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采用编码输入的生成对抗网络故障检测方法及应用
吴晓东，熊伟丽

（江南大学 轻工过程先进控制教育部重点实验室，江苏 无锡 214122）

摘    要：针对传统基于生成对抗网络的故障检测方法中，生成器输入使用随机噪声，不包含训练集中有效信息

造成模型检测效果不够理想的问题，提出一种采用编码输入的生成对抗网络故障检测策略。通过引入自编码

器，基于最小化重构误差构建隐变量空间，将降维后的隐变量信息作为生成器输入以提升生成对抗网络的训练

效果；进一步考虑故障检测方法中基于生成器的统计量计算成本高和对离群点敏感的问题，计算待测样本经编

码后的隐变量到训练集隐变量空间中心点的曼哈顿距离，并作为新统计量进行故障检测。将所提故障检测方

法用于田纳西伊斯曼过程及实际的磨煤机过程，本文方法较传统生成对抗网络故障检测在田纳西伊斯曼过程

上报警率提升了 13%，在磨煤机过程上各统计量报警率均得到了显著提升且本文所提统计量将传统方法中针

对生成器的统计量大大降低了检测用时，从而验证了方法的有效性和性能。
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Fault detection method and its application using
GAN with an encoded input

WU Xiaodong，XIONG Weili
(Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China)

Abstract: In a traditional fault detection method based on a generative adversarial network, random noise is used as the
generator input, which does not contain the effective information of training sets and causes unsatisfactory fault detec-
tion by the model. This paper proposes a generative adversarial network fault detection strategy using an encoded input.
By introducing an autoencoder based on minimizing the reconstruction error, a latent variable space is constructed. The
latent variable information after dimensionality reduction is used as the generator input to improve the training effect of
the generated confrontation network. Furthermore, a generator-based statistic has drawbacks such as high computational
cost and sensitivity to outliers. The Manhattan distance is calculated beginning from the encoded hidden variable of the
sample to be tested to the center of the hidden variable space of the training set. This distance is then used as a new stat-
istic for fault detection. The proposed fault detection method is used in the TE and actual coal pulverization processes.
Compared with the traditional GAN fault detection, the alarming rate of the TE process increases by 13%. The alarming
rate of all statistics in the coal pulverization process also improves considerably. The proposed statistics greatly reduce
the detection time for generators in traditional methods, which validates their effectiveness and performance.
Keywords: generative adversarial network; autoencoder; latent variable; kernel density estimation; dimensionality re-
duction; fault detection; TE process; coal pulverization process
 

迅速准确地检出故障工况并进行故障隔离对

现代工业生产过程的安全性及产品质量具有重要

意义 [1]。随着生产工艺复杂程度及自动化水平的

提升，在故障检测中建立过程机理模型变得更加

困难且不易求取，基于简化后模型的检测效果也

并不理想。近年来，基于数据驱动的故障检测方

法得到了广泛关注和应用 [2]，其中常用的有主元

分析法 (principal component analysis, PCA)[3]、偏最

小二乘回归 (partial least squares, PLS)[4]、基于 k 近

邻算法的故障检测 (fault detection using k-nearest
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neighborhood, FD-KNN)[5] 等。

基于数据的故障检测方法中，建模数据对于

故障检测的效果起着决定性作用。传统机器学习

方法中的浅层模型往往无法满足过程大数据的解

析需求，因此学者们提出了不同的深层模型以解

决实际复杂问题 [6-9]。其中，生成对抗网络 [10](gen-
erative adversarial network, GAN) 由于其特殊的训

练思想及生成能力受到了研究人员的广泛关注，

已被应用于图像、视频、文本处理等领域。文献

[11] 提出一种新的对抗训练方法并证明了其在指

定数据集上的准确性，提升了卷积语义分割网络

的训练效果。文献 [12] 提出一种感知生成对抗网

络，减少了小对象与大对象之间的表示差异，从

而有效改善了低分辨率与高噪声带来的小对象检

测困难问题。通过训练深度卷积生成对抗网络，

文献 [13] 有效地提取出文本信息特征从而生成逼

真的图像。利用一种基于多尺度密集注意力的生

成对抗网络框架，文献 [14] 解决了现有方法无法

处理复杂运动及远距离依赖的问题。近几年 GAN
研究和应用的不断扩展，逐渐应用到了复杂工业

过程监控领域。
文献 [15] 利用 GAN 生成虚假故障样本，实现

训练集中正常与异常样本的平衡，再由深度神经
网络进行分类从而实现故障检测。文献 [16] 采用
深层卷积 GAN 生成旋转轴承的二维图像信息以
提升训练集样本平衡性，采用卷积神经网络区分
样本类别。上述方法可以看作 GAN 在工业过程
中的一种运用，但其实际是通过有监督分类算法
实现样本的分类，对于故障类型多且未知的过程
如 TE 过程，效果并不理想，本文后续所提故障检
测训练集均仅包含正常工况样本。

经典的故障检测方法，比如 PCA 通过选取方
差贡献率大的主元检测故障，易忽略方差贡献率
小的变量 [17]。基于 KNN 的故障检测方法假设异
常样本较正常工况样本在变量上会存在较大偏
差，计算样本的 KNN 距离作为统计量进行故障
检测。上述两种传统算法在故障检测前都存在着
先验假设，对故障检测的效果具有一定影响。对
此，Wang 等 [18] 提出了基于生成对抗网络的异常
检测方法，并在手写数据集 (national institute of
standards and technology, NIST) 及田纳西伊斯曼
(Tennessee Eastman, TE) 过程仿真中验证了方法的
有效性。基于 GAN 的故障检测方法采用正常工
况数据训练生成对抗网络，根据网络中的生成器
及判别器构建统计量进行故障检测，因此不存在
对故障产生的先验假设，而是通过判别器从真实
样本及虚假样本中提取出的潜隐特征并计算概率
判断故障是否发生，更贴合检测过程中故障类型

及发生原因未知的背景。文献 [19] 利用风电机组
数据训练 GAN，通过判别器输出概率判断机组运
行状态是否健康。但基于 GAN 的故障检测方法
采用经典的生成对抗网络模型，不可避免地存在
着训练困难及模式崩溃的问题。为此许多学者从
生成对抗网络结构及寻找最佳 GAN 模型的角度
进行了改进。文献 [20] 引入 BiGAN 模型，在保证
检测精度的同时大大减少了程序耗时。文献 [21]
构建了一个基于自编码器的性能指标来衡量生成
模型的生成能力，选取最优的生成模型作为最终
的分类器。但上述方法中生成器均采用随机噪声
作为输入，生成器得到的有效信息少，生成样本
不逼真，以致判别器性能在对抗过程中提升有
限，故障检出率不高。

综上所述，为进一步提升基于 GAN 的故障检
测的性能与效果，结合自编码器提出一种基于改
进 GAN 的故障检测方法 (fault detection using
GAN with encoded input, EIGAN)。首先，在训练数
据集上通过最小化重构误差，得到自编码器模型，
并将训练集经自编码器降维后的隐变量作为生成
器输入，进行生成对抗网络的训练；然后，分别根
据判别器及自编码器提取出的隐变量空间对正常
工况样本计算统计量，并得出控制限；最后，计算
待测样本的统计量，结合控制图进行故障检测。
将本文所提方法用于 TE 过程及火力发电厂磨煤
机的故障检测，获得了较好的检测结果，从而验
证了方法的有效性。 

1   基于生成模型的故障检测原理
 

1.1    生成对抗网络

生成对抗网络是一种基于对抗思想进行训练
的网络结构，通过寻找零和博弈中的纳什平衡确
定模型中的参数 [22]，其结构如图 1 所示。生成对
抗网络包含 1 个生成器和 1 个判别器，两者均为
深层神经网络。生成器的目标是生成与真实样本
近似的以致判别器区分不出的“虚假样本”；相
反，判别器的目标则是区分真实样本和虚假样
本，将这 2 种样本实现正确的分类。

b
n Xb×n

Gb×n

x D(x)

LD LG

生成对抗网络的训练过程为：样本数为 、特
征数为 的小批量真实样本 与生成器生成的虚
假样本 一并送给判别器；判别器通过计算样
本 的得分 判别真伪，在每一次的训练中，通
过梯度下降方法对生成器和判别器的模型参数进
行更新，以最小化两者各自的代价函数 和 ，其
计算过程分别如式 (1) 和 (2) 所示：

LD = Ex∼Pdata[−log(D(x)]+Ez∼P(z)[−log(1−D(G(z)))] (1)
LG = Ez∼Platent [−log(D(G(z)))] (2)

E x ∼ Pdata x式中： 表示求期望； 表示样本 服从真实
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z ∼ Platent z

G(z) z

D(·)
u

样本的数据分布； 表示变量 服从隐变量

空间的数据分布； 表示将隐变量 映射到与真

实样本维度一致的生成样本空间； 表示判别

器输出，其值位于 0~1；假设样本 为某一未知样

D(u) u

Ex∼Pdata[−log(D(x))]

本， 越趋向于 1，则判别器认为样本 为真实样

本的概率越大，反之，为虚假样本的概率越大；

表示输入为真实数据时，判别器

输出概率的熵。 
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图 1    生成对抗网络的结构

Fig. 1    Architecture of GAN
  

1.2    故障检测原理

x′

Wang 等 [18] 首先提出了基于 GAN 的异常点
检测，将训练数据集进行最值归一化后进行网络
训练，得到模型后，按照式 (3)、(4) 分别计算出统
计量和控制限（本文采用核密度估计方法计算控
制限，置信度取 95%）；最后如式 (5) 所示，通过比
较待测样本 的统计量与控制限大小，判断待测
样本是否为故障样本。

Gscore = fG(x) = min
z∼Platent

∥x−G(z)∥2

Dscore = fD(x) = 1−D(x)
(3){

TG = fKDE ({Gscore|x ∈ Xtrain},0.95)
TD = fKDE ({Dscore|x ∈ Xtrain},0.95)

(4){
lG(x′) = sgn( fG(x′)−TG)
lD(x′) = sgn( fD(x′)−TD)

(5)

x min
z∼Platent

∥x−G(z)∥2

x

D(x) x

fKDE({Gscore|x ∈ Xtrain},0.95)

lG(x′)
Gscore x′ sgn()

sgn( fG(x′)−TG) x′ Gscore Gscore

Dscore

式中： 为待计算统计量的待测样本；

表示待测样本 到其在生成样本集中最近邻样本
的平方欧氏距离； 表示输入为 时判别器的输
出； 表示对训练集统计量
利用核密度估计 (kernel density estimation, KDE)
函数计算控制限，置信度选取 0.95； 表示利用

统计量对样本 的故障检测函数； 为符号
函数； 对样本 的 统计量与
控制限的差求取符号函数，若为 1 则表示样本故
障，否则样本正常； 控制限及其故障检测函数

Gscore同 类似，故不做赘述。 

2   基于改进 GAN 的故障检测策略
 

2.1    改进生成器输入

生成器的本质为多层感知机，由于网络结构
及每一层中神经元的作用，可以提取出有利于提
升拟合精度的潜隐特征。与此同时，每一层网络
中适当的激活函数也使得模型可以更好地拟合出
训练集数据分布中的非线性和多模态特征。如
图 2 所示的生成器生成样本：图 (a)、(b)、(c) 分别
表示某非线性真实样本数据分布情况及不同训练
次数后生成器生成样本的分布情况；图 (d)、(e)、
(f) 分别表示某多模态真实样本数据分布情况及
不同训练次数后生成器生成样本的分布情况。其
中绿色点表示真实样本数据分布，红色点表示生
成样本数据分布，横轴、纵轴表示生成样本的两
个维度。从图 2 中可以看出，经过一定次数的训
练后，生成器可以生成与真实样本数据分布近似
的样本。但传统生成对抗网络中生成器采用均值
为 0 标准差为 1 的正态分布作为输入，生成器要
从这样一个隐变量空间映射到与真实样本相似的
空间分布，需要较长的时间成本；同时生成样本
与真实样本的相似性也较差，对于最终的判别器
效果具有一定影响。
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图 2    生成器生成样本

Fig. 2    Generated sample from generator
 
 

如何给生成器一个包含训练数据集更多信息

的低维特征是本文改进 GAN 用于故障检测的一

个动机，PCA 作为一种降维方法，虽然能保证提

取出的主成分含有较多的信息，但受制于变量服

从线性相关及高斯分布的假设，具有一定的局限

性。本文采用自编码器 [23] 提取低维特征，其网络

结构如图 3 所示。不同于 PCA 方法：1）自编码器

特殊的网络结构及引入的激活函数使得自编码器

可以同时获取原始信息中线性与非线性特征；2）
由于自编码器解码后的重构输出要与输入尽可能

地接近，这也保证了编码器提取出的特征能够包

含更多输入数据的信息。
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图 3    自编码器结构

Fig. 3    Architecture of autoencoder
 
 

最小化式 (6) 所示的代价函数得到自编码器

网络参数，从而提取出训练集中较大程度表示原

有数据信息的隐变量，将这组隐变量作为生成器

的输入，生成样本过程如图 4 所示，其中绿色样本

点表示真实数据分布，红色样本点表示生成器生

成虚假数据分布。对比图 4(a)、(c)、(b) 和 (d) 可以

看出，改进生成器输入后，有效提升了生成器的生

成能力，在相同迭代次数下，改进后的生成器生

成的样本分布更接近真实数据分布，从而有效地

避免了以随机正态分布作为生成器输入的不足。

L(θ) = ∥X′−X∥22 (6)
θ X

X′ X ∥X′−X∥22
式中： 表示自编码器网络参数； 表示自编码器

输入； 表示自编码器对输入 的重构输出；

表示自编码器与其重构输出的平方欧氏距离。
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图 4    改进前后生成样本分布对比

Fig. 4    Comparison  of  generated  sample  distribution  be-
fore and after improvement
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2.2    基于自编码器的统计量改进

GAN 故障检测中将待测样本与其在生成器

生成数据分布中最近邻样本间的欧氏距离作为统

计量，这种统计量计算方法只寻找待测样本与生

成数据中的最近邻样本，生成数据中的离群点对

于检测结果具有很大的干扰；此外由于涉及欧氏

距离的计算，无论是求统计量过程中计算生成数

据间两两样本的距离，还是待测样本到生成数据

的欧氏距离，都存在着样本数量多，数据维度高

导致计算量大的问题。针对上述问题，本文提出

一种新的统计量如式 (7) 所示：

Escore =
∥∥∥E(x)− Ē(Xtrain)

∥∥∥
1

(7)
E(x)

Ē(Xtrain)∥∥∥E(x)− Ē(Xtrain)
∥∥∥

1

式中： 表示待测样本经自编码器编码后的

降维输出； 表示训练集经自编码器编码后

降维输出的均值； 为二者的曼哈顿

距离。
通过比较待测样本映射到隐变量空间中的向

量与训练集对应隐变量分布间的距离，即曼哈顿
距离。在减少计算量的同时也降低了离群点对统
计量的影响。针对新统计量的控制限计算如式
(8) 所示，本文采用核密度估计方法确定控制限，
置信度选 0.95。

TE = fKDE({Escore|x ∈ Xtrain},0.95) (8)

fKDE({Escore|x ∈ Xtrain},
0.95) Escore

由于编码器输出小于 1，故式 (8) 中采用曼哈
顿街区距离避免误差被缩小；

表示对训练集 统计量以 0.95 作为置信度
采用 KDE 计算控制限。

综上所述，本文提出的基于编码器输入的改
进 GAN 故障检测方法，检测流程如图 5 所示，算
法分为离线建模和在线检测两部分。其中，离线
建模部分对正常工况下的训练数据集进行相关计
算，得到训练集各样本的统计量，再根据置信度

及核密度估计方法确定控制限；在线检测部分对
未知的待测样本计算其统计量并与控制限比较，
判断是否发生故障。 
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图 5    改进 GAN 故障检测流程

Fig. 5    Fault detection process using improved GAN
  

3   算法的应用仿真
 

3.1    TE 过程

美国 Eastman 化学公司依据实际化工反应过
程开发了 TE 仿真平台，其产生的过程数据作为
基准数据被广泛应用于不同故障检测方法中 [24]。
TE 工艺过程如图 6 所示，共包含 5 个操作单元和 8
个组成部分，含 22 个过程测量变量、19 个成分测
量变量及 12 个操纵变量，本文选取 22 个过程变
量及除搅拌速度外的 11 个操作变量用于建模与
检测，详细的变量描述可参见文献 [25]。数据分
为训练集和测试集两部分，除正常工况数据外，还
包含 21 种异常工况。训练集对应正常工况下采
集到的数据，测试集则为 21 种异常工况下的数据，
同时测试集中故障均在第 161 个样本处被引入。
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图 6    TE 工艺过程示意图

Fig. 6    TE process diagram 
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首先将训练数据集通过自编码器得到维度

为 4 的隐变量作为生成器输入；然后对生成对抗

网络进行训练，网络中生成器及判别器均采用多

层感知机，生成器各层神经元个数分别为 4、15、
30、60、33，判别器各层神经元个数分别为 33、
60、30、10、1；除判别器及生成器的输出层采用

sigmoid 激活函数外，其余层均采用 lekay-relu 激

活函数；进一步再计算出统计量及控制限。对测

试集计算统计量，结合控制限绘制控制图如图 7
所示。可以看出，本文所提算法可以很好地通过

统计量将正常工况样本与异常工况的样本区分开

来，从而验证了其作为故障检测算法的有效性。
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图 7    TE 过程制图

Fig. 7    Control plot of TE process
 

同时将本文所提算法与传统的故障检测算法

进行对比，结果如表 1 所示。对比 GAN 故障检测[18]

结果可以看出，本文方法通过改进生成器输入，

有效地改善了生成对抗网络的训练效果，提升了

判别器区分真假样本的能力，从而提高了异常样

本的故障检出率。与此同时，对比 2 种传统的故

障检测方法（PCA[3] 及 FD-KNN[5]），本文所提算法

具有更高的报警率。
 

  
表 1    TE 过程报警率对比

Table 1    TE process alarm rate comparison
 

故障编号 kNN PCA GAN EIGAN
1 0.995 0.998 0.989 0.996

2 0.983 0.984 0.972 0.981

3 0.013 0.009 0.019 0.150

4 0.970 1 0.227 0.599

5 0.260 0.241 0.264 0.907

6 1 1 1 1

7 1 1 0.912 0.892

8 0.976 0.969 0.941 0.910

9 0.023 0.018 0.015 0.133

10 0.428 0.296 0.508 0.647

11 0.670 0.708 0.442 0.723

12 0.989 0.984 0.905 0.946

13 0.946 0.951 0.946 0.907

14 1 1 0.935 0.999

15 0.030 0.014 0.023 0.194

16 0.275 0.181 0.551 0.657

17 0.911 0.940 0.847 0.937

18 0.896 0.899 0.895 0.904

19 0.086 0.110 0.190 0.429

20 0.481 0.453 0.502 0.681

21 0.426 0.426 0.347 0.543

平均报警率 0.636 0.628 0.592 0.721
 
 

Escore

为进一步对结果进行分析，对 TE 过程训练

集及故障 2、6、14 对应的测试集通过自编码器提

取隐变量并绘制箱线图，如图 8 所示，将图 (a) 分
别与图 (b)、(c) 、(d) 对比可以发现：使用自编码器

提取 TE 过程特征信息在还原原始数据集信息的

同时，编码器提取出的故障样本的隐变量与正常

样本隐变量具有明显的差异性，这也很好地解释

了图 7(c)、(d) 中 统计量能很好地检出故障 2、
6、14 的原因。
 

 

1 2 3 4
变量序号

−4

2

8

16

变
量

数
值

(a) 训练集隐变量箱线

边缘线
中位线
四分位线

变量序号

变
量

数
值

−50

0

50

100

150

200

(c) 故障 隐变量箱线

边缘线
中位线
四分位线

(b) 故障 隐变量箱线
变量序号

变
量

数
值

0
−6

10

20

30

40

50
边缘线
中位线
四分位线

变量序号

变
量

数
值

−10

10

30

50

(d) 故障 隐变量箱线

边缘线
中位线
四分位线

·501· 吴晓东，等：采用编码输入的生成对抗网络故障检测方法及应用 第 3 期



变量序号

−4

变
量

数
值

(a) 训练集隐变量箱线

边缘线
中位线
四分位线

1 2 3 4

变量序号

变
量

数
值

−50

0

50

100

150

200

(c) 故障 6 隐变量箱线

边缘线
中位线
四分位线

(b) 故障 2 隐变量箱线

1 2 3 4

变量序号

变
量

数
值

0
−6

10

20

30

40

50
边缘线
中位线
四分位线

1 2 3 4

变量序号

变
量

数
值

−10

10

30

50

(d) 故障 14 隐变量箱线

边缘线
中位线
四分位线

 
图 8    TE 过程正常工况与部分故障的隐变量箱线图对比
Fig. 8    Comparison  of  hidden  variable  box  plots  between

normal  operating  conditions  and  partial  failures  of
TE process

 
  

3.2    磨煤机数据仿真

磨煤机作为火力发电厂中的核心设施，准确

快速地检出故障对安全高效地发电具有重要意

义。用于对比仿真的磨煤机数据被划分为训练集

和测试集两部分，训练集包含 3 500 个正常工况数

据，测试集包括 1 000 个数据，其中前 500 个是正

常工况下记录得到的，后 500 个为异常工况（输出

煤粉温度降低）下记录的数据。训练集和测试集

中过程变量个数均为 46，关于磨煤机过程变量的

详细描述见表 2。

Dscore Gscore

Escore Tscore

对传统 GAN、采用 PCA 降维数据作为生成

器输入的 GAN（principal component based GAN，

PCGAN）及本文所提的改进 GAN 三者进行相同

的参数初始化及网络结构设置，即生成器与判别

器层数、每一层神经元个数、每一层激活函数、梯

度更新规则、学习率设置（采用指数衰减法，基学

习率为 0.01，衰减系数为 0.95，衰减速率为 2000
次迭代）均相同，训练相同次数后，采用 、 、

和 统计量对磨煤机数据进行故障检测，

Tscore Escore其中 为类比 统计量对采用主成分输入的

GAN 故障检测方法计算得到的统计量，如式

(9) 所示：

X = XPPT+XP̃P̃T

Tscore =
∥∥∥xP−XP

∥∥∥
1

(9)

X ∈ Rm×n x ∈ R1×n

P ∈ Rn×k P̃ ∈ Rn×(n−k)

xP XP
Tscore

Escore xP XP

式中： ， 分别为训练集和待测样本；

， 分别为为主元载荷矩阵和残差

载荷矩阵； 、 分别为待测样本得分向量和训

练集得分向量均值； 为统计量仿照本文所提

统计量。计算了 、 间的曼哈顿街区距

离，从而衡量以 PCA 提取信息作为 GAN 输入时

故障检测效果的好坏。
 

  
表 2    磨煤机过程变量描述

Table 2    Variable description of coal pulverizer process
 

变量序号 变量描述 变量序号 变量描述

1~4 进气流量（1~4） 26 主热气挡板阀开度

5 进气压力 27 分离器电流

6~8 进气温度（1~3） 28 分离器频率

9~13 煤原料（1~5） 29 分离器速度

14~15
输出煤粉压力

（1~2） 30~35
电机定子温度

（1~6）

16~22
输出煤粉温度

（1~7） 36~37
电机轴承温度

（1~2）

23 主冷气挡板控制 38~40 转子轴承油温

24 主冷气挡板阀开度 41~42 推力轴承温度

25 主热气挡板控制 43~46 变速箱油池温度
 

Dscore

Gscore

Dscore

Tscore

磨煤机过程检测结果对比图如图 9、10 所示，

检测效果见表 3。可以看出采用包含信息量更多

的编码器输出作为生成器输入，在帮助生成器生

成更接近真实数据分布的虚假样本的同时也提升

了判别器的效果，从而使得基于判别器的 统

计量能更好地检出故障。通过表 3 及对比图 10(a)、
(b)，可以发现相较于 PCA 得到的主成分，采用自

编码器降维后隐变量作为生成器输入，使得生成

对抗网络在低误报的同时具有更高的报警率，从

而体现出自编码器降维后得到的数据较 PCA 降

维后的数据包含更多原始数据中的信息，对生成

对抗网络具有更好的训练效果。另外，本文所提

统计量对比传统 GAN 故障检测算法中的两种统

计量对于磨煤机数据进行故障检测用时如表 4 所

示。结合表 3、表 4 可以看出本文基于自编码器

隐变量空间提出的统计量较传统 GAN故障检测

中的 统计量，计算速度得到了很大提升。而

检测用时与 GAN 故障检测中 及 PCGAN 故障

检测中 统计量为同一数量级的同时，检测效

果均优于二者。
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图 9    磨煤机过程控制图对比

Fig. 9    Comparison of control plot of coal pulzerizer process
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图 10    关于生成器输入的统计量检测结果对比

Fig. 10    Comparison of the statistics using different generator input
 
 
 

  
表 3    磨煤机过程检测结果对比

Table 3    Comparison of detection results of coal pulverizer process
 

方法 GAN PCGAN EIGAN

统计量 Dscore Gscore Dscore Gscore Tscore Dscore Gscore Escore

报警率 0.152 0.768 0.834 0.605 0.988 1.000 0.886 1.000

误报率 0.295 0.004 0.230 0.004 0.046 0.212 0 0.006
 
 

 

  
表 4    磨煤机过程检测时间对比

Table 4    Comparison of detection time of coal pulverizer
process

 

方法 GAN PCIGAN EIGAN

统计量 Dscore Gscore Dscore Tscore Dscore Escore

检测用时/s 0.032 20.730 0.032 0.018 0.040 0.048
 

对磨煤机数据训练集、测试集及其经自编码

器编码后的隐变量空间绘制箱线图，如图 11 所

示。通过对比图 11(a)、(c)、(e) 可以看出：经自编

码器提取出的隐变量空间及 PCA 方法提取出的

Escore Tscore

得分向量空间去除了线性相关及冗余的变量，以

少量的变量最大程度地还原了原有数据集中的信

息。但对比图 11(d)、(f) 发现测试集经自编码器

提取出的隐变量空间在变量 2、3、5 上均表现出

了与训练集隐变量空间的差异性，而测试集经

PCA 方法提取出的隐变量空间仅在变量 2 上表现

出了与训练集隐变量空间的差异性。此外，训练

集经 PCA 方法提取出的隐变量分布的离散程度

高于测试集隐变量分布，不利于故障检测。这也

解释了本文所提的 统计量较 统计量有利

于故障检测的原因。
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图 11    磨煤机数据及其隐变量箱线图

Fig. 11    Pulverizer data and its hidden variable box plot
 
  

4   结束语

本文提出了一种采用编码输入的生成对抗网

络故障检测方法，通过引入自编码器，将自编码

器降维后的数据作为生成对抗网络中生成器的输

入，改善了传统生成对抗网络中生成器使用随机

噪声作为输入带来的缺乏有效信息训练过程缓慢

的问题，提升了生成对抗网络的训练效果和检测

性能。所提方法与其他传统故障检测方法相比，

在 TE 及磨煤机过程仿真中具有更高的报警率，

表明了方法的有效性和可靠性。但在仿真过程中

发现生成对抗网络最终得到的生成器模型对于故

障检测贡献率不高，与此同时判别器在对样本进

行故障检测时仅考虑了待测样本维度上的信息。

如何更好地利用生成器设计统计量及改进判别器

模型得到关于待测样本更多更丰富的信息是未来

需要进一步考虑和研究的问题。
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