诱导气管炎症之前,口服PSA或转移PSA免疫小鼠脾T细胞能够防止白细胞浸润和肺部病变,可预防哮喘(asthma)的发生[90]。此外,PSA诱导FoxP3+调节性T细胞产生的IL-10,还可预防肺部炎症[91]

5.2 CPS疫苗

荚膜多糖作为毒力因子,可用于制备疫苗来预防相应病原引起的感染,但大部分病原的荚膜多糖免疫原性较差,需与蛋白质载体结合才能更好地触发保护性和记忆性B细胞反应,最常见的载体蛋白包括破伤风类毒素和白喉毒素的无毒突变体CRM197[92]。以血清2型猪链球菌荚膜多糖与破伤风类毒素偶联制备的荚膜多糖复合疫苗,能够促进抗荚膜多糖的IgG抗体产生,在动物试验中也表现出良好的免疫原性和诱导保护作用,此疫苗与佐剂结合使用,还能够在小鼠和猪体内诱导有效的IgM和同型转换的IgG[93]。大量研究表明,荚膜多糖载体结合疫苗比非结合疫苗具有更好的免疫原性,结合疫苗能够诱导宿主产生更高水平的抗体[92]。如采用全长乙型肝炎病毒核心抗原病毒样颗粒(HBc VLPs)作为新型载体蛋白,将不同长度(2、5和10 ku)的异双功能聚乙二醇(PEG)与C群脑膜炎耐瑟菌荚膜多糖偶联,制备的CPS-PEG-HBc结合疫苗诱导宿主产生特异性IgG滴度比普通荚膜多糖疫苗高10倍左右,且对宿主的亲和力、产生功能性抗体和免疫记忆显著增强[94]

6 小结与展望

荚膜多糖既可作为毒力因子逃避宿主免疫监视促进致病性感染,也可抑制炎症反应,促进宿主免疫功能,增强宿主对病原菌的抵抗能力,并在其生长繁殖和应对不良环境过程中起着关键作用。本课题组主要研究了牛源A型多杀性巴氏杆菌荚膜多糖对宿主的免疫调控作用,在多杀性巴氏杆菌荚膜多糖剂量差异调动宿主免疫反应的模式机制及是否存在促其他病原免疫保护性方面取得了部分进展,并且多杀性巴氏杆菌弱毒株本身也可以作为疫苗进行开发,研究清楚弱毒株荚膜多糖致病机制可以将其应用于临床流行菌株来开发使用范围更广的弱毒株疫苗。目前,虽然荚膜多糖结合疫苗均发挥了良好的作用,但其主要组织相容性复合体Ⅱ类(MHC-Ⅱ)表位的确切性质目前尚不清楚,并且荚膜多糖致病和免疫调控机制的关键分子也还有待进一步研究。从荚膜多糖合成调控、功能到其致病性和免疫调控能力探讨,再到荚膜多糖高效疫苗及荚膜多糖预防或治疗疾病的模拟应用,仍是荚膜多糖今后研究的方向。

参考文献
[1] DOCHEZ A R, AVERY O T. The elaboration of specific soluble substance by pneumococcus during growth[J]. J Exp Med, 1917, 26(4): 477–493. DOI: 10.1084/jem.26.4.477
[2] TOMCSIK J, BAUMANN-GRACE J B. Polysaccharide capsule of Bacillus megaterium[J]. Proc Soc Exp Biol Med, 1959, 101(3): 570–571. DOI: 10.3181/00379727-101-25019
[3] TYTGAT H L P, LEBEER S. The sweet tooth of bacteria: common themes in bacterial glycoconjugates[J]. Microbiol Mol Biol Rev, 2014, 78(3): 372–417. DOI: 10.1128/MMBR.00007-14
[4] WILLIS L M, WHITFIELD C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways[J]. Carbohydr Res, 2013, 378: 35–44. DOI: 10.1016/j.carres.2013.05.007
[5] FOUET A, MESNAGE S. Bacillus anthracis cell envelope components[J]. Curr Top Microbiol Immunol, 2002, 271: 87–113.
[6] KUTTEL M M, JACKSON G E, MAFATA M, et al. Capsular polysaccharide conformations in pneumococcal serotypes 19F and 19A[J]. Carbohydr Res, 2015, 406: 27–33. DOI: 10.1016/j.carres.2014.12.013
[7] PEREIRA C L, GEISSNER A, ANISH C, et al. Chemical synthesis elucidates the immunological importance of a pyruvate modification in the capsular polysaccharide of streptococcus pneumoniae serotype 4[J]. Angew Chem Int Ed, 2015, 54(34): 10016–10019. DOI: 10.1002/anie.201504847
[8] TOWNSEND K M, BOYCE J D, CHUNG J Y, et al. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system[J]. J Clin Microbiol, 2001, 39(3): 924–929. DOI: 10.1128/JCM.39.3.924-929.2001
[9] BOYCE J D, CHUNG J Y, ADLER B. Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B: 2)[J]. Vet Microbiol, 2000, 72(1-2): 121–134. DOI: 10.1016/S0378-1135(99)00193-5
[10] DEANGELIS P L, PADGETT-MCCUE A J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F[J]. J Biol Chem, 2000, 275(31): 24124–24129. DOI: 10.1074/jbc.M003385200
[11] PANDIT K K, SMITH J E. Capsular hyaluronic acid in Pasteurella multocida type A and its counterpart in type D[J]. Res Vet Sci, 1993, 54(1): 20–24. DOI: 10.1016/0034-5288(93)90005-Z
[12] DEANGELIS P L, WHITE C L. Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D[J]. J Biol Chem, 2002, 277(9): 7209–7213. DOI: 10.1074/jbc.M112130200
[13] GUAN L J, XUE Y, DING W W, et al. Biosynthesis and regulation mechanisms of the Pasteurella multocida capsule[J]. Res Vet Sci, 2019, 127: 82–90. DOI: 10.1016/j.rvsc.2019.10.011
[14] NURSE-LUCAS M, MCGEE L, HAWKINS P A, et al. Serotypes and genotypes of Streptococcus pneumoniae isolates from Trinidad and Tobago[J]. Int J Infect Dis, 2016, 46: 100–106. DOI: 10.1016/j.ijid.2016.04.005
[15] ZHENG Y Q, ZHANG X M, WANG X F, et al. ComE, an essential response regulator, negatively regulates the expression of the capsular polysaccharide locus and attenuates the bacterial virulence in Streptococcus pneumoniae[J]. Front Microbiol, 2017, 8: 277.
[16] GHOSH P, LUONG T T, SHAH M, et al. Adenylate kinase potentiates the capsular polysaccharide by modulating Cps2D in Streptococcus pneumoniae D39[J]. Exp Mol Med, 2018, 50(9): 116.
[17] MORONA J K, MILLER D C, MORONA R, et al. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB, and cpsD have on virulence of Streptococcus pneumoniae[J]. J Infect Dis, 2004, 189(10): 1905–1913. DOI: 10.1086/383352
[18] WEIDENMAIER C, LEE J C. Structure and function of surface polysaccharides of Staphylococcus aureus[M]//BAGNOLI F, RAPPUOLI R, GRANDI G. Staphylococcus aureus: Microbiology, pathology, immunology, therapy and prophylaxis. Springer, 2017: 57-93.
[19] RAUSCH M, DEISINGER J P, ULM H, et al. Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus[J]. Nat Commun, 2019, 10(1): 1404. DOI: 10.1038/s41467-019-09356-x
[20] LUONG T T, LEE C Y. The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway[J]. Microbiology, 2006, 152(10): 3123–3131. DOI: 10.1099/mic.0.29177-0
[21] FLEUCHOT B, GUILLOT A, MÉZANGE C, et al. Rgg-associated SHP signaling peptides mediate cross-talk in streptococci[J]. PLoS One, 2013, 8(6): e66042. DOI: 10.1371/journal.pone.0066042
[22] XIE Z J, MENG K, YANG X L, et al. Identification of a quorum sensing system regulating capsule polysaccharide production and biofilm formation in Streptococcus zooepidemicus[J]. Front Cell Infect Microbiol, 2019, 9: 121. DOI: 10.3389/fcimb.2019.00121
[23] LEE K J, KIM J A, HWANG W, et al. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus[J]. Mol Microbiol, 2013, 90(4): 841–857. DOI: 10.1111/mmi.12401
[24] ZHAO L P, XUE T, SHANG F, et al. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence[J]. Infect Immun, 2010, 78(8): 3506–3515. DOI: 10.1128/IAI.00131-10
[25] YADAV M K, VIDAL J E, GO Y Y, et al. The LuxS/AI-2 quorum-sensing system of Streptococcus pneumoniae is required to cause disease, and to regulate virulence- and metabolism-related genes in a rat model of middle ear infection[J]. Front Cell Infect Microbiol, 2018, 8: 138. DOI: 10.3389/fcimb.2018.00138
[26] SUN Y C, LI Y, LUO Q, et al. LuxS/AI-2 quorum sensing system in Edwardsiella piscicida promotes biofilm formation and pathogenicity[J]. Infect Immun, 2020, 88(5): e00907–19.
[27] ZHANG Q X, QIN S J, HUANG Y, et al. Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rats[J]. J Oral Microbiol, 2019, 12(1): 1703883.
[28] MENG J, CHEN H M, LV Q, et al. The release of norepinephrine in C57BL/6 J mice treated with 6-hydroxydopamine (6-OHDA) is associated with translocations in enteric Escherichia coli via the QseC histidine kinase receptor[J]. Med Sci Monit, 2020, 26: e922986. [2021-01-04]. https://www.medscimonit.com/download/index/idArt/922986.
[29] LEE S, GHOSH P, KWON H, et al. Induction of the pneumococcal vncRS operon by lactoferrin is essential for pneumonia[J]. Virulence, 2018, 9(1): 1562–1575. DOI: 10.1080/21505594.2018.1526529
[30] GHOSH P, SHAH M, RAVICHANDRAN S, et al. Pneumococcal VncR strain-specifically regulates capsule polysaccharide synthesis[J]. Front Microbiol, 2019, 10: 2279. DOI: 10.3389/fmicb.2019.02279
[31] 肖云菊. 细菌双组分系统YycF/YycG对肺炎链球菌荚膜多糖和磷壁酸多糖生物合成的调控研究[D]. 重庆: 重庆医科大学, 2020.
XIAOY J. Study on two-component systems YycF/YycG regulating the biosynthesis of capsular polysaccharide and teichoic acids in Streptococcus pneumoniae[D]. Chongqing: Chongqing Medical University, 2020. (in Chinese)
[32] CROSBY H A, TIWARI N, KWIECINSKI J M, et al. The Staphylococcus aureus ArlRS two-component system regulates virulence factor expression through MgrA[J]. Mol Microbiol, 2020, 113(1): 103–122. DOI: 10.1111/mmi.14404
[33] PANNEN D, FABISCH M, GAUSLING L, et al. Interaction of the RcsB response regulator with auxiliary transcription regulators in Escherichia coli[J]. J Biol Chem, 2016, 291(5): 2357–2370. DOI: 10.1074/jbc.M115.696815
[34] 彭丹. 肺炎克雷伯菌转录调控子RcsAB对荚膜多糖相关基因调控关系的研究[D]. 重庆: 重庆医科大学, 2019.
PENG D. Exploration of the relationship between the transcriptional regulator RcsAB and capsule polysaccharide-related genes in Klebsiella pneumoniae [D]. Chongqing: Chongqing Medical University, 2019. (in Chinese)
[35] WUGEDITSCH T, PAIMENT A, HOCKING J, et al. Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli[J]. J Biol Chem, 2001, 276(4): 2361–2371. DOI: 10.1074/jbc.M009092200
[36] SOULAT D, JAULT J M, DUCLOS B, et al. Staphylococcus aureus operates protein-tyrosine phosphorylation through a specific mechanism[J]. J Biol Chem, 2006, 281(20): 14048–14056. DOI: 10.1074/jbc.M513600200
[37] CAZA M, KRONSTAD J W. The cAMP/protein kinase a pathway regulates virulence and adaptation to host conditions in Cryptococcus neoformans[J]. Front Cell Infect Microbiol, 2019, 9: 212. DOI: 10.3389/fcimb.2019.00212
[38] FERREIRA R B R, ANTUNES L C M, GREENBERG E P, et al. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces[J]. J Bacteriol, 2008, 190(3): 851–860. DOI: 10.1128/JB.01462-07
[39] ROSEN D A, TWENTYMAN J, HUNSTAD D A. High levels of cyclic Di-GMP in Klebsiella pneumoniae attenuate virulence in the lung[J]. Infect Immun, 2018, 86(2): e00647–17.
[40] CHO K H, TRYON R G, KIM J H. Screening for diguanylate cyclase (DGC) inhibitors mitigating bacterial biofilm formation[J]. Front Chem, 2020, 8: 264. DOI: 10.3389/fchem.2020.00264
[41] DE OLIVEIRA GONÇALVES P J R, HUME C C D, FERREIRA A J, et al. Environmental interactions are regulated by temperature in Burkholderia seminalis TC3. 4. 2R3[J]. Sci Rep, 2019, 9: 5486. DOI: 10.1038/s41598-019-41778-x
[42] KEINHÖRSTER D, SALZER A, DUQUE-JARAMILLO A, et al. Revisiting the regulation of the capsular polysaccharide biosynthesis gene cluster in Staphylococcus aureus[J]. Mol Microbiol, 2019, 112(4): 1083–1099. DOI: 10.1111/mmi.14347
[43] TROXLER L J, WERREN J P, SCHAFFNER T O, et al. Carbon source regulates polysaccharide capsule biosynthesis in Streptococcus pneumoniae[J]. J Biol Chem, 2019, 294(46): 17224–17238. DOI: 10.1074/jbc.RA119.010764
[44] BRAVO Z, ORRUÑO M, PARADA C, et al. The long-term survival of Acinetobacter baumannii ATCC 19606T under nutrient-deprived conditions does not require the entry into the viable but non-culturable state[J]. Arch Microbiol, 2016, 198(5): 399–407. DOI: 10.1007/s00203-016-1200-1
[45] TIPTON K A, CHIN C Y, FAROKHYFAR M, et al. Role of capsule in resistance to disinfectants, host antimicrobials, and desiccation in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2018, 62(12): e01188–18.
[46] VESSELLA G, CASILLO A, FABOZZI A, et al. Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from Colwellia psychrerythraea 34H[J]. Org Biomol Chem, 2019, 17(12): 3129–3140. DOI: 10.1039/C9OB00104B
[47] WESSELS M R. Capsular polysaccharide of group A Streptococcus[J]. Microbiol Spectr, 2019, 7(1): GPP3-0050–2018.
[48] PORTER N T, MARTENS E C. The critical roles of polysaccharides in gut microbial ecology and physiology[J]. Annu Rev Microbiol, 2017, 71: 349–369. DOI: 10.1146/annurev-micro-102215-095316
[49] SCHEMBRI M A, DALSGAARD D, KLEMM P. Capsule shields the function of short bacterial adhesins[J]. J Bacteriol, 2004, 186(5): 1249–1257. DOI: 10.1128/JB.186.5.1249-1257.2004
[50] TAHOUN A, MASUTANI H, EL-SHARKAWY H, et al. Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages[J]. Gut Pathog, 2017, 9: 27. DOI: 10.1186/s13099-017-0177-x
[51] PETRUZZI B, BRIGGS R E, TATUM F M, et al. Capsular polysaccharide interferes with biofilm formation by Pasteurella multocida Serogroup A[J]. mBio, 2017, 8(6): e01843–17.
[52] ZENG Z S, ZHAN W E, WANG W Q, et al. Biofilm formation in Pseudoalteromonas lipolytica is related to IS5-like insertions in the capsular polysaccharide operon[J]. FEMS Microbiol Ecol, 2019, 95(6): fiz065. DOI: 10.1093/femsec/fiz065
[53] DEFENDI F, THIELENS N M, CLAVARINO G, et al. The immunopathology of complement proteins and innate immunity in autoimmune disease[J]. Clin Rev Allergy Immunol, 2020, 58(2): 229–251. DOI: 10.1007/s12016-019-08774-5
[54] PATHAK A, BERGSTRAND J, SENDER V, et al. Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification[J]. Nat Commun, 2018, 9: 3398. DOI: 10.1038/s41467-018-05494-w
[55] HYAMS C, CAMBERLEIN E, COHEN J M, et al. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms[J]. Infect Immun, 2010, 78(2): 704–715. DOI: 10.1128/IAI.00881-09
[56] BEURSKENS F J, VAN SCHAARENBURG R A, TROUW L A. C1q, antibodies and anti-C1q autoantibodies[J]. Mol Immunol, 2015, 68(1): 6–13. DOI: 10.1016/j.molimm.2015.05.010
[57] TAKAHASHI S, AOYAGI Y, ADDERSON E E, et al. Capsular sialic acid limits C5a production on type Ⅲ group B streptococci[J]. Infect Immun, 1999, 67(4): 1866–1870. DOI: 10.1128/IAI.67.4.1866-1870.1999
[58] FISHELSON Z. Complement-related proteins in pathogenic organisms[J]. Springer Semin Immunopathol, 1994, 15(4): 345–368. DOI: 10.1007/BF01837365
[59] 周琪, 贺现辉, 阳巧梅, 等. 副猪嗜血杆菌SC096株荚膜多糖抗猪肺泡巨噬细胞吞噬能力的研究[J]. 畜牧兽医学报, 2016, 47(6): 1232–1238.
ZHOU Q, HE X H, YANG Q M, et al. Role of capsular polysaccharide in Haemophilus parasuis SC096 strain anti-porcine alveolar macrophage phagocytosis[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(6): 1232–1238. (in Chinese)
[60] WILSON B A, HO M F. Pasteurella multocida: from zoonosis to cellular microbiology[J]. Clin Microbiol Rev, 2013, 26(3): 631–655. DOI: 10.1128/CMR.00024-13
[61] MOXON E R, KROLL J S. The role of bacterial polysaccharide capsules as virulence factors[M]//JANN K, JANN B. Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer, 1990, 150: 65-85.
[62] 雷桂花. 牛源A型多杀性巴氏杆菌强弱毒株诱导IL-1β成熟与分泌差异的研究[D]. 重庆: 西南大学, 2018.
LEI G H. The differences of IL-1β secretion induced by high and low virulence Pasteurella multocida serotype A infection[D]. Chongqing: Southwest University, 2018. (in Chinese)
[63] ARMISTEAD B, OLER E, ADAMS WALDORF K, et al. The double life of group B streptococcus: asymptomatic colonizer and potent pathogen[J]. J Mol Biol, 2019, 431(16): 2914–2931. DOI: 10.1016/j.jmb.2019.01.035
[64] DE LEON-RODRIGUEZ C M, FU M S, ÇORBALI M O, et al. The capsule of Cryptococcus neoformans modulates phagosomal pH through its acid-base properties[J]. mSphere, 2018, 3(5): e00437–18.
[65] GRUENHEID S, LE MOUAL H. Resistance to antimicrobial peptides in Gram-negative bacteria[J]. FEMS Microbiol Lett, 2012, 330(2): 81–89. DOI: 10.1111/j.1574-6968.2012.02528.x
[66] LAZZARO B P, ZASLOFF M, ROLFF J. Antimicrobial peptides: Application informed by evolution[J]. Science, 2020, 368(6490): eaau5480. DOI: 10.1126/science.aau5480
[67] LLOBET E, TOMÁS J M, BENGOECHEA J A. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides[J]. Microbiology, 2008, 154(12): 3877–3886. DOI: 10.1099/mic.0.2008/022301-0
[68] HALE J D F, HANCOCK R E W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria[J]. Expert Rev Anti Infect Ther, 2007, 5(6): 951–959. DOI: 10.1586/14787210.5.6.951
[69] GRYLLOS I, TRAN-WINKLER H J, CHENG M F, et al. Induction of group A Streptococcus virulence by a human antimicrobial peptide[J]. Proc Natl Acad Sci U S A, 2008, 105(43): 16755–16760. DOI: 10.1073/pnas.0803815105
[70] SPINOSA M R, PROGIDA C, TALÀ A, et al. The Neisseria meningitidis capsule is important for intracellular survival in human cells[J]. Infect Immun, 2007, 75(7): 3594–3603. DOI: 10.1128/IAI.01945-06
[71] DEGHMANE A E, GIORGINI D, LARRIBE M, et al. Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein[J]. Mol Microbiol, 2002, 43(6): 1555–1564. DOI: 10.1046/j.1365-2958.2002.02838.x
[72] 王楷宬, 陆承平, 范伟兴. 细菌荚膜多糖[J]. 微生物学报, 2011, 51(12): 1578–1584.
WANG K C, LU C P, FAN W X. Bacterial capsular polysaccharide-A review[J]. Acta Microbiologica Sinica, 2011, 51(12): 1578–1584. (in Chinese)
[73] JONG A, WU C H, GONZALES-GOMEZ I, et al. Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection[J]. J Biol Chem, 2012, 287(19): 15298–15306. DOI: 10.1074/jbc.M112.353375
[74] JIANG Z J, SONG F Y, LI Y N, et al. Capsular polysaccharide of Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis via ROS-dependent JNK/P38 MAPK pathways[J]. Oxid Med Cell Longev, 2017, 2017: 6175841.
[75] FANG R D, LEI G H, JIANG J L, et al. High- and low-virulent bovine Pasteurella multocida induced differential NLRP3 inflammasome activation and subsequent IL-1β secretion[J]. Vet Microbiol, 2020, 243: 108646. DOI: 10.1016/j.vetmic.2020.108646
[76] JANDHYALA S M, TALUKDAR R, SUBRAMANYAM C, et al. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787–8803. DOI: 10.3748/wjg.v21.i29.8787
[77] LIU Q, YU Z M, TIAN F W, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier[J]. Microb Cell Fact, 2020, 19(1): 23. DOI: 10.1186/s12934-020-1289-4
[78] AVCI F Y, KASPER D L. How bacterial carbohydrates influence the adaptive immune system[J]. Annu Rev Immunol, 2010, 28: 107–130. DOI: 10.1146/annurev-immunol-030409-101159
[79] HSIEH S A, ALLEN P M. Immunomodulatory roles of polysaccharide capsules in the intestine[J]. Front Immunol, 2020, 11: 690. DOI: 10.3389/fimmu.2020.00690
[80] TROY E B, KASPER D L. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system[J]. Front Biosci, 2010, 15: 25–34. DOI: 10.2741/3603
[81] BLANDFORD L E, JOHNSTON E L, SANDERSON J D, et al. Promoter orientation of the immunomodulatory Bacteroides fragilis capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD)[J]. Gut Microbes, 2019, 10(5): 569–577. DOI: 10.1080/19490976.2018.1560755
[82] OCHOA-REPÁRAZ J, MIELCARZ D W, DITRIO L E, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression[J]. J Immunol, 2010, 185(7): 4101–4108. DOI: 10.4049/jimmunol.1001443
[83] ERTURK-HASDEMIR D, KASPER D L. Finding a needle in a haystack: Bacteroides fragilis polysaccharide A as the archetypical symbiosis factor[J]. Ann N Y Acad Sci, 2018, 1417(1): 116–129. DOI: 10.1111/nyas.13660
[84] MAZMANIAN S K, LIU C H, TZIANABOS A O, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell, 2005, 122(1): 107–118. DOI: 10.1016/j.cell.2005.05.007
[85] RAMAKRISHNA C, KUJAWSKI M, CHUG H, et al. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis[J]. Nat Commun, 2019, 10(1): 2153. DOI: 10.1038/s41467-019-09884-6
[86] CRESS B F, ENGLAENDER J A, HE W Q, et al. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules[J]. FEMS Microbiol Rev, 2014, 38(4): 660–697. DOI: 10.1111/1574-6976.12056
[87] OCHOA-REPÁRAZ J, MIELCARZ D W, WANG Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease[J]. Mucosal Immunol, 2010, 3(5): 487–495. DOI: 10.1038/mi.2010.29
[88] GORREJA F, RUSH S T A, KASPER D L, et al. The developmentally regulated fetal enterocyte gene, ZP4, mediates anti-inflammation by the symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 317(4): G398–G407. DOI: 10.1152/ajpgi.00046.2019
[89] RAMAKRISHNA C, CANTIN E M. IFN gamma inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis[J]. PLoS Pathog, 2018, 14(1): e1006822. DOI: 10.1371/journal.ppat.1006822
[90] JOHNSON J L, JONES M B, COBB B A. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation[J]. Glycobiology, 2015, 25(4): 368–375. DOI: 10.1093/glycob/cwu117
[91] JOHNSON J L, JONES M B, COBB B A. Polysaccharide-experienced effector T cells induce IL-10 in FoxP3+ regulatory T cells to prevent pulmonary inflammation[J]. Glycobiology, 2018, 28(1): 50–58. DOI: 10.1093/glycob/cwx093
[92] CARRERAS-ABAD C, RAMKHELAWON L, HEATH P T, et al. A vaccine against group B Streptococcus: Recent advances[J]. Infect Drug Resist, 2020, 13: 1263–1272. DOI: 10.2147/IDR.S203454
[93] GOYETTE-DESJARDINS G, CALZAS C, SHIAO T C, et al. Protection against Streptococcus suis serotype 2 infection using a capsular polysaccharide glycoconjugate vaccine[J]. Infect Immun, 2016, 84(7): 2059–2075. DOI: 10.1128/IAI.00139-16
[94] XU L L, LI Z J, SU Z G, et al. Development of meningococcal polysaccharide conjugate vaccine that can elicit long-lasting and strong cellular immune response with hepatitis B core antigen virus-like particles as a novel carrier protein[J]. Vaccine, 2019, 37(7): 956–964. DOI: 10.1016/j.vaccine.2018.12.073