改进䲟鱼优化算法和熵测度的图像多阈值分割

刘庆鑫 李霓 贾鹤鸣 齐琦

刘庆鑫, 李霓, 贾鹤鸣, 等. 改进䲟鱼优化算法和熵测度的图像多阈值分割 [J]. 智能系统学报, 2024, 19(2): 381-391. doi: 10.11992/tis.202205018
引用本文: 刘庆鑫, 李霓, 贾鹤鸣, 等. 改进䲟鱼优化算法和熵测度的图像多阈值分割 [J]. 智能系统学报, 2024, 19(2): 381-391. doi: 10.11992/tis.202205018
LIU Qingxin, LI Ni, JIA Heming, et al. An improved remora optimization algorithm for multilevel thresholding image segmentation using an entropy measure [J]. CAAI Transactions on Intelligent Systems, 2024, 19(2): 381-391. doi: 10.11992/tis.202205018
Citation: LIU Qingxin, LI Ni, JIA Heming, et al. An improved remora optimization algorithm for multilevel thresholding image segmentation using an entropy measure [J]. CAAI Transactions on Intelligent Systems, 2024, 19(2): 381-391. doi: 10.11992/tis.202205018

改进䲟鱼优化算法和熵测度的图像多阈值分割

doi: 10.11992/tis.202205018
基金项目: 国家自然科学基金项目(11861030);海南省自然科学基金项目(621RC511,2019RC176);海南省研究生创新科研课题(Qhys2021-190).
详细信息
    作者简介:

    刘庆鑫,硕士研究生,主要研究方向为启发式优化算法、图像处理。E-mail:qxliu@hainanu.edu.cn;

    李霓,副教授,主要研究方向为生存分析、纵向数据分析、复杂删失数据的统计推断。主持国家自然科学基金项目2项,发表学术论文20余篇。E-mail:lini@hainnu.edu.cn;

    齐琦,副研究员,博士生导师,博士,中国计算机学会人工智能与模型识别、计算经济学专委会委员。主要研究方向为组合优化、算法博弈、计算智能以及数据挖掘和机器学习。参与国家重点研发计划和海南省重大科技计划等3项,发表学术论文20多篇。 E-mail:qqi@hainanu.edu.cn.

    通讯作者:

    齐琦. E-mail:qqi@hainanu.edu.cn.

  • 中图分类号: TP391.41;TP18

An improved remora optimization algorithm for multilevel thresholding image segmentation using an entropy measure

  • 摘要: 针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进䲟鱼优化算法并结合熵测度(weight lens remora optimization algorithm, WLROA)的图像多阈值分割方法。针对䲟鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学习策略,生成透镜反向解来增加种群多样性,进而提高算法跳出局部极值能力;提出一种自适应权重因子,对个体位置进行自适应扰动,提高算法探索能力。以最小化交叉熵作为优化目标,利用WLROA确定最小交叉熵并获得相应分割阈值。选取部分伯克利大学分割数据集图像和遥感图像测试提出算法的分割性能,测试结果表明,WLROA与其他知名算法相比具有更好的分割效果,能够有效实现复杂图像的精确处理。

     

    Abstract: To improve the poor segmentation quality of traditional image thresholding segmentation techniques, this study proposes an image multilevel thresholding segmentation method. This method is based on an improved remora optimization algorithm and entropy measure, specifically called the weight lens remora optimization algorithm (WLROA). First, lens opposition-based learning was used to generate the lens opposite solution. This approach bolstered population diversity and improved the algorithm’s ability to overcome local optimal solutions. Furthermore, an adaptive weight factor was introduced to perturb the individuals’ positions appropriately. This modification aimed to improve the algorithm’s exploratory ability. The optimization objective was to minimize cross entropy. To achieve this, WLROA was used to determine the minimum cross entropy and obtain the corresponding thresholds. A selection of images from the Berkeley segmentation data set and remote sensing images were selected to assess the segmentation performance of the proposed algorithm. These results were then compared with those from other methods. The results revealed that, in comparison with other well-known algorithms, WLROA yielded better segmentation results and proved effective in accurately processing complex images.

     

  • 图像阈值化分割具有简单高效、性能稳定等特点,被众多领域广泛使用,例如遥感、医学图像处理等。根据阈值数量的不同,阈值化分割可分为单阈值法和多阈值法。单阈值法选取一个最优阈值将图像分割成两部分,即前景与背景[1]。而多阈值法选取多个最优阈值分割图像的不同部分,因此相比于单阈值法,多阈值分割的应用前景更广阔。然而,如何确定最优分割阈值成为亟需解决的关键问题。传统穷举法处理较多阈值或复杂图像分割时,其计算时间呈指数增长,效率低下。为了解决上述方法所存在的不足,众多学者引入群体智能优化算法(swarm intelligence optimization algorithm, SIOA)确定最佳分割阈值[2-3]

    SIOA是一种受自然界生物群体行为启发的优化算法,具有简单高效、适应力强等特点。常见的SIOA有:爬行动物搜索算法(reptile search algorithm, RSA)[4]、算术优化算法(arithmetic optimization algorithm, AOA)[5]、阿奎拉鹰优化算法(Aquila optimizer, AO)[6]、正余弦优化算法(sine cosine algorithm, SCA)[7]。SIOA算法被提出的同时,众多学者针对算法存在的缺陷,设计出各种改进SIOA并将其应用于图像多阈值分割领域,取得了较好的效果[8-10]。文献[11]针对哈里斯鹰优化(Harris Hawks optimization, HHO)算法存在的不足,提出了一种融合动态控制参数与变异机制的改进HHO算法,提高了收敛性能,在遥感图像上取得了较好的分割效果。文献[12]利用反向学习策略和海洋捕食者算法,提出了一种高效的多阈值图像分割方法,分别在基准测试函数和测试图像中取得较好效果。文献[13]提出了一种改进教与学优化算法,并结合Kapur熵和最大类间方差法作为目标函数求解最佳阈值,实验结果证实算法的有效性。文献[14]针对黏菌算法(slime mould algorithm, SMA)所存在的优化性能不足等问题,引入莱维飞行和准反向学习策略,提出一种增强黏菌优化算法,通过最小化交叉熵来获取最佳阈值,改善了原算法在图像分割领域中存在的不足。文献[15]结合模拟退火机制、教与学搜索策略、精英自适应竞争分享机制和布谷鸟搜索算法,提出一种改进布谷鸟算法,通过经典测试图像验证其分割效果。上述研究工作将改进SIOA应用于图像多阈值分割,具有一定的效果。但大部分改进算法仍存在收敛精度不佳、速度慢等问题,影响分割效果。此外,NFL (no-free-lunch)定理[16]证明没有一种SIOA可以解决所有优化问题,即某种SIOA仅针对部分问题有效,对其他问题无效。因此,需要提出各类新颖或改进的SIOA来求解各类问题。

    䲟鱼优化算法(remora optimization algorithm, ROA)是Jia等[17]于2021年提出的SIOA,其灵感源于䲟鱼觅食过程中的寄生模式,通过吸附在其他宿主(座头鲸或剑鱼)上完成移动以及觅食行为。此外,䲟鱼还会根据当前捕食环境自动切换宿主,以实现捕食效益最大化。虽然ROA具有结构简单、参数较少等优点,但是在求解图像多阈值分割问题时ROA存在收敛精度低、速度慢,分割效果不佳等缺陷。因此,为解决上述问题,本研究提出一种改进䲟鱼优化算法并结合交叉熵 (weight lens remora optimization algorithm, WLROA)的图像多阈值分割方法。首先,引入透镜反射学习策略,在搜索空间中生成透镜反向解,并根据贪婪策略选择最佳解,提高算法的种群多样性与跳出局部最优能力,提升收敛速度。其次,提出一种自适应权重因子,对䲟鱼个体提供自适应扰动,提高探索性能。随机选取部分伯克利大学分割数据集图像以及遥感图像进行试验,通过适应度值(Fitness)评估、峰值信噪比(peak-signal-to-noise ratio, PSNR)、结构相似性指数(structural similarity, SSIM)以及特征相似性指数(feature similarity, FSIM)等图像质量评价指标验证改进算法的分割性能。试验结果表明本研究方法有效提升了ROA的收敛能力,具有较好的分割效果、鲁棒性和抗噪性,为后续图像分析提供技术基础。

    ROA是一种元启发式优化算法,其设计灵感源自于海洋中䲟鱼的寄生捕食行为。䲟鱼通过吸附在其他宿主(座头鲸或剑鱼)上完成移动、捕食以及躲避天敌等行为。与其他元启发式算法类似,ROA主要分为3个阶段,分别是初始化、探索和开发阶段。

    在此阶段,ROA通过随机方式在搜索空间中生成初始种群。种群向量由X表示,内部包含维度为dN个搜索代理,具体数学模型为

    $$ {\boldsymbol{X}} = \left[ {\begin{array}{*{20}{c}} {{x_{1,1}}}&{{x_{1,2}}}& \cdots &{{x_{1,d}}} \\ {{x_{2,1}}}&{{x_{2,2}}}& \cdots &{{x_{2,d}}} \\ \vdots & \vdots & \cdots & \vdots \\ {{x_{N,1}}}&{{x_{N,2}}}& \cdots &{{x_{N,d}}} \end{array}} \right] $$ (1)

    式中:N代表种群规模;d代表问题维度。

    䲟鱼通过附着在剑鱼身上以实现搜索空间内长距离运动,因此䲟鱼的行动轨迹等同于剑鱼。此外,䲟鱼还会在宿主周围进行小范围运动,探查周围捕食环境,确定是否更换宿主。

    1.2.1   剑鱼策略

    剑鱼是世界上游速较快的鱼类之一,䲟鱼通过附着在剑鱼身上实现在搜索空间中远距离快速移动,其位置更新方式为

    $$ {\boldsymbol{X}}(t + 1) = {{\boldsymbol{X}}_{\rm{best}}}(t) - ({r_1} \times \left(\frac{{{{\boldsymbol{X}}_{\rm{best}}}(t) + {{\boldsymbol{X}}_{\rm{rand}}}(t)}}{2}\right) - {{\boldsymbol{X}}_{\rm{rand}}}(t)) $$ (2)

    式中:Xbest(t)代表全局最优位置;r1表示0~1之间的随机数;Xrand(t)表示种群中随机个体。

    1.2.2   经验攻击

    确保捕食效益最大化,䲟鱼还会在宿主周围小范围移动,探查周围猎物分布,以确定是否需要更换宿主。数学表示为

    $$ {\boldsymbol{X}}(t + 1) = {\boldsymbol{X}}(t) + {r_G} \times ({\boldsymbol{X}}(t) - {{\boldsymbol{X}}_{{\rm{pre}}}}(t)) $$ (3)

    式中:rG表示遵循高斯分布且在[0,1]的随机数;Xpre(t)表示上一迭代次数的种群位置。

    䲟鱼通过附着在鲸鱼上完成捕食行为,因此捕食方式与鲸鱼相同。如果宿主未改变,䲟鱼将附着在合适的位置等待宿主饲养。

    1.3.1   鲸鱼策略

    此时鲸鱼通过泡泡网攻击策略完成捕食活动。相应地,䲟鱼通过附着在鲸鱼身上完成捕食行为。数学模型为

    $$ {\boldsymbol{X}}(t + 1) = {\boldsymbol{D}} \times {{\rm{e}}^a} \times \cos (2\text{π} \alpha ) + {\boldsymbol{X}}(t) $$ (4)
    $$ \alpha = {r_2} \times (a - 1) + 1 $$ (5)
    $$ a = - \left(1 + \frac{t}{T}\right) $$ (6)
    $$ {\boldsymbol{D}} = \left| {{{\boldsymbol{X}}_{\rm{best}}}(t) - {\boldsymbol{X}}(t)} \right| $$ (7)

    式中:D表示猎物与捕食者之间的位置差;r2表示0~1的随机数;tT分别表示当前和最大迭代次数。

    1.3.2   宿主饲养

    未改变宿主时,䲟鱼通过因子C选择合适的吸附点等待宿主饲养。数学模型如下

    $$ {\boldsymbol{X}}(t + 1) = {\boldsymbol{X}}(t) + A $$ (8)
    $$ A = B \times ({\boldsymbol{X}}(t) - C \times {{\boldsymbol{X}}_{\rm{best}}}(t)) $$ (9)
    $$ B = 2 \times V \times {r_3} - V $$ (10)
    $$ V = 2 \times \left(1 - \frac{t}{T}\right) $$ (11)

    式中:C代表䲟鱼因子,值为0.1;r3表示0~1的随机数。

    ROA算法执行步骤如下:

    1)初始化搜索空间、种群规模N、最大迭代次数T、䲟鱼因子C并生成初始化种群。

    2)对搜索代理执行边界修回并计算其适应度值。

    3)若H(i) = 0,则䲟鱼附着在鲸鱼身上,通过泡泡网攻击策略完成捕食(式(4))。当H(i) = 1时,䲟鱼附着在剑鱼上完成中远距离移动(式(2))。

    4)执行经验攻击(式(3)),若产生的新位置优于原始则替换,并且重置随机数组H,否则执行宿主饲养。

    5)判断程序是否满足终止条件,若满足则跳出循环并输出当前最佳解,否则返回步骤2)。

    ROA探索阶段主要依靠附着在剑鱼身上完成,如式(2)所示,分别利用了种群的最佳位置Xbest和随机位置Xrand。然而,Xbest具有较好的收敛表现但不具备广泛搜索能力,无法引导种群充分探索解空间,容易忽略潜在的区域。因此,本研究提出一种自适应权重因子,使Xbest具备自适应扰动能力,保证收敛能力的同时广泛探索周围邻域,从而发现更有潜力的解。数学模型如下

    $$ w(t + 1) = {r_G} \times \sin \left(\frac{{\text{π} t}}{{4 T}}\right) $$ (12)

    图1为该自适应权重因子曲线图。可以看出,迭代前期曲线波动较小,给予粒子较小的扰动。迭代中后期波动较大,为算法提供优越的全局探索性能,能够引导种群靠近最优区域或邻近区域。改进后的位置更新方式为

    图  1  自适应权重因子曲线
    Fig.  1  Curve of adaptive weight factor
    下载: 全尺寸图片
    $$ \begin{gathered} {\boldsymbol{X}}(t + 1) = w(t) \times {{\boldsymbol{X}}_{\rm{best}}}(t) -\\ \left({r_1} \times \left(\frac{{{{\boldsymbol{X}}_{\rm{best}}}(t) + {{\boldsymbol{X}}_{\rm{rand}}}(t)}}{2}\right) - {{\boldsymbol{X}}_{\rm{rand}}}(t)\right) \end{gathered} $$ (13)

    由第1节阐述可知,ROA通过附着于不同的宿主以实现迭代寻优。具体来说,䲟鱼分别附着在剑鱼和鲸鱼身上完成全局探索和局部开发。此外,䲟鱼还可根据周围环境自主判断是否更换宿主,提高捕食成功率。然而,上述的搜索策略主要依赖于宿主,若宿主的捕食能力不强(陷入局部最优陷阱),那么䲟鱼也会陷入其中,进而出现“早熟”现象,影响算法优化性能。为缓解这一趋势,引入透镜成像反向学习策略(lens opposition-based learning, LOBL)[18],利用凸透镜成像原理在搜索空间中生成透镜反向解,并通过贪婪策略选择较优个体进入下一次迭代。引入该策略有利于提升整体种群多样性,即利用透镜反向解丰富的搜索信息来提高种群跳出局部极值能力,加速算法收敛。

    图2可知,在一维空间[LB, UB]内存在点x,在透镜的作用下形成一个高度为$h^* $,位置在$x^* $的透镜成像。图2y轴代表凸透镜,位于空间中点。

    图  2  透镜成像反向学习示意
    Fig.  2  Diagram of lens opposition-based learning
    下载: 全尺寸图片

    由透镜成像原理可知

    $$ \frac{{({L_B} + {U_B})/2 - x}}{{{{{x}}^*} - ({L_B} + {U_B})/2}} = \frac{h}{{{h^*}}} $$ (14)

    其中,UBLB代表搜索空间上下界。设$k=h/h^* $,即式(14)可变换为

    $$ {{{x}}^*} = \frac{{{L_B} + {U_B}}}{2} + \frac{{{L_B} + {U_B}}}{{2k}} - \frac{x}{k} $$ (15)

    由式(15)可以看出,若k=1,此时就相当于反向学习策略,也可以说透镜成像反向学习是反向学习策略的一种特例。

    由1、2节介绍可知,ROA主要有3个阶段,分别是初始化阶段、探索阶段以及开发阶段。初始化阶段在搜索空间中生成种群规模为N的搜索代理,其中空间维度是d,则该阶段运算复杂度为O(N×d)。探索阶段ROA通过剑鱼策略和经验攻击完成位置更新,则该部分运算复杂度为O(N×d)。开发阶段通过鲸鱼策略和宿主饲养完成位置更新,运算复杂度为O(N×d)。探索阶段和开发阶段重复执行T次,则ROA运算复杂度为O(N×d×T)。在WLROA中,引入LOBL策略改善算法性能,其复杂度为O(N×d×T)。此外,引入自适应权重因子增强群体间交流学习,复杂度为O(T)。其余部分与原始算法相同。综上所述,WLROA运算复杂度为O(N×d×T),可见本研究所提算法并未增加运算复杂度。

    交叉熵用于度量2个概率分布间的差异性信息[19]。给定2个概率分布P = {p1, p2, …, pn}和Q = {q1, q2, …, qn},则PQ之间的交叉熵计算如下

    $$ {\boldsymbol{D}}\left( {{\boldsymbol{P}},{\boldsymbol{Q}}} \right) = \sum\limits_{i = 1}^n {{p_i}\log \frac{{{p_i}}}{{{q_i}}}} $$ (16)

    最小交叉熵方法通过最小化原始图像及其分割后图像之间的交叉熵来确定分割阈值。交叉熵值越低则代表确定性越高,同质性越大。设原始图像为I和与之相对应的直方图h(i), i=1, 2, …, L,其中L为灰度级数,则阈值图像及交叉熵可由以下等式计算生成:

    $$ {{\boldsymbol{I}}_K} = \left\{ \begin{gathered} \mu (1,{\text{ }}K),{\text{ }}\; {\boldsymbol{I}}(x,y) < K \\ \mu (K,{\text{ }}L + {\text{1}}),{\text{ }}\;{\boldsymbol{I}}(x,y) \geqslant K \\ \end{gathered} \right. $$ (17)
    $$ \mu (a,b) = \frac{{\displaystyle\sum\limits_{i = a}^{b - 1} {ih(i)} }}{{\displaystyle\sum\limits_{i = a}^{b - 1} {h(i)} }} $$ (18)

    通过式(17)生成阈值化图像,为方便计算,将其改写成以下形式

    $$ {f_{{\rm{cross}}}}(K) = \sum\limits_{i = 1}^L {ih(i)\log (i) - \sum\limits_{i = 1}^\lambda {{H_i}} } $$ (19)
    $$ {H_1} = \sum\limits_{i = 1}^{{K_1} - 1} {ih(i)\log (\mu (1,{\text{ }}{K_1}))} $$ (20)
    $$ {H_n} = \sum\limits_{i = {K_{n - 1}}}^{{K_n} - 1} {ih(i)\log (\mu ({K_{n - 1}},{\text{ }}{K_n}))} ,{\text{ }}1 < n < \lambda $$ (21)
    $$ {H_\lambda } = \sum\limits_{i = {K_\lambda }}^L {ih(i)\log (\mu ({K_\lambda },{\text{ }}L + 1))} $$ (22)

    式中:K = [K1, K2, …, Kλ]代表阈值组合;λ为阈值数目。

    综合上述分析,图像分割的最优阈值为

    $$ (K_{1}^*, K_{2}^*, \cdots, K_{\lambda }^*) = {\rm{argmin}}\; {{\boldsymbol{I}}(K_{1}, K_{2},\cdots, K_{\lambda})}$$ (23)

    本研究将改进䲟鱼优化算法和交叉熵结合,提出一种基于改进䲟鱼优化算法的图像多阈值分割方法(WLROA)。该方法的具体流程为:先读取待分割图像,然后在搜索空间内生成种群规模为N的候选解,通过搜索机制在T次迭代内寻优,确定分割阈值。与函数优化相似,该方法求解的也是最小值问题,以式(19)作为目标函数,得到原始图片与阈值化图片的最小交叉熵来确定最佳阈值。最后利用最佳阈值分割图像。具体步骤如下。

    1)初始化相关参数:种群规模N、最大迭代次数T、䲟鱼因子C。输入待分割的灰度图像及其直方图。

    2)对搜索代理进行边界修回,计算适应度值并记录最佳个体及适应度值。

    3)计算搜索代理的透镜反向解,计算适应度值并根据贪婪策略保存最优个体。

    4)若H(i) = 0,则䲟鱼附着在鲸鱼身上,通过泡泡网攻击策略完成捕食(式(4))。当H(i) = 1时,䲟鱼附着在剑鱼上完成中远距离自适应移动(式(13))。

    5)执行经验攻击(式(3)),若产生的新位置优于原始则替换,并且重置随机数组H,否则执行宿主饲养。

    6)判断程序是否满足终止条件,若满足则跳出循环并输出当前最佳分割阈值,否则返回步骤2)。

    为了验证本研究所提算法的分割性能和应用潜力,随机选取4张伯克利大学分割数据集图像和4张遥感图像作为测试图像[20-21],见图3。采用WLROA进行分割试验,并对比了领域内其他算法,包括:ROA、RSA、AOA、AO、SCA,文献[14]提出的增强黏菌算法(enhanced SMA, ESMA)、文献[2]提出的基于莱维飞行的樽海鞘群算法(Levy salp swarm algorithm, LSSA)和文献[3]提出的改进萤火虫算法。这些算法均在各自领域取得了较好结果,而且文献[14]、文献[2]以及文献[3]提出的改进SIOA被用于解决图像多阈值分割问题,代表性更佳。

    图  3  测试图像
    Fig.  3  Test images
    下载: 全尺寸图片

    为了更准确分析各算法的性能优劣,统一设定种群规模N=30,阈值组合K=[4, 6, 8, 10],最大迭代次数T=500,所有算法独立运行30次,选取平均值进行分析,其中最佳结果用粗体展示。各算法参数设置如表1所示。

    表  1  算法参数设置
    Table  1  Parameters settings of algorithms
    算法参数设置
    WLROAC=0.1; k=10000
    ROA [17]C=0.1
    RSA [4]α=0.1; β=0.1
    AOA [5]Α=5; μ=0.5
    AO [6]U=0.00565; c=10; ω=0.005; α=0.1; δ=0.1
    SCA [7]a=2
    ESMAz=0.03
    LSSAβ=1.5
    文献[3]β=0.4

    选取适应度值(Fitness)、PSNR、SSIM和FSIM作为评价指标评估图像分割质量。PSNR用于衡量图像失真程度,数值越高则说明图像失真越少。SSIM通过亮度、对比度以及结构信息评估图像分割质量,取值范围是[0,1],数值越高则证明图像相似度越高。FSIM是SSIM的一个变种,用于评估分割前后图像的特征相似性,取值范围与SSIM相同,数值越高则说明特征相似程度越高。上述指标的详细定义如文献[22-24]所述。

    表2给出了WLROA及对比算法在不同阈值情况下分割测试图像得到的平均适应度值。由表2中数据可以看出,WLROA在多数图像上均取得了最低适应度值,效果较佳。值得注意的是,当阈值数目为4时,算法所求适应度值基本相同,但随着阈值数目的增多,WLROA的优越性逐渐体现,所得结果较为理想,在多个案例中均获得了最佳适应度值,强于对比算法,也反映出WLROA在解决中高维图像阈值分割问题的潜力。

    表  2  各算法所获平均适应度值
    Table  2  The average Fitness values obtained by algorithms
    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像140.78410.78411.07220.78430.78410.80860.78430.78410.9726
    60.39930.39920.62370.39960.39930.51170.40530.40230.5982
    80.24290.25160.42320.24530.24310.36360.25630.24600.2844
    100.16720.17410.35070.18360.16940.29640.18600.17050.2633
    图像240.80700.80701.07470.80750.80700.83700.80710.80710.8471
    60.42740.42740.66190.43690.42740.53370.42980.42850.4803
    80.26250.26270.47800.29230.26270.38210.26590.26410.3017
    100.17870.17990.36140.21130.17890.29650.18800.18170.2041
    图像340.49890.49890.67560.50650.49890.54580.49950.49890.6608
    60.26340.26630.46340.27300.26340.35470.27080.26450.3323
    80.16270.16440.31760.17300.16270.26480.17430.16490.3798
    100.11140.11530.24570.13170.11220.20170.13600.11450.1896
    图像440.78130.78130.95480.78140.78130.79310.78300.78160.8040
    60.36640.37680.58460.36680.36640.45590.36720.36750.4541
    80.22240.22260.40890.23320.22260.33500.22610.22540.2652
    100.15560.15760.29790.17610.15740.25300.17150.15680.1870
    图像540.56210.56210.79300.56770.56210.60950.56390.56230.9234
    60.29020.29360.46490.30670.29020.37940.29250.29100.5057
    80.17630.17780.33660.19740.17650.27320.18580.17750.3330
    100.11810.11900.25760.14410.11890.21130.13770.12090.2408
    图像640.71670.71670.99780.71710.71670.74990.71680.71681.1243
    60.37360.37850.59780.40350.37360.49940.37360.37460.4728
    80.22810.23030.43470.25310.23000.34500.23170.22950.3066
    100.15240.15660.31540.18200.15590.30350.16780.15800.2252
    图像740.73930.73931.02130.75480.73930.77540.73990.73930.9179
    60.38850.38850.62830.41990.38850.49320.38910.38890.4554
    80.23560.23760.44710.26580.23760.37000.23780.23780.2987
    100.16310.16630.32620.19640.16430.27690.17370.16770.2204
    图像840.30580.31610.47410.31910.30580.33460.30600.30580.5487
    60.16780.16940.32270.17840.17270.23840.18200.16880.2520
    80.10720.11200.24280.12320.11010.18460.13160.10820.1832
    100.07610.08150.17570.08880.08070.14700.10820.07960.1487
    注:黑体代表最好的结果,下同。

    表3给出了WLROA及对比算法在不同阈值情况下分割测试图像得到的平均PSNR值。当阈值数目增加时PSNR值也随之增加,说明图像分割效果和阈值数目呈正相关。当阈值数目为4时,WLROA、ROA以及AO算法所得结果偏差较小,说明分割后图像差别不大。当阈值数量增加时,WLROA所得结果相较于对比算法有不同程度的提高,说明利用WLROA分割后的图像失真较少,精度较高,分割效果强于对比算法。

    表  3  各算法所获平均PSNR值
    Table  3  The average PSNR values obtained by algorithms
    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像1419.337619.337618.305219.353519.337619.272918.672219.337618.6688
    622.062122.061820.483922.074322.062921.233921.453022.052921.0169
    824.143924.046722.259224.123124.145722.725123.426124.096123.7340
    1025.696025.573623.015425.553225.651323.698325.063325.535924.5189
    图像2420.645220.645218.983520.639720.645220.483020.279820.613820.4716
    623.204723.204521.227923.140323.204522.320522.709923.202722.8622
    825.120025.155922.524424.876425.158023.754024.895924.922424.7986
    1026.751026.743323.868026.266426.704224.854826.170526.374226.4843
    图像3418.695518.695519.633318.732818.695518.662417.156918.695517.5156
    623.244423.200621.496122.957723.244421.762322.126123.214122.1770
    825.466125.472723.494025.206625.485323.882824.562425.418122.9060
    1027.199027.118024.618826.547227.162825.228826.072927.138325.6435
    图像4419.598320.185818.655519.484620.079019.680719.165619.521919.6251
    623.142023.009620.844623.152023.142022.116222.494323.150422.3062
    825.403225.373422.252025.298725.373123.659524.433525.399224.8316
    1026.987326.925823.921326.667726.940224.950026.463527.091426.2982
    图像5420.111520.111518.525920.079720.111519.723519.474620.111518.0879
    623.312223.260521.154023.066723.309822.151122.550923.310921.5086
    825.684025.650422.617225.268925.681523.698024.115925.625323.6156
    1027.560027.532823.944326.800227.515824.922826.405327.544425.6277
    图像6420.260720.260718.479620.246920.260720.062019.526220.258519.2469
    622.982022.942920.761222.734922.975321.940022.196522.966322.2882
    825.152225.034822.332024.794125.112223.426224.542625.138624.3716
    1026.677926.619023.718426.149826.544124.052125.685126.615425.6636
    图像7420.234020.234018.409120.148820.234020.038419.746020.234019.5687
    622.999822.993720.676722.802022.993922.086522.782022.998422.5610
    825.229425.195322.438024.822425.183123.283324.133425.179824.4737
    1026.674426.652323.645626.215926.633424.694426.158426.620126.0867
    图像8417.003016.902817.592816.811017.003016.778216.054817.003015.5547
    619.552219.545520.722719.184419.501119.175618.420519.506119.1064
    821.751821.696122.852420.765821.784321.217421.254721.737921.7965
    1025.909925.422024.156023.369025.211523.621524.377626.779223.3624

    表4给出了WLROA及对比算法在不同阈值情况下分割测试图像得到的平均SSIM值。当阈值数目增加时SSIM值也随之增加,说明图像分割效果和阈值数目呈正相关。当阈值数目为4时,WLROA、ROA以及AO算法所得结果基本一致。当阈值数量增加时,WLROA所得结果相较于对比算法有不同程度的提高。从整体上看,WLROA所得SSIM值明显高于RSA、AOA、SCA和文献[3]所提方法,同时相较于ROA、AO、ESMA、LSSA也有一定提高,优越性较为明显,说明利用WLROA完成图像多阈值分割任务,分割图像相比原图像在结构上更为相似。

    表  4  各算法所获平均SSIM值
    Table  4  The average SSIM values obtained by algorithms
    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像140.65060.65060.64430.65000.65060.64810.62200.64980.6256
    60.75120.75100.73580.75100.75100.72890.73770.75030.7229
    80.81220.81220.79830.80930.81230.77920.80050.81070.8097
    100.84980.84820.82450.83550.84770.81490.84550.84570.8377
    图像240.64960.64960.64110.64910.64960.64610.64320.64960.6455
    60.74160.74150.73390.73780.74160.73070.73290.74100.7411
    80.79640.79320.80290.77790.79350.78850.78800.78980.8013
    100.82530.82340.83170.80550.82270.82130.82290.81890.8358
    图像340.69200.69200.73700.69320.69200.68710.68740.69200.6333
    60.84130.84020.79660.83310.84130.79820.80730.84050.8074
    80.88790.88810.84770.88260.88830.85270.86760.88650.8028
    100.91730.91590.87160.90570.91680.88000.89480.91530.8819
    图像440.75580.75650.75160.75440.75640.74950.74020.75500.7534
    60.82350.82290.80340.82290.82330.80820.81010.82250.8095
    80.87290.87270.84130.86190.87260.83200.85800.86950.8619
    100.89270.89260.86190.88060.89330.86030.89150.88930.8887
    图像540.74770.74770.70920.74540.74770.73400.72290.74750.6595
    60.82990.82860.78900.82270.82980.79910.81150.82920.7731
    80.88330.88250.82530.86990.88300.83960.83900.88210.8278
    100.91580.91510.85150.89680.91500.86610.89400.91330.8696
    图像640.70730.70730.65830.70640.70730.69890.67590.70730.6543
    60.78660.78570.75060.77670.78660.76270.77260.78580.7752
    80.82920.82990.81360.82080.82880.80820.83760.82800.8284
    100.85640.85610.85150.84230.85570.82670.84820.85390.8701
    图像740.68860.68860.63060.68390.68860.68140.67450.68860.6663
    60.76420.76380.73510.75530.76390.75420.76690.76350.7537
    80.80600.80590.80210.80120.80540.79160.80830.80460.8173
    100.83160.83140.83180.81810.83090.82450.83940.82800.8391
    图像840.72730.72240.69580.71810.72730.71190.67170.72650.6412
    60.81640.81600.79300.80630.81440.78370.76290.81520.7862
    80.86850.86620.84470.84820.86780.83080.83000.86750.8444
    100.92100.91540.87540.89170.91390.87220.88140.91830.8727

    表5给出了WLROA及对比算法在不同阈值情况下分割测试图像得到的平均FSIM值。由表5数据情况可以看出,阈值数目为4时WLROA分割结果与其他算法相差不大。随着阈值数目的增加,WLROA相较于其他算法性能提升明显,说明利用WLROA完成图像分割任务,分割图像可保留更多的特征,相似性更高。

    表  5  各算法所获平均FSIM值
    Table  5  The average FSIM values obtained by algorithms
    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像140.76930.76930.73270.76910.76930.76450.74690.76930.7481
    60.84720.84720.79980.84750.84740.82030.82830.84680.8149
    80.89020.88810.84180.88930.89010.85360.87310.88130.8808
    100.91640.91450.85980.91060.91550.87290.90440.91460.8930
    图像240.86180.86180.80820.86200.86180.85730.85210.86110.8577
    60.90370.90380.86120.90420.90370.89050.89550.90260.8984
    80.92940.92970.88540.92950.92980.91080.92750.92700.9257
    100.94710.94700.90440.94400.94650.92340.94160.94550.9450
    图像340.77810.77810.77770.77950.77810.77530.74380.77810.7503
    60.86520.86430.82080.86140.86500.83430.84290.86440.8442
    80.90330.90330.86240.90380.90360.87420.88670.90190.8512
    100.92770.92660.88090.92350.92740.89840.90990.92570.9016
    图像440.80690.80420.78810.80730.80450.80390.79470.80470.8033
    60.87000.87000.83960.86970.86970.85640.85930.86890.8583
    80.90510.90430.86820.90150.90500.87320.89260.90360.8961
    100.92320.92280.88870.91670.92270.89510.91860.92210.9162
    图像540.90000.90000.86360.89990.90000.89120.88690.90000.8567
    60.94720.94640.91460.94200.94700.93360.93760.94620.9168
    80.96700.96680.93240.96270.96690.94690.94730.96560.9416
    100.97670.97670.94810.97180.97650.95640.96970.97440.9579
    图像640.94520.94520.90270.94400.94520.94140.93190.94480.9184
    60.96730.96700.93360.96520.96700.95910.96190.96620.9627
    80.97730.97710.95720.97590.97720.96770.97770.97530.9752
    100.98120.98110.96720.97970.98060.97300.97780.98000.9833
    图像740.94560.94560.89780.94200.94560.94120.93800.94560.9332
    60.96910.96900.93400.96760.96900.96080.96820.96860.9648
    80.97940.97900.95840.97740.97920.96970.97540.97820.9778
    100.98280.98200.96870.98220.98270.97670.98260.98040.9816
    图像840.86560.86390.85250.86280.86540.86110.84530.86560.8328
    60.89930.89870.90780.89650.89850.89060.88370.89780.8961
    80.91750.91700.93820.91150.91810.91300.91960.91620.9275
    100.95680.95210.95170.93410.94990.94520.94910.95510.9413

    图4列出了各算法对测试图像进行多阈值分割所需要的平均运行时间。从运行时间数据可以看出WLROA的运行时间相较于其他算法并不占优,产生该现象的主要原因是WLROA利用透镜反向学习策略生成透镜反向解,并根据贪婪机制选择最佳个体进入下轮迭代。但从适应度值和其他评价指标来看,WLROA的优化性能较好,适当增加一些运行时间来换取更高的优化精度是可以接受的。

    图  4  各算法平均运行时间
    Fig.  4  Average running time of each algorithm
    下载: 全尺寸图片

    综上试验结果表明,尽管WLROA在运行时间上弱于对比算法,但该算法在Fitness、PSNR、SSIM以及FSIM评价指标上均取得较好效果,说明利用该方法分割后的图像与原图像更为贴合,分割质量较佳,在处理中高维图像阈值分割问题时不易陷入早熟收敛。同时,本研究方法在分割遥感图像时也能取得较好的效果,说明WLROA具有不俗的应用能力,适用于解决不同复杂程度的图像阈值分割问题,为后续的图像处理阶段提供技术参考。

    为了更好地验证WLROA的分割鲁棒性和抗噪性,本研究在8幅灰度图像的基础上分别添加均值为0,方差为0.02的高斯噪声,并采用PSNR作为分割评价指标[25]。分割阈值和试验参数设置为4.1节所设。

    图5给出了各算法在不同阈值下分割噪声图像所得平均PSNR结果。可以看出在添加高斯噪声的情况下,本研究方法WLROA仍能取得最好的分割效果,鲁棒性强,能够降低噪声对图像分割结果的影响,也反映出该算法具有一定的抗噪性。

    图  5  不同阈值下各算法分割噪声图像的平均PSNR结果
    Fig.  5  Average PSNR results of noise images segmented by each algorithm under different thresholds
    下载: 全尺寸图片

    针对传统多阈值图像分割方法存在分割效率低、精度差等问题,提出一种基于改进䲟鱼优化算法的多阈值图像分割方法。首先,针对䲟鱼优化算法存在收敛速度慢、易陷入局部极值等问题,引入透镜成像反向学习策略增加种群多样性,提高算法收敛速度和跳出局部极值能力。其次,提出自适应权重策略,对种群位置进行自适应扰动,提高算法探索能力。最后,结合最小交叉熵进行迭代寻优,确定最佳分割阈值。为了验证所提算法的有效性,选取了部分伯克利大学分割数据集图像以及遥感图像,结合Fitness、PSNR、SSIM以及FSIM等指标来评估算法分割质量。试验结果表明,WLROA强于其他流行和先进算法,具有优越的分割准确性、鲁棒性和抗噪性,为解决复杂图像多阈值分割问题提供了一种行之有效的计算方法。然而,改进算法的运行时间相较于原始算法有一定的提高。因此,今后考虑在不降低WLROA分割性能的基础上减少算法的运行时间。同时,选取不同组合的分割阈值和基准测试图像来验证算法的分割效果。此外,考虑将WLROA应用到其他领域的图像分割(如林火图像分割、医学图像分割等),以验证算法解决现实问题的能力。

  • 图  1   自适应权重因子曲线

    Fig.  1   Curve of adaptive weight factor

    下载: 全尺寸图片

    图  2   透镜成像反向学习示意

    Fig.  2   Diagram of lens opposition-based learning

    下载: 全尺寸图片

    图  3   测试图像

    Fig.  3   Test images

    下载: 全尺寸图片

    图  4   各算法平均运行时间

    Fig.  4   Average running time of each algorithm

    下载: 全尺寸图片

    图  5   不同阈值下各算法分割噪声图像的平均PSNR结果

    Fig.  5   Average PSNR results of noise images segmented by each algorithm under different thresholds

    下载: 全尺寸图片

    表  1   算法参数设置

    Table  1   Parameters settings of algorithms

    算法参数设置
    WLROAC=0.1; k=10000
    ROA [17]C=0.1
    RSA [4]α=0.1; β=0.1
    AOA [5]Α=5; μ=0.5
    AO [6]U=0.00565; c=10; ω=0.005; α=0.1; δ=0.1
    SCA [7]a=2
    ESMAz=0.03
    LSSAβ=1.5
    文献[3]β=0.4

    表  2   各算法所获平均适应度值

    Table  2   The average Fitness values obtained by algorithms

    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像140.78410.78411.07220.78430.78410.80860.78430.78410.9726
    60.39930.39920.62370.39960.39930.51170.40530.40230.5982
    80.24290.25160.42320.24530.24310.36360.25630.24600.2844
    100.16720.17410.35070.18360.16940.29640.18600.17050.2633
    图像240.80700.80701.07470.80750.80700.83700.80710.80710.8471
    60.42740.42740.66190.43690.42740.53370.42980.42850.4803
    80.26250.26270.47800.29230.26270.38210.26590.26410.3017
    100.17870.17990.36140.21130.17890.29650.18800.18170.2041
    图像340.49890.49890.67560.50650.49890.54580.49950.49890.6608
    60.26340.26630.46340.27300.26340.35470.27080.26450.3323
    80.16270.16440.31760.17300.16270.26480.17430.16490.3798
    100.11140.11530.24570.13170.11220.20170.13600.11450.1896
    图像440.78130.78130.95480.78140.78130.79310.78300.78160.8040
    60.36640.37680.58460.36680.36640.45590.36720.36750.4541
    80.22240.22260.40890.23320.22260.33500.22610.22540.2652
    100.15560.15760.29790.17610.15740.25300.17150.15680.1870
    图像540.56210.56210.79300.56770.56210.60950.56390.56230.9234
    60.29020.29360.46490.30670.29020.37940.29250.29100.5057
    80.17630.17780.33660.19740.17650.27320.18580.17750.3330
    100.11810.11900.25760.14410.11890.21130.13770.12090.2408
    图像640.71670.71670.99780.71710.71670.74990.71680.71681.1243
    60.37360.37850.59780.40350.37360.49940.37360.37460.4728
    80.22810.23030.43470.25310.23000.34500.23170.22950.3066
    100.15240.15660.31540.18200.15590.30350.16780.15800.2252
    图像740.73930.73931.02130.75480.73930.77540.73990.73930.9179
    60.38850.38850.62830.41990.38850.49320.38910.38890.4554
    80.23560.23760.44710.26580.23760.37000.23780.23780.2987
    100.16310.16630.32620.19640.16430.27690.17370.16770.2204
    图像840.30580.31610.47410.31910.30580.33460.30600.30580.5487
    60.16780.16940.32270.17840.17270.23840.18200.16880.2520
    80.10720.11200.24280.12320.11010.18460.13160.10820.1832
    100.07610.08150.17570.08880.08070.14700.10820.07960.1487
    注:黑体代表最好的结果,下同。

    表  3   各算法所获平均PSNR值

    Table  3   The average PSNR values obtained by algorithms

    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像1419.337619.337618.305219.353519.337619.272918.672219.337618.6688
    622.062122.061820.483922.074322.062921.233921.453022.052921.0169
    824.143924.046722.259224.123124.145722.725123.426124.096123.7340
    1025.696025.573623.015425.553225.651323.698325.063325.535924.5189
    图像2420.645220.645218.983520.639720.645220.483020.279820.613820.4716
    623.204723.204521.227923.140323.204522.320522.709923.202722.8622
    825.120025.155922.524424.876425.158023.754024.895924.922424.7986
    1026.751026.743323.868026.266426.704224.854826.170526.374226.4843
    图像3418.695518.695519.633318.732818.695518.662417.156918.695517.5156
    623.244423.200621.496122.957723.244421.762322.126123.214122.1770
    825.466125.472723.494025.206625.485323.882824.562425.418122.9060
    1027.199027.118024.618826.547227.162825.228826.072927.138325.6435
    图像4419.598320.185818.655519.484620.079019.680719.165619.521919.6251
    623.142023.009620.844623.152023.142022.116222.494323.150422.3062
    825.403225.373422.252025.298725.373123.659524.433525.399224.8316
    1026.987326.925823.921326.667726.940224.950026.463527.091426.2982
    图像5420.111520.111518.525920.079720.111519.723519.474620.111518.0879
    623.312223.260521.154023.066723.309822.151122.550923.310921.5086
    825.684025.650422.617225.268925.681523.698024.115925.625323.6156
    1027.560027.532823.944326.800227.515824.922826.405327.544425.6277
    图像6420.260720.260718.479620.246920.260720.062019.526220.258519.2469
    622.982022.942920.761222.734922.975321.940022.196522.966322.2882
    825.152225.034822.332024.794125.112223.426224.542625.138624.3716
    1026.677926.619023.718426.149826.544124.052125.685126.615425.6636
    图像7420.234020.234018.409120.148820.234020.038419.746020.234019.5687
    622.999822.993720.676722.802022.993922.086522.782022.998422.5610
    825.229425.195322.438024.822425.183123.283324.133425.179824.4737
    1026.674426.652323.645626.215926.633424.694426.158426.620126.0867
    图像8417.003016.902817.592816.811017.003016.778216.054817.003015.5547
    619.552219.545520.722719.184419.501119.175618.420519.506119.1064
    821.751821.696122.852420.765821.784321.217421.254721.737921.7965
    1025.909925.422024.156023.369025.211523.621524.377626.779223.3624

    表  4   各算法所获平均SSIM值

    Table  4   The average SSIM values obtained by algorithms

    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像140.65060.65060.64430.65000.65060.64810.62200.64980.6256
    60.75120.75100.73580.75100.75100.72890.73770.75030.7229
    80.81220.81220.79830.80930.81230.77920.80050.81070.8097
    100.84980.84820.82450.83550.84770.81490.84550.84570.8377
    图像240.64960.64960.64110.64910.64960.64610.64320.64960.6455
    60.74160.74150.73390.73780.74160.73070.73290.74100.7411
    80.79640.79320.80290.77790.79350.78850.78800.78980.8013
    100.82530.82340.83170.80550.82270.82130.82290.81890.8358
    图像340.69200.69200.73700.69320.69200.68710.68740.69200.6333
    60.84130.84020.79660.83310.84130.79820.80730.84050.8074
    80.88790.88810.84770.88260.88830.85270.86760.88650.8028
    100.91730.91590.87160.90570.91680.88000.89480.91530.8819
    图像440.75580.75650.75160.75440.75640.74950.74020.75500.7534
    60.82350.82290.80340.82290.82330.80820.81010.82250.8095
    80.87290.87270.84130.86190.87260.83200.85800.86950.8619
    100.89270.89260.86190.88060.89330.86030.89150.88930.8887
    图像540.74770.74770.70920.74540.74770.73400.72290.74750.6595
    60.82990.82860.78900.82270.82980.79910.81150.82920.7731
    80.88330.88250.82530.86990.88300.83960.83900.88210.8278
    100.91580.91510.85150.89680.91500.86610.89400.91330.8696
    图像640.70730.70730.65830.70640.70730.69890.67590.70730.6543
    60.78660.78570.75060.77670.78660.76270.77260.78580.7752
    80.82920.82990.81360.82080.82880.80820.83760.82800.8284
    100.85640.85610.85150.84230.85570.82670.84820.85390.8701
    图像740.68860.68860.63060.68390.68860.68140.67450.68860.6663
    60.76420.76380.73510.75530.76390.75420.76690.76350.7537
    80.80600.80590.80210.80120.80540.79160.80830.80460.8173
    100.83160.83140.83180.81810.83090.82450.83940.82800.8391
    图像840.72730.72240.69580.71810.72730.71190.67170.72650.6412
    60.81640.81600.79300.80630.81440.78370.76290.81520.7862
    80.86850.86620.84470.84820.86780.83080.83000.86750.8444
    100.92100.91540.87540.89170.91390.87220.88140.91830.8727

    表  5   各算法所获平均FSIM值

    Table  5   The average FSIM values obtained by algorithms

    图像阈值WLROAROARSAAOAAOSCAESMALSSA文献[3]
    图像140.76930.76930.73270.76910.76930.76450.74690.76930.7481
    60.84720.84720.79980.84750.84740.82030.82830.84680.8149
    80.89020.88810.84180.88930.89010.85360.87310.88130.8808
    100.91640.91450.85980.91060.91550.87290.90440.91460.8930
    图像240.86180.86180.80820.86200.86180.85730.85210.86110.8577
    60.90370.90380.86120.90420.90370.89050.89550.90260.8984
    80.92940.92970.88540.92950.92980.91080.92750.92700.9257
    100.94710.94700.90440.94400.94650.92340.94160.94550.9450
    图像340.77810.77810.77770.77950.77810.77530.74380.77810.7503
    60.86520.86430.82080.86140.86500.83430.84290.86440.8442
    80.90330.90330.86240.90380.90360.87420.88670.90190.8512
    100.92770.92660.88090.92350.92740.89840.90990.92570.9016
    图像440.80690.80420.78810.80730.80450.80390.79470.80470.8033
    60.87000.87000.83960.86970.86970.85640.85930.86890.8583
    80.90510.90430.86820.90150.90500.87320.89260.90360.8961
    100.92320.92280.88870.91670.92270.89510.91860.92210.9162
    图像540.90000.90000.86360.89990.90000.89120.88690.90000.8567
    60.94720.94640.91460.94200.94700.93360.93760.94620.9168
    80.96700.96680.93240.96270.96690.94690.94730.96560.9416
    100.97670.97670.94810.97180.97650.95640.96970.97440.9579
    图像640.94520.94520.90270.94400.94520.94140.93190.94480.9184
    60.96730.96700.93360.96520.96700.95910.96190.96620.9627
    80.97730.97710.95720.97590.97720.96770.97770.97530.9752
    100.98120.98110.96720.97970.98060.97300.97780.98000.9833
    图像740.94560.94560.89780.94200.94560.94120.93800.94560.9332
    60.96910.96900.93400.96760.96900.96080.96820.96860.9648
    80.97940.97900.95840.97740.97920.96970.97540.97820.9778
    100.98280.98200.96870.98220.98270.97670.98260.98040.9816
    图像840.86560.86390.85250.86280.86540.86110.84530.86560.8328
    60.89930.89870.90780.89650.89850.89060.88370.89780.8961
    80.91750.91700.93820.91150.91810.91300.91960.91620.9275
    100.95680.95210.95170.93410.94990.94520.94910.95510.9413
  • [1] SU Hang, ZHAO Dong, YU Fanhua, et al. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images[J]. Computers in biology and medicine, 2022, 142: 105181. doi: 10.1016/j.compbiomed.2021.105181
    [2] 邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47(2): 363–377. doi: 10.16383/j.aas.c180140

    XING Zhikai, JIA Heming, SONG Wenlong. Levy flight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta automatica sinica, 2021, 47(2): 363–377. doi: 10.16383/j.aas.c180140
    [3] 贾鹤鸣, 彭晓旭, 邢致恺, 等. 改进萤火虫优化算法的Renyi熵污油图像分割[J]. 智能系统学报, 2020, 15(2): 367–373. doi: 10.11992/tis.201809002

    JIA Heming, PENG Xiaoxu, XING Zhikai, et al. Renyi entropy based on improved firefly optimization algorithm for image segmentation of waste oil[J]. CAAI transactions on intelligent systems, 2020, 15(2): 367–373. doi: 10.11992/tis.201809002
    [4] ABUALIGAH L, ELAZIZ M A, SUMARI P, et al. Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer[J]. Expert systems with applications, 2022, 191: 116158. doi: 10.1016/j.eswa.2021.116158
    [5] ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer methods in applied mechanics and engineering, 2021, 376: 113609. doi: 10.1016/j.cma.2020.113609
    [6] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & industrial engineering, 2021, 157: 107250.
    [7] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-based systems, 2016, 96: 120–133. doi: 10.1016/j.knosys.2015.12.022
    [8] LIU Qingxin, LI Ni, JIA Heming, et al. Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation[J]. Mathematics, 2022, 10(7): 1014. doi: 10.3390/math10071014
    [9] LIU Qingxin, LI Ni, JIA Heming, et al. A chimp-inspired remora optimization algorithm for multilevel thresholding image segmentation using cross entropy[J]. Artificial intelligence review, 2023, 56(1): 159–216.
    [10] LIU Qingxin, QI Qi, LI Ni. Federated opposite learning based arithmetic optimization algorithm for image segmentation using multilevel thresholding[C]//2023 26th International Conference on Computer Supported Cooperative Work in Design. Rio de Janeiro: IEEE, 2023: 1257−1262.
    [11] JIA Heming, LANG Chunbo, OLIVA D, et al. Dynamic Harris Hawks optimization with mutation mechanism for satellite image segmentation[J]. Remote sensing, 2019, 11(12): 1421. doi: 10.3390/rs11121421
    [12] HOUSSEIN E H, HUSSAIN K, ABUALIGAH L, et al. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation[J]. Knowledge-based systems, 2021, 229: 107348. doi: 10.1016/j.knosys.2021.107348
    [13] WU Bo, ZHOU Jianxin, JI Xiaoyuan, et al. An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance[J]. Information sciences, 2020, 533: 72–107. doi: 10.1016/j.ins.2020.05.033
    [14] LIN Shanying, JIA Heming, ABUALIGAH L, et al. Enhanced slime mould algorithm for multilevel thresholding image segmentation using entropy measures[J]. Entropy, 2021, 23(12): 1700. doi: 10.3390/e23121700
    [15] 吴禄慎, 程伟, 胡赟. 应用改进布谷鸟算法优化多阈值图像分割[J]. 吉林大学学报(工学版), 2021, 51(1): 358–369. doi: 10.13229/j.cnki.jdxbgxb20190858

    WU Lushen, CHENG Wei, HU Yun. Image segmentation of multilevel threshold based on improved cuckoo search algorithm[J]. Journal of Jilin university (engineering and technology edition), 2021, 51(1): 358–369. doi: 10.13229/j.cnki.jdxbgxb20190858
    [16] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE transactions on evolutionary computation, 1997, 1(1): 67–82. doi: 10.1109/4235.585893
    [17] JIA Heming, PENG Xiaoxu, LANG Chunbo. Remora optimization algorithm[J]. Expert systems with applications, 2021, 185: 115665. doi: 10.1016/j.eswa.2021.115665
    [18] FAN Qian, CHEN Zhenjian, ZHANG Wei, et al. ESSAWOA: enhanced Whale optimization algorithm integrated with salp swarm algorithm for global optimization[J]. Engineering with computers, 2022, 38(1): 797–814.
    [19] RODRÍGUEZ-ESPARZA E, ZANELLA-CALZADA L A, OLIVA D, et al. An efficient Harris Hawks-inspired image segmentation method[J]. Expert systems with applications, 2020, 155: 113428. doi: 10.1016/j.eswa.2020.113428
    [20] ZHAO Songwei, WANG Pengjun, HEIDARI A A, et al. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease[J]. Computers in biology and medicine, 2021, 134: 104427. doi: 10.1016/j.compbiomed.2021.104427
    [21] HE Qibin, SUN Xian, DIAO Wenhui, et al. Multimodal remote sensing image segmentation with intuition-inspired hypergraph modeling[J]. IEEE transactions on image processing, 2023, 32: 1474–1487. doi: 10.1109/TIP.2023.3245324
    [22] HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics letters, 2008, 44(13): 800. doi: 10.1049/el:20080522
    [23] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    [24] ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2011, 20(8): 2378–2386. doi: 10.1109/TIP.2011.2109730
    [25] LI Xinli, LI Xiaoxiao, YANG Guotian. A novelty harmony search algorithm of image segmentation for multilevel thresholding using learning experience and search space constraints[J]. Multimedia tools and applications, 2023, 82(1): 703–723. doi: 10.1007/s11042-022-13288-y
WeChat 点击查看大图
图(5)  /  表(5)
出版历程
  • 收稿日期:  2022-05-17
  • 录用日期:  2023-11-30
  • 网络出版日期:  2023-11-30

目录

    /

    返回文章
    返回