2. 北京大学 工学院,北京 100871
2. College of Engineering, Peking University, Beijing 100871, China
自然界里存在着许多生物聚集的现象,比如候鸟迁徙、鱼群逆流、蚁群迁徙等,通过对自然界各种群集现象的研究以及对现有的网络模型结构的理解,学者们提出了多智能体系统(multi-agent systems,MAS)的概念[1]。多智能体系统中各智能体间相互协同合作的基础就是一致性问题;文献[2]给出了多智能体系统一致性问题的系统基础结构,同时对一致性问题提出了标准化的数学表达。
在多智能体系统实际应用中,为解决如机器人的避障问题、两组无人机在保持其编队的同时向相反方向飞行问题等。文献[3]研究了存在敌对关系的多智能体系统的一致性问题,提出了二分一致性的概念,其中将智能体划分为两个不同的集合,这两个集合中的智能体分别收敛到两个大小相同但符号相反的期望值并保持一致。文献[4]分析给出了存在敌对关系的含常数时滞多智能体系统达到二分一致性的充分必要条件,证明了具有无向拓扑结构的多智能体系统可行的最大时滞仅仅和拉普拉斯矩阵的最大特征值有关。此外,文献[5-8]在多智能系统二分一致性方面也做了重要研究。在智能体系统应用中,由于通信设备发展水平限制各个体之间客观存在通信时延,这一问题严重地影响系统的稳定性。因此,研究含通信时延的多智能体系统的稳定性在实际工程中有着至关重要的意义。文献[9-10]通过对系统进行了频域的分析,同时还利用线性矩阵不等式的定理给出了系统在所提出的控制协议中,允许的时滞上界。文献[11-12]中分别给出了具有常数时延的二阶多智能体系统达成一致的充分必要条件。文献[13]利用线性矩阵不等式理论,对通信时延为常数的二阶多智能体系统给出实现一致性收敛的充分条件。对于一般时延线性系统,文献[14]研究了一种基于观测器的多智能体系统控制策略,利用系统转换方法,建立了多智能体系统一致性的等价条件。文献[15-16]通过适当的线性变换,证明了含时变时延的离散线性多智能体系统的一致性理论。文献[17-18]针对通信资源受限的情况,设计分析分布式异步控制算法,解决了结构不平衡有向图中多智能体系统环形编队问题。同时,文献[19-22]进一步对考虑时滞约束条件下的多智能系统进行稳定性问题分析。
综合所述,本文研究了具有固定时延和时变时延的多智能体系统二分一致性控制。在固定时延系统下,利用广义Nyquist准则的方法,分析并得到系统实现二分一致的充分条件。在时变时延下,利用Lyapunov稳定性理论和线性矩阵不等式理论,分析得到相较于文献[16]保守性更小的系统实现二分一致性的充分条件。
文中
考虑权重符号图,用三元组
${a_{ij}} = \left\{ {\begin{array}{*{20}{l}} { {\text{非}} 0,}\quad{\left( {{v_j},{v_i}} \right) \in E}\\ {0,}\quad{\text{其他}} \end{array}} \right.$ |
本文不考虑带自环的图,即
考虑正负混合连接权重矩阵
${l_{ij}} = \left\{ {\begin{array}{*{20}{l}} {\displaystyle\sum \limits_{j \in {N_i}} \left| {{a_{ij}}} \right|{\rm{,}}}\quad{j = i}\\ { - {a_{ij}}{\rm{,}}}\quad{j \ne i} \end{array}} \right.$ |
其中
定义1[23] 对于符号图
1)若
2)若
则称该符号图
引理1[24] 若图
引理2[25] 对于任意
引理3[18] 对于
假设系统由
$ {\dot{x}}_{i}\left(t\right)={u}_{i}\left(t\right),i=\mathrm{1,2},\cdots ,n $ | (1) |
其中
$ \begin{array}{l} {u_i}\left( t \right) = - \displaystyle\sum\limits_{j \in {N_i}} {\left| {{a_{ij}}} \right|} ({x_i}\left( {t - {\tau _0}} \right) - {\rm{sgn}}\left( {{a_{ij}}} \right){x_j}(t - {\tau _0})) \end{array}$ | (2) |
和
$ \begin{array}{l} {u}_{i}\left(t\right)=-\displaystyle\sum \limits_{j\in {N}_{i}}\left|{a}_{ij}\right|({x}_{i}\left(t-\tau \left(t\right)\right)- \mathrm{sgn}\left({a}_{ij}\right){x}_{j}(t-\tau (t\left)\right) \end{array} $ | (3) |
其中
定义向量
$ \dot{{ x}}\left(t\right)=-{ L}{ x}\left(t-{\tau }_{0}\right) $ | (4) |
和
$ \dot{{ x}}\left(t\right)=-{ L}{ x}(t-\tau (t\left)\right) $ | (5) |
其中
为便于进行二分一致性分析,引入中间变量对原系统进行规范状态变换。定义矩阵
定义
$ \begin{array}{c} \dot{{ Y}}\left(t\right)={ D}\dot{{ x}}\left(t\right)={ D}\left(-{ L}{ x}\left(t-{\tau }_{0}\right)\right)= \\ { D}\left(-{ L}{{ D}}^{-1}{ Y}\left(t-{\tau }_{0}\right)\right)= -{{ L}}_{{ D}}{ Y}\left(t-{\tau }_{0}\right) \end{array} $ | (6) |
其中
$ \begin{array}{l} {{ L}}_{{ D}}={ D}{ L}{ D}={ C}-{ D}{ A}{ D}= \\ \left\{ {\begin{array}{*{20}{l}} { - |{a_{ij}}|,}\quad{{v_j}\in {N_i}}\\ {\displaystyle \sum \limits_{{v_j}\in {N_i}} \left| {{a_{ij}}} \right|,}\quad{j = i}\\ {0,}\quad{\text{其他}} \end{array}} \right. \end{array} $ |
可知系统式(4)的二分一致性问题等价于系统式(6)的稳定性问题。
定理1 给定包含
证明 对系统(6)进行拉氏变换,得到特征方程:
$ \mathrm{det}\left(s{ I}+{{ L}}_{{ D}}\left(s\right)\right)=0 $ |
其中
$\begin{array}{l} {{ L}}_{{ D}}\left(s\right)={\mathrm{e}}^{-{\tau }_{0}s}\left({ C}-{ D}{ A}{ D}\right)= \\ \left\{ {\begin{array}{*{20}{l}} { - |{a_{ij}}|{{\rm{e}}^{ - {\tau _0}s}},}\quad{{v_j} \in {N_i}}\\ {\displaystyle \sum \limits_{{v_j}\in {N_i}} \left| {{a_{ij}}} \right|{{\rm{e}}^{ - {\tau _0}s}},}\quad{j = i}\\ {0,}\quad{\text{其他}} \end{array}} \right. \end{array}$ |
令
$ F\left(s\right)=\mathrm{det}\left({s}{ I}+{{ L}}_{{ D}}\left(s\right)\right) $ | (7) |
根据线性系统稳定性条件和判定规则可知,系统式(6)要实现稳定性等价于
1)当
2)当
$ {F}^{*}\left(s\right)=\mathrm{d}\mathrm{e}\mathrm{t}({ I}+{ G}(s\left)\right) $ | (8) |
其中
$ { G}\left(s\right)={\mathrm{e}}^{-{\tau }_{0}s}\frac{{ C}-{ D}{ A}{ D}}{s} $ | (9) |
若使式(7)的零点都具有负实部,则式(8)的零点需都具有负实部。令
$ { G}\left(\mathrm{j}\omega \right)={\mathrm{e}}^{-{\tau }_{0}\mathrm{j}\omega }\frac{{ C}-{ D}{ A}{ D}}{s} $ | (10) |
根据广义Nyquist准则,当式(10)特征值
$ \lambda \left({{G}}\left(\mathrm{j}\omega \right)\right)\in {\cup }_{i\in { N}}{G}_{i} $ | (11) |
$ \begin{array}{c} {G}_{i}=\left\{\zeta \epsilon C,|\zeta -\displaystyle\sum \limits_{{v}_{j}\epsilon {{ N}}_{i}}\left|{a}_{ij}\right|\dfrac{{\mathrm{e}}^{-{\tau }_{0}\mathrm{j}\omega }}{\mathrm{j}\omega } \leqslant \left|\displaystyle\sum \limits_{{v}_{j}\epsilon {{ N}}_{i}}\left|{a}_{ij}\right|\dfrac{{\mathrm{e}}^{-{\tau }_{0}\mathrm{j}\omega }}{\mathrm{j}\omega }\right|\right\} \end{array} $ | (12) |
其中,
$ {G}_{i0}\left(\mathrm{j}\omega \right)={\varepsilon }_{i}\frac{{\mathrm{e}}^{-{\tau }_{0}\mathrm{j}\omega }}{\mathrm{j}\omega } $ |
定义复平面原点为0点,则过0点和圆盘中心
$ {W}_{i}\left(\mathrm{j}\omega \right)=2{\varepsilon }_{i}\frac{{\mathrm{e}}^{-{\tau }_{0}\mathrm{j}\omega }}{\mathrm{j}\omega } $ |
由引理2 ,令
$ \begin{array}{c} \gamma {\rm{C}}\mathrm{o}({0\cup \{E}_{i}\left(\mathrm{j}\omega \right),i\in { N}\})\ni \\ {\gamma }_{i}{\rm{C}}\mathrm{o}({0\cup \{E}_{i}\left(\mathrm{j}\omega \right),i\in { N}\})={\rm{C}}\mathrm{o}({W}_{i}\left(\mathrm{j}\omega \right),i\in { N}\left\}\right) \end{array}$ |
可知,
在实际工程中多智能系统所含时延并不是固定不变的,因此在本节中将考虑系统中含有时变时延的一阶系统进行二分一致性分析,针对系统式(5)引入中间变量对其进行规范状态变换,过程同式(4)变换:
$ \dot{{ Y}}\left(t\right)=-{{ L}}_{{ D}}{ Y}\left(t-\tau \left(t\right)\right) $ | (13) |
易得知式(13)的稳定性问题等价于系统式(5)的二分一致性问题。因此,可以借助系统式(13)的稳定性分析扩展到二分一致性分析。
下面通过构造Lyapunov-Krasovskii函数,给出了含时变时延系统式(5)实现二分一致性的充分条件。
定理2 假设系统式(1)的拓扑是连通且结构平衡的,如果存在对称矩阵:
$ {{\psi = }}\left[ {\begin{array}{*{20}{c}} {{{{\Lambda }}_{11}}}&{{{{\Lambda }}_{12}}}&{{{{\Lambda }}_{13}}}&{{{{P}}_{12}}}&{ - \dfrac{1}{h}{{W}}_{11}^{\rm{T}} + \dfrac{1}{h}{{Z}}}\\ * &{{{{\Lambda }}_{22}}}&{ - {{L}}_{{D}}^{\rm{T}}}&0&{ - {{L}}_{{D}}^{\rm{T}}{{{P}}_{13}}}\\ * & * &{{{{\Lambda }}_{33}}}&{{{{P}}_{22}}}&{ - {{{P}}_{33}} + \dfrac{1}{h}{{W}}_{12}^{\rm{T}}}\\ * & * & * &{ - {{{Q}}_{22}}}&{{{{P}}_{23}}}\\ * & * & * & * &{ - \dfrac{1}{h}{{{W}}_{11}} - \dfrac{1}{{{h^2}}}{{Z}}} \end{array}} \right] < 0 $ | (14) |
$\begin{array}{c} { P}=\left[\begin{array}{c}{{ P}}_{11}\; {{ P}}_{12}\; {{ P}}_{13}\\ {{{ P}}^{\mathrm{T}}_{12}}\; {{ P}}_{22} \;{{ P}}_{23}\\ {{{ P}}^{\mathrm{T}}_{13}}\; {{{ P}}^{\mathrm{T}}_{23}}\; {{ P}}_{33}\end{array}\right]>0;{ Q}=\left[\begin{array}{c}{{ Q}}_{11} \;{{ Q}}_{12}\\ {{{ Q}}^{\mathrm{T}}_{12}}\; {{ Q}}_{22}\end{array}\right]>0 \; \\ { W}=\left[\begin{array}{c}{{ W}}_{11} \;{{ W}}_{12}\\ {{{ W}}^{\mathrm{T}}_{12}} \;{{ W}}_{22}\end{array}\right]>0 ;\; { Z}>0 \end{array}$ | (15) |
式中:*表示对称的值,且
$ \begin{array}{c} {{ \varLambda }}_{11}={{ P}}_{13}+{{{ P}}_{13}}+{{ Q}}^{\mathrm{T}}_{11}+h{{ W}}_{11} \\ {{ \varLambda }}_{12}=-{{ P}}_{11}{{ L}}_{{ D}}-{{ Q}}_{12}{{ L}}_{{ D}}-h{{ W}}_{11}{{ L}}_{{ D}} \\ {{ \varLambda }}_{13}=-{{ P}}_{13}+{{{ P}}^{\mathrm{T}}_{23}}+\dfrac{1}{h}{{ W}}_{22} \\ {{ \varLambda }}_{22}={{ Q}}_{22}-{h}{{{ L}}^{\mathrm{T}}_{{ D}}}{{ W}}_{22}{{ L}}_{{ D}}+\dfrac{{{h}}^{2}}{2}{{{ L}}^{\mathrm{T}}_{{ D}}}{ Z}{{ L}}_{{ D}} \\ {{ \varLambda }}_{33}=-{{ P}}_{23}-{{{ P}}^{\mathrm{T}}_{23}}-{{ Q}}_{11}-\dfrac{1}{h}{{ W}}_{22} \end{array} $ |
证明 构造如下Lyapunov-Krasovskii函数:
$ { V}\left(t\right)={{ V}}_{1}\left(t\right)+{{ V}}_{2}\left(t\right)+{{ V}}_{3}\left(t\right)+{{ V}}_{4}\left(t\right) $ | (16) |
其中
$\begin{array}{c} {{ V}}_{1}\left(t\right)={{ \varsigma }\left(t\right)}^{\mathrm{T}}{ P}{ \varsigma }\left(t\right) \\ {{ V}}_{2}\left(t\right)=\displaystyle\int_{t-\tau \left(t\right)}^{t}{{ \rho }\left(s\right)}^{\mathrm{T}}{ Q}{ \rho }\left(s\right)\mathrm{d}s \\ {{ V}}_{3}\left(t\right)=\displaystyle\int_{-h}^{0}\int_{t+\theta }^{t}{{ \rho }\left(s\right)}^{\mathrm{T}}{ W}{ \rho }\left(s\right)\mathrm{d}s\mathrm{d}\theta \\ {{ V}}_{4}\left(t\right)=\displaystyle\int_{-h}^{0}\int_{\theta }^{0}\int_{t+\lambda }^{t}{\dot{{ Y}}\left(s\right)}^{\mathrm{T}}{ R}\dot{{ Y}}\left(s\right)\mathrm{d}s\mathrm{d}\lambda \mathrm{d}\theta \\ { \varsigma }\left(t\right)={\left[{{ Y}\left(t\right)}^{\mathrm{T}}\quad{{ Y}\left(t-h\right)}^{\mathrm{T}}\quad\displaystyle\int_{t-h}^{t}{{ Y}\left(s\right)}^{\mathrm{T}}{\rm{d}}s\right]}^{\mathrm{T}} \\ { \rho }\left(s\right)={\left[{{ Y}\left(s\right)}^{\mathrm{T}}\quad{\dot{{ Y}}\left(s\right)}^{\mathrm{T}}\right]}^{\mathrm{T}} \end{array} $ |
根据Newton-Leibniz公式,则有式(17)和(18):
$ { Y}\left(t-h\right)={ Y}\left(t\right)-\int_{t - h}^t \dot{{ Y}}\left(s\right){\rm{d}}s $ | (21) |
$ \begin{array}{c} \displaystyle\int_{-h}^{0}\displaystyle\int_{t+\theta }^{t}\dot{{ Y}}\left(\mathrm{s}\right)\mathrm{d}s\mathrm{d}\theta =\displaystyle\int_{-h}^{0}\left[{ Y}\left(t\right)-{ Y}\left(t-\theta \right)\right]\mathrm{d}\theta = \\ h{ Y}\left(t\right)-\displaystyle\int_{t-h}^{t}{ Y}\left(s\right){\rm{d}}s \end{array} $ | (22) |
有如下积分不等式:
$ \begin{array}{c} -\displaystyle\int_{t-h}^{t}{{ \rho }\left(s\right)}^{\mathrm{T}}{ W}{ \rho }\left(s\right)\mathrm{d}s\leqslant \\ -\dfrac{1}{h}\displaystyle\int_{t-h}^{t}{{ \rho }\left(s\right)}^{\mathrm{T}}\mathrm{d}s{ W}\displaystyle\int_{t-h}^{t}{ \rho }\left(s\right)\mathrm{d}s \end{array} $ | (23) |
$ \begin{array}{c} \displaystyle\int_{-h}^{0}\displaystyle\int_{t+\theta }^{t}{\dot{{ Y}}\left(s\right)}^{\mathrm{T}}{ R}\dot{{ Y}}\left(s\right)\mathrm{d}s\mathrm{d}\theta \leqslant \\ -\dfrac{2}{{h}^{2}}\displaystyle\int_{-h}^{0}\displaystyle\int_{t+\theta }^{t}{\dot{{ Y}}\left(s\right)}^{\mathrm{T}}\mathrm{d}s\mathrm{d}\theta { R}\displaystyle\int_{-h}^{0}\displaystyle\int_{t+\theta }^{t}\dot{{ Y}}\left(s\right)\mathrm{d}s\mathrm{d}\theta \end{array} $ | (24) |
对式(17)~(20)沿系统式(5)轨迹的时间导数,考虑式(21)~(24)则有
$ \begin{array}{c} {\dot{{ V}}}_{1}\left(t\right)={\dot{{ \varsigma }}\left(t\right)}^{\mathrm{T}}{ P}{ \varsigma }\left(t\right)+{{ \varsigma }\left(t\right)}^{\mathrm{T}}{ P}\dot{{ \varsigma }}\left(t\right)= \\ \left[{{ Y}\left(t\right)}^{\mathrm{T}}\;\;\;{{ Y}\left(t-h\right)\;}^{\mathrm{T}}\;\;\;\displaystyle\int_{t-h}^{t}{{ Y}\left(s\right)}^{\mathrm{T}}{\rm{d}}s\right].\\ \left[\begin{array}{ccc}{{ P}}_{11}& {{ P}}_{12}& {{ P}}_{13}\\ *& {{ P}}_{22}& {{ P}}_{23}\\ *& *& {{ P}}_{33}\end{array}\right]\left[\begin{array}{c}{ Y}\left(t\right)\\ { Y}\left(t-h\right)\\ \displaystyle\int_{t-h}^{t}{ Y}\left(s\right){\rm{d}}s\end{array}\right] \end{array} $ | (25) |
$ \begin{array}{c} {\dot{{ V}}}_{2}\left(t\right)={{ \rho }\left(t\right)}^{\mathrm{T}}{ Q}{ \rho }\left(t\right)-{{ \rho }\left(t-h\right)}^{\mathrm{T}}{ Q}{ \rho }\left(t-h\right)= \\ \left[{{ Y}\left(t\right)}^{\mathrm{T}}\quad{\dot{{ Y}}\left(t\right)}^{\mathrm{T}}\right]\left[\begin{array}{cc}{{ Q}}_{11}& {{ Q}}_{12}\\ *& {{ Q}}_{22}\end{array}\right]\left[\begin{array}{c}{ Y}\left(t\right)\\ \dot{{ Y}}\left(t\right)\end{array}\right]- \\ {\left[\begin{array}{c}{ Y}\left(t-h\right)\\ \dot{{ Y}}\left(t-h\right)\end{array}\right]}^{\mathrm{T}}\left[\begin{array}{cc}{{ Q}}_{11}& {{ Q}}_{12}\\ *& {{ Q}}_{22}\end{array}\right]\left[\begin{array}{c}{ Y}\left(t-h\right)\\ \dot{{ Y}}\left(t-h\right)\end{array}\right] \end{array} $ | (26) |
$ \begin{array}{c} {\dot{{ V}}}_{3}\left(t\right)=h{{ \rho }\left(t\right)}^{\mathrm{T}}{ W}{ \rho }\left(t\right)-\displaystyle\int_{t-h}^{t}{{ \rho }\left(s\right)}^{\mathrm{T}}{ W}{ \rho }\left(s\right)\mathrm{d}s \leqslant \\ h\left[{{ Y}\left(t\right)}^{\mathrm{T}}{\dot{{ Y}}\left(t\right)}^{\mathrm{T}}\right]\left[\begin{array}{cc}{{ W}}_{11}& {{ W}}_{12}\\ *& {{ W}}_{22}\end{array}\right]\left[\begin{array}{c}{ Y}\left(t\right)\\ \dot{{ Y}}\left(t\right)\end{array}\right]- \\ \dfrac{1}{h}\displaystyle\int_{t-h}^{t}{\left[\begin{array}{c}{ Y}\left(s\right)\\ \dot{{ Y}}\left(s\right)\end{array}\right]}^{\mathrm{T}}\mathrm{d}s\left[\begin{array}{cc}{{ W}}_{11}& {{ W}}_{12}\\ *& {{ W}}_{22}\end{array}\right]\displaystyle\int_{t-h}^{t}\left[\begin{array}{c}{ Y}\left(s\right)\\ \dot{{ Y}}\left(s\right)\end{array}\right]\mathrm{d}s \end{array} $ | (27) |
$ \begin{array}{c} {\dot{{ V}}}_{4}\left(t\right)=\dfrac{{h}^{2}}{2}{\dot{{ Y}}\left(t\right)}^{\mathrm{T}}{ Z}\dot{{ Y}}\left(t\right)-\displaystyle\int_{-h}^{0}\displaystyle\int_{t+\theta }^{t}{\dot{{ Y}}\left(s\right)}^{\mathrm{T}}{ Z}\dot{{ Y}}\left(s\right)\mathrm{d}s\mathrm{d}\theta - \\ \displaystyle\int_{-h}^{0}\displaystyle\int_{t+\theta }^{t}{\dot{{ Y}}\left(s\right)}^{\mathrm{T}}{ Z}\dot{{ Y}}\left(s\right)\mathrm{d}s\mathrm{d}\theta \leqslant \\ \dfrac{{h}^{2}}{2}{{ Y}\left(t-\tau \left(t\right)\right)}^{\mathrm{T}}{{{ L}}_{{ D}}}^{\mathrm{T}}{ Z}{{ L}}_{{ D}}{ Y}\left(t-\tau \left(t\right)\right)- \\ \dfrac{2}{{h}^{2}}\left\{\left[h{{ Y}\left(t\right)}^{\mathrm{T}}-\displaystyle\int_{t-h}^{t}{{ Y}\left(s\right)}^{\mathrm{T}}\mathrm{d}s\right]{ Z}\left[h{ Y}\left(t\right)-\displaystyle\int_{t-h}^{t}{ Y}\left(s\right)\mathrm{d}s\right]\right\} \end{array} $ | (28) |
结合式(21)~(24)整理得:
$ \dot{{ V}}\left(t\right)\leqslant {{ \xi }\left(t\right)}^{\mathrm{T}}{ \psi }{ \xi }\left(t\right) $ |
其中
$ { \xi }\left(t\right)=[{{ Y}\left(t\right)}^{\mathrm{T}}\quad{{ Y}\left(t-\tau \left(t\right)\right)}^{\mathrm{T}}\quad{{ Y}\left(t-h\right)}^{\rm{T}}{\begin{array}{c}\\ \end{array}} $ |
$ {\dot{{ Y}}\left(t-h\right)}^{\mathrm{T}}\quad\int_{t-h}^{t}{{ Y}\left(s\right)}^{\mathrm{T}}\mathrm{d}s{]}^{\mathrm{T}} $ |
若式(14)、(15)成立,则有
本文考虑有6个智能体,且其通信拓扑如图1所示。且
Download:
|
|
由图1可写出拉普拉斯矩阵
$ {{L}} = \left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 2\\ { - 1}\\ { - 1} \end{array}}&{\begin{array}{*{20}{c}} { - 1}\\ 2\\ { - 1} \end{array}}&{\begin{array}{*{20}{c}} { - 1}\\ { - 1}\\ 3 \end{array}}&{\begin{array}{*{20}{c}} 0\\ 0\\ 1 \end{array}}\\ 0&0&1&3\\ 0&0&0&{ - 1}\\ 0&0&0&{ - 1} \end{array}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 0\\ 0\\ 0 \end{array}}\\ { - 1}\\ 2\\ { - 1} \end{array}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 0\\ 0\\ 0 \end{array}}\\ { - 1}\\ { - 1}\\ 2 \end{array}} \right]$ |
假设智能体初始状态
Download:
|
|
由图2可看出,多智能体系统在连通无向拓扑下,当其能够达到结构平衡时,若系统时延满足定理1中给出的条件,则智能体能实现二分一致性;反之,当系统时延
假设智能体初始状态
Download:
|
|
由图3可看出,多智能体系统在连通无向拓扑下,且其结构平衡,同时满足定理2中给出的条件,在时变时延
本文针对一阶多智能体系统,研究了在无向符号图拓扑结构并考虑通信网络含时延约束下的二分一致性问题。利用规范状态变换将多智能体系统的二分一致问题转换成一个相应的系统稳定性问题。考虑系统含固定时延约束时,利用广义Nyquist准则的方法分析并得到含固定时延系统实现二分一致性的充分条件。进一步考虑系统存在时变时延约束时,通过引入包含三积重分项的Lyapunov函数,利用线性矩阵不等式理论得到满足系统稳定的充分条件。最后,数值仿真验证了所给出定理的正确性。在后续工作中,将针对基于事件触发的量化多智能体系统时延二分一致性等问题展开深入研究。
[1] | FERBER J, WEISS G. Multi-agent systems: an introduction to distributed artificial intelligence[M]. Reading: Addison-Wesley, 1999. (0) |
[2] | OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE transactions on automatic control, 2004, 49(9): 1520-1533. DOI:10.1109/TAC.2004.834113 (0) |
[3] | ALTAFINI C. Consensus problems on networks with antagonistic interactions[J]. IEEE transactions on automatic control, 2012, 58(4): 935-946. (0) |
[4] | LI P, LIU Y, ZHAO Y, et al. Consensus control for second-order multi-agent with time-delay on antagonistic networks[C]//2016 35th Chinese Control Conference. Chengdu, China, 2016: 8066−8071. (0) |
[5] | VALCHER M E, MISRA P. On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions[J]. Systems & control letters, 2014, 66: 94-103. (0) |
[6] | MENG D, JIA Y, DU J. Bipartite coordination problems on networks of multiple mobile agents[J]. Journal of the Franklin Institute, 2015, 352(11): 4698-4720. DOI:10.1016/j.jfranklin.2015.07.009 (0) |
[7] | ZENG J, LI F, QIN J, et al. Distributed event-triggered bipartite consensus for multiple agents over signed graph topology[C]//2015 34th Chinese Control Conference. Hangzhou, China, 2015: 6930−6935. (0) |
[8] | ZHAO L, JIA Y, YU J. Adaptive finite-time bipartite consensus for second-order multi-agent systems with antagonistic interactions[J]. Systems & control letters, 2017, 102: 22-31. (0) |
[9] | LIN P, JIA Y. Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies[J]. IEEE transactions on automatic control, 2010, 55(3): 778-784. DOI:10.1109/TAC.2010.2040500 (0) |
[10] |
高玉兰, 于俊燕, 禹梅. 带有时滞的离散多智能体系统的H∞一致性问题[J]. 系统科学与数学, 2015, 35(3): 317-326. GAO Yulan, YU Junyan, YU Mei. H∞. for discrete multi-agent systems with time delay_[J]. Systems science and mathematics, 2015, 35(3): 317-326. (0) |
[11] | YU W, CHEN G, CAO M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[J]. Automatica, 2010, 46(6): 1089-1095. DOI:10.1016/j.automatica.2010.03.006 (0) |
[12] | LIU K, JI Z, REN W. Necessary and sufficient conditions for consensus of second-order multiagent systems under directed topologies without global gain dependency[J]. IEEE transactions on cybernetics, 2016, 47(8): 2089-2098. (0) |
[13] |
葛超. 基于改进型Lyapunov泛函的时滞系统稳定性新判据研究及应用[D].秦皇岛: 燕山大学, 2014. GE Chao. Research and application of new stability criteria for delay systems based on improved Lyapunov functional[D]. Qinhuangdao: Yanshan University, 2014 (0) |
[14] | LIU C, LIU F. Consensus problem of second-order multi-agent systems with time-varying communication delay and switching topology[J]. Journal of systems engineering and electronics, 2011, 22(4): 672-678. DOI:10.3969/j.issn.1004-4132.2011.04.017 (0) |
[15] |
张晓丹, 刘开恩, 纪志坚. 具有时变时滞多智能体系统二分一致性[J]. 系统科学与数学, 2018, 38(8): 841-851. ZHANG Xiaodan, LIU Kaien, JI Zhijian. Dichotomous consistency of multi-agent systems with time-varying delay[J]. Systems science and mathematics, 2018, 38(8): 841-851. (0) |
[16] | ZHANG Xiaodan, LIU Kaien, JI Zhijian. Bipartite consensus for multi-Agent systems with time-varying delays based on method of delay partitioning[J]. IEEE access, 2019, 7(99): 29285-29294. (0) |
[17] | FATTAHI M., AFSHAR A. Distributed consensus of multi-agent systems with input faults and time-varying delays[J]. Asian journal of control, 2018, 20(4): 1682-1685. DOI:10.1002/asjc.1654 (0) |
[18] | WEN J, WANG C, XIE G. Asynchronous distributed event-triggered circle formation of multi-agent systems[J]. Neurocomputing, 2018, 295: 118-126. DOI:10.1016/j.neucom.2018.03.018 (0) |
[19] |
徐鹏, 谢广明, 文家燕, 等. 事件驱动的强化学习多智能体编队控制[J]. 智能系统学报, 2019, 14(1): 93-98. XU Peng, XIE Guangming, WEN Jiayan, et al. Event-triggered reinforcement learning formation control for multi-agent[J]. CAAI transactions on intelligent systems, 2019, 14(1): 93-98. DOI:10.11992/tis.201807010 (0) |
[20] |
王世丽, 金英花, 吴晨. 带通信时滞的多智能体系统的群集运动[J]. 计算机工程与应用, 2017, 53(23): 24-28, 50. WANG Shili, JIN Yinghua, WU Chen. Swarm motion of multi-agent systems with communication delay[J]. Computer engineering and applications, 2017, 53(23): 24-28, 50. DOI:10.3778/j.issn.1002-8331.1709-0305 (0) |
[21] |
雷明, 马培蓓, 王娟. 具有输入约束和通信时滞的多智能体编队鲁棒镇定[J]. 战术导弹技术, 2018(3): 91-99. LEI Ming, MA Peibei, WANG Juan. Robust stabilization of multi-agent formation with input constraints and communication delay[J]. Tactical missile technology, 2018(3): 91-99. (0) |
[22] |
何逻辑, 谢广明, 文家燕,等. 通信时滞下事件驱动多智能体系统环形编队控制[J]. 计算机应用研究, 2020, 37(6): 1661-1665. HE Luoji, XIE Guangming, WEN Jiayan, et al. Circle formation control of event-triggered multi-agent system with communication delay[J]. Computer application research, 2020, 37(6): 1661-1665. (0) |
[23] | BAO Q, CHEUNG W K, ZHANG Y, et al. A component-based diffusion model with structural diversity for social networks[J]. IEEE transactions on cybernetics, 2016, 47(4): 1078-1089. (0) |
[24] | MENG D, JIA Y, DU J. Nonlinear finite-time bipartite consensus protocol for multi-agent systems associated with signed graphs[J]. International journal of control, 2015, 88(10): 2074-2085. DOI:10.1080/00207179.2015.1033757 (0) |
[25] | TIAN Y P, LIU C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE transactions on automatic control, 2008, 53(9): 2122-2128. DOI:10.1109/TAC.2008.930184 (0) |