﻿ 切换系统的鲁棒二次公共Lyapunov函数矩阵寻找算法
«上一篇
 文章快速检索 高级检索

 智能系统学报  2017, Vol. 12 Issue (6): 899-905  DOI: 10.11992/tis.201605012 0

### 引用本文

ZHANG Xiaoyu, LI Ping. Matrix search algorithm of robust common quadratic Lyapunov function for switched systems[J]. CAAI Transactions on Intelligent Systems, 2017, 12(6): 899-905. DOI: 10.11992/tis.201605012.

### 文章历史

Matrix search algorithm of robust common quadratic Lyapunov function for switched systems
ZHANG Xiaoyu, LI Ping
School of Electronics and Information Engineering, North China Institute of Science and Technology, Beijing 101601, China
Abstract: To obtain a searching algorithm for the common quadratic Lyapunov function (CQLF) of an uncertain switched system (SS), the concept of the common robust quadratic Lyapunov function (CRQLF) is proposed. In addition, sufficient conditions for the CRQLF, and its corresponding recurrence search algorithm method in LMI forms, are obtained using a matrix inequality analysis when the stable matrix set is both involuntary and voluntary. These results enable easy computer implementation, and are valuable for making robust stability judgments of uncertain SSs. Furthermore, the application simulation test certificates their validity.
Key words: switched system    uncertain    common Lyapunov function    quadratic Lyapunov function    control    robust    stability    LMI

CQLF的存在性必然有一定条件，而且和切换系统的分析和控制器设计密切相关。对CLF存在的充分和必要条件讨论可以参考文献[10]。CLF的构造方法也已经取得了许多成果。基本都是假设 ${{\mathit{\boldsymbol{A}}}_i},\;i = \{ 1,2, \cdots ,N\}$ 是渐近稳定的，即 $\{ {{\mathit{\boldsymbol{A}}}_1}, {{\mathit{\boldsymbol{A}}}_2}, \cdots {{\mathit{\boldsymbol{A}}}_N}\}$ 构成稳定矩阵集。文献[5]考虑了一组可交换稳定矩阵，提出了一种构造CQLF的方法。文献[11]对寻找CLF方法进行了讨论，并且给出了几个CQLF存在的条件。文献[11]给出了稳定矩阵集 ${\mathit{\boldsymbol{A}}}$ 中，矩阵两两不能互换但满足对合条件时，其CQLF的相应构造方法。

1 问题描述

 $\dot x(t) = ({{\mathit{\boldsymbol{A}}}_\sigma } + \Delta {{\mathit{\boldsymbol{A}}}_\sigma })x(t)$ (1)

 $\begin{array}{c}{\mathit{\boldsymbol{Q}}}: = {x_0};\left( {{i_0},{t_0}} \right),\left( {{i_1},{t_1}} \right), \cdots ,\left( {{i_N},{t_N}} \right), \cdots ,\\\forall {i_k} \in {\bf{N}},k \in {{\bf{Z}}^ + },\end{array}$

 ${{\mathit{\boldsymbol{A}}}_\sigma } \buildrel \Delta \over = {{\mathit{\boldsymbol{A}}}_i},\Delta {{\mathit{\boldsymbol{A}}}_\sigma } \buildrel \Delta \over = \Delta {{\mathit{\boldsymbol{A}}}_i}$

 $\dot x(t) = ({{\mathit{\boldsymbol{A}}}_i} + \Delta {{\mathit{\boldsymbol{A}}}_i})x(t)$ (2)

 $\Delta {{\mathit{\boldsymbol{A}}}_i} = {{\mathit{\boldsymbol{H}}}_{a,i}}{{\mathit{\boldsymbol{F}}}_{a,i}}\left( t \right){{\mathit{\boldsymbol{E}}}_{a,i}}$ (3)

 ${\mathit{\boldsymbol{F}}}_{a,i}^{\rm{T}}\left( t \right){{\mathit{\boldsymbol{F}}}_{a,i}}\left( t \right) \leqslant {\mathit{\boldsymbol{I}}}$

1） ${\mathit{\boldsymbol{S}}} < 0$

2） ${{\mathit{\boldsymbol{S}}}_{11}} < 0,{{\mathit{\boldsymbol{S}}}_{22}} - {\mathit{\boldsymbol{S}}}_{21}^{}{\mathit{\boldsymbol{S}}}_{11}^{ - 1}{{\mathit{\boldsymbol{S}}}_{12}} < 0$

3） ${{\mathit{\boldsymbol{S}}}_{22}} < 0,{{\mathit{\boldsymbol{S}}}_{11}} - {{\mathit{\boldsymbol{S}}}_{12}}{\mathit{\boldsymbol{S}}}_{22}^{ - 1}{\mathit{\boldsymbol{S}}}_{21}^{} < 0$

 ${\mathit{\boldsymbol{HF}}}\left( t \right){\mathit{\boldsymbol{E}}} + {{\mathit{\boldsymbol{E}}}^{\rm{T}}}{{\mathit{\boldsymbol{F}}}^{\rm{T}}}\left( t \right){{\mathit{\boldsymbol{H}}}^{\rm{T}}} \leqslant {\varepsilon ^{ - 1}}{\mathit{\boldsymbol{H}}}{{\mathit{\boldsymbol{H}}}^{\rm{T}}} + \varepsilon {{\mathit{\boldsymbol{E}}}^{\rm{T}}}{\mathit{\boldsymbol{E}}}$
2 已有结果

 ${{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} = - {{\mathit{\boldsymbol{P}}}_{N - 1}}$

 $\left\{ \begin{array}{l}{\rm{max}}\left( {\gamma _i^i} \right) < 2{\rm{min}}\left| {{\rm{Re}}\lambda \left( {{{\mathit{\boldsymbol{A}}}_N}} \right)} \right|\\ - {{\mathit{\boldsymbol{P}}}_{i,N - 1}} + \gamma _i^N{{\mathit{\boldsymbol{P}}}_{N - 1}} - \sum\limits_{k = 1,k \ne i}^{N - 1} {\gamma _i^k{{\mathit{\boldsymbol{P}}}_{k,N}} > 0} \end{array} \right.$ (4)

 $\left[ {{{\mathit{\boldsymbol{A}}}_N},{{\mathit{\boldsymbol{A}}}_j}} \right] = {{\mathit{\boldsymbol{C}}}_{N,j}},\;\forall j \in {\bf{N}}$ (5)

 ${{\mathit{\boldsymbol{P}}}_{i,N - 1}} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{C}}}_{N,i}} + {\mathit{\boldsymbol{C}}}_{N,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} < 0$ (6)

${{\mathit{\boldsymbol{P}}}_N}$ 构成 ${\mathit{\boldsymbol{A}}}$ 的一个CQLF。

3 主要结果 3.1 鲁棒二次稳定

 $\left[ {\begin{array}{*{20}{c}}{{{\mathit{\boldsymbol{P}}}_i}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{\mathit{\boldsymbol{P}}} + {{\mathit{\boldsymbol{L}}}_i}} & {{{\mathit{\boldsymbol{P}}}_i}{{\mathit{\boldsymbol{H}}}_{a,i}}}\\* & { - {\varepsilon _i}{\mathit{\boldsymbol{I}}}}\end{array}} \right] < 0,\;\forall i \in {\bf{N}}$ (7)

 ${{\mathit{\boldsymbol{G}}}_i} = \varepsilon _i^{ - 1}{{\mathit{\boldsymbol{H}}}_{a,i}}{\mathit{\boldsymbol{H}}}_{a,i}^{\rm{T}},{\rm{ }}{{\mathit{\boldsymbol{L}}}_i} = {\varepsilon _i}{\mathit{\boldsymbol{E}}}_{a,i}^{\rm{T}}{{\mathit{\boldsymbol{E}}}_{a,i}}$ (8)

 ${V_i}\left( {{\mathit{\boldsymbol{x}}}(t)} \right) = {{\mathit{\boldsymbol{x}}}^{\rm{T}}}\left( t \right){{\mathit{\boldsymbol{P}}}_i}{\mathit{\boldsymbol{x}}}\left( t \right)$

 ${\dot V_i}\left( {{\mathit{\boldsymbol{x}}}(t)} \right) = {{\mathit{\boldsymbol{x}}}^{\rm{T}}}\left[ {{{\mathit{\boldsymbol{P}}}_i}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_i} + {{\mathit{\boldsymbol{P}}}_i}\Delta {{\mathit{\boldsymbol{A}}}_i} + \Delta {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_i}} \right]{\mathit{\boldsymbol{x}}}$

 ${{\mathit{\boldsymbol{P}}}_i}\Delta {{\mathit{\boldsymbol{A}}}_i} + \Delta {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_i} \leqslant {{\mathit{\boldsymbol{G}}}_i} = \varepsilon _i^{ - 1}{{\mathit{\boldsymbol{P}}}_i}{{\mathit{\boldsymbol{H}}}_{a,i}}{\mathit{\boldsymbol{H}}}_{a,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_i} + {\varepsilon _i}{\mathit{\boldsymbol{E}}}_{a,i}^{\rm{T}}{{\mathit{\boldsymbol{E}}}_{a,i}}$

 ${\dot V_i}\left( {{\mathit{\boldsymbol{x}}}(t)} \right) \leqslant {{\mathit{\boldsymbol{x}}}^{\rm{T}}}\left[ {{{\mathit{\boldsymbol{P}}}_i}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_i} + {{\mathit{\boldsymbol{P}}}_i}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_i} + {{\mathit{\boldsymbol{L}}}_i}} \right]{\mathit{\boldsymbol{x}}}$

 ${\dot V_i}\left( {{\mathit{\boldsymbol{x}}}(t)} \right) < - {{\mathit{\boldsymbol{x}}}^{\rm{T}}}\left( t \right){{\mathit{\boldsymbol{Q}}}_i}{\mathit{\boldsymbol{x}}}\left( t \right)$

 ${{\mathit{\boldsymbol{P}}}_{i,j}} = {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_j} + {{\mathit{\boldsymbol{P}}}_j}{{\mathit{\boldsymbol{A}}}_i},\;\forall i,j \in {\bf{N}}$ (9)

 ${{\mathit{\boldsymbol{U}}}_{i,N}} = {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{L}}}_i}$ (10)
3.2 鲁棒CLF矩阵

 ${{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}{\rm{ + }}{{\mathit{\boldsymbol{U}}}_{N,N}} = - {{\mathit{\boldsymbol{P}}}_{N - 1}}$ (11)

 $\left\{ \begin{array}{l}{\rm{max}}\left( {\gamma _i^i} \right) < 2{\rm{min}}\left| {{\rm{Re}}\lambda \left( {{A_N}} \right)} \right|{\rm{}}\\ - {{\mathit{\boldsymbol{P}}}_{i,N - 1}} + \gamma _i^N{{\mathit{\boldsymbol{P}}}_{N - 1}} - \sum\limits_{k = 1,k \ne i}^{N - 1} {\gamma _i^k{{\mathit{\boldsymbol{P}}}_{k,N}}} + \gamma _i^i{{\mathit{\boldsymbol{U}}}_{i,N}} + \\\quad\quad{\rm{ }}\gamma _i^N{{\mathit{\boldsymbol{U}}}_{N,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} - {\rm{ }}{{\mathit{\boldsymbol{U}}}_{N,N}}{{\mathit{\boldsymbol{A}}}_i} - \\[5pt]\quad\quad{\rm{ }}{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{N,N}} > 0{\rm{}}\end{array} \right.$ (12)

${{\mathit{\boldsymbol{P}}}_N}$ ${\mathit{\boldsymbol{A}}}$ 的鲁棒二次CLF矩阵，即 $\forall i \in {\bf{N}}$ 满足Riccati不等式：

 ${{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{L}}}_i} < 0$ (13)

 $\begin{array}{c}\left( {{{\mathit{\boldsymbol{P}}}_{i,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right)\left( {{{\mathit{\boldsymbol{A}}}_N} + \gamma _i^i{\mathit{\boldsymbol{I}}}/2} \right) + {\left( {{{\mathit{\boldsymbol{A}}}_N} + \gamma _i^i{\mathit{\boldsymbol{I}}}/2} \right)^{\rm{T}}} \times \left( {{{\mathit{\boldsymbol{P}}}_{i,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right) = \\[5pt]\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right){{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + } \right.\end{array}$
 $\begin{array}{c}\left. {{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right) + \gamma _i^i\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right) = \\[5pt]{{\mathit{\boldsymbol{P}}}_N}\left( {{{\mathit{\boldsymbol{A}}}_N}{{\mathit{\boldsymbol{A}}}_i} - \sum\limits_{k = 1}^N {\gamma _i^k} {{\mathit{\boldsymbol{A}}}_k}} \right) + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + \\[5pt]\left( {{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{\mathit{\boldsymbol{A}}}_N^{\rm{T}} - \sum\limits_{k = 1}^N {\gamma _i^k} {\mathit{\boldsymbol{A}}}_k^{\rm{T}}} \right){{\mathit{\boldsymbol{P}}}_N} + \gamma _i^i\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right. + \\[5pt]\left. {{{\mathit{\boldsymbol{U}}}_{i,N}}} \right) + {{\mathit{\boldsymbol{U}}}_{i,N}}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} = \\[5pt]\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right){{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right) - \\[5pt]\gamma _i^N\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right) - \sum\limits_{k = 1,k \ne i}^{N - 1} {\gamma _i^k} \left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_k} + } \right.\\[5pt]\left. {{\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right) + {{\mathit{\boldsymbol{U}}}_{i,N}}\left( {{{\mathit{\boldsymbol{A}}}_N} + \gamma _i^i} \right) + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} = \\[5pt] - {{\mathit{\boldsymbol{P}}}_{i,N - 1}} + \gamma _i^N{{\mathit{\boldsymbol{P}}}_{N - 1}} - \sum\limits_{k = 1,k \ne i}^{N - 1} {\gamma _i^k} {{\mathit{\boldsymbol{P}}}_{k,N}} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} + \\[5pt]{{\mathit{\boldsymbol{U}}}_{i,N}}\left( {{{\mathit{\boldsymbol{A}}}_N} + \gamma _i^i} \right) - {\rm{ }}{{\mathit{\boldsymbol{U}}}_{N,N}}\left( {{{\mathit{\boldsymbol{A}}}_i} - \gamma _i^N} \right) - {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{N,N}}\end{array}$

 ${{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{L}}}_i} < 0$ (14)

 $\begin{array}{c}{{\mathit{\boldsymbol{P}}}_{i,N - 1}} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{C}}}_{N,i}} + {\mathit{\boldsymbol{C}}}_{N,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{N,N}}{{\mathit{\boldsymbol{A}}}_i} + \\{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{N,N}} - {{\mathit{\boldsymbol{U}}}_{i,N}}{{\mathit{\boldsymbol{A}}}_N} - {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} < 0\end{array}$ (15)

${{\mathit{\boldsymbol{P}}}_N}$ 构成 ${\mathit{\boldsymbol{A}}}$ 的一个鲁棒二次CLF矩阵。即

 ${{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{L}}}_i} < 0$ (16)

 $\begin{array}{c}\left( {{{\mathit{\boldsymbol{P}}}_{i,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right){{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_{i,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right) = \\[5pt]\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right){{\mathit{\boldsymbol{A}}}_N} + \\[5pt]{\mathit{\boldsymbol{A}}}_N^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right) = \\[5pt]{{\mathit{\boldsymbol{P}}}_N}\left( {{{\mathit{\boldsymbol{A}}}_N}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{C}}}_{N,i}}} \right) + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + \\[5pt]\left( {{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{\mathit{\boldsymbol{A}}}_N^{\rm{T}} - {\mathit{\boldsymbol{C}}}_{N,i}^{\rm{T}}} \right){{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} = \\[5pt]\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right){{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N}} \right) - \\[5pt]{{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{C}}}_{N,i}} - {\mathit{\boldsymbol{C}}}_{N,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{i,N}}{{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}} = \\[5pt]- \left( {{{\mathit{\boldsymbol{P}}}_{i,N - 1}} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{C}}}_{N,i}} + {\mathit{\boldsymbol{C}}}_{N,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{U}}}_{N,N}}{{\mathit{\boldsymbol{A}}}_i} + } \right.\\[5pt]\left. {{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{N,N}} - {{\mathit{\boldsymbol{U}}}_{i,N}}{{\mathit{\boldsymbol{A}}}_N} - {\mathit{\boldsymbol{A}}}_N^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,N}}} \right)\end{array}$

 $\left( {{{\mathit{\boldsymbol{P}}}_{i,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right){{\mathit{\boldsymbol{A}}}_N} + {\mathit{\boldsymbol{A}}}_N^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_{i,N}} + {{\mathit{\boldsymbol{U}}}_{i,N}}} \right) > 0$

 ${{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{P}}}_N}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_N} + {{\mathit{\boldsymbol{L}}}_i} < 0$ (17)

3.3 递推CQLF矩阵

 $\left\{ \begin{array}{l}{{\mathit{\boldsymbol{P}}}_{k,k}} < 0\\{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} > 0\end{array} \right.$ (18)

 ${{\mathit{\boldsymbol{C}}}_{i,j}} = {{\mathit{\boldsymbol{A}}}_i}{{\mathit{\boldsymbol{A}}}_j} - {{\mathit{\boldsymbol{A}}}_j}{{\mathit{\boldsymbol{A}}}_i}$

 $\begin{array}{c}{{\mathit{\boldsymbol{P}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{i,k}} =\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}} \right){{\mathit{\boldsymbol{A}}}_k} + \\[5pt] {\mathit{\boldsymbol{A}}}_k^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}} \right) = {{\mathit{\boldsymbol{P}}}_k}\left( {{{\mathit{\boldsymbol{A}}}_k}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{C}}}_{k,i}}} \right) +\\[5pt] {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} +{\rm{ }}{\left( {{{\mathit{\boldsymbol{A}}}_k}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{C}}}_{k,i}}} \right)^{\rm{T}}}{{\mathit{\boldsymbol{P}}}_k} = \\[5pt]\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}} \right){{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}} \right) - \\[5pt]{\rm{ }}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} ={\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - \\[5pt] {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}\end{array}$

 ${{\mathit{\boldsymbol{P}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{i,k}} > 0$

 ${{\mathit{\boldsymbol{P}}}_{i,k}} = {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} < 0,{\rm{ }}\forall i = 1, 2, \cdots ,k$

 $\left\{ \begin{array}{l}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{U}}}_{k,k}} < 0,\\[5pt]{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + \\[5pt]\quad\quad{{\mathit{\boldsymbol{U}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,k}} > 0\end{array} \right.$ (19)

 ${{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{U}}}_{i,k}} < 0$ (20)

 $\begin{array}{c}\left( {{{\mathit{\boldsymbol{P}}}_{i,k}}{\rm{ + }}{{\mathit{\boldsymbol{U}}}_{i,k}}} \right){{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_{i,k}} + {{\mathit{\boldsymbol{U}}}_{i,k}}} \right) = \\[5pt]\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{U}}}_{i,k}}} \right){{\mathit{\boldsymbol{A}}}_k} + \\[5pt]{\rm{ }}{\mathit{\boldsymbol{A}}}_k^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{U}}}_{i,k}}} \right) = \\[5pt]{{\mathit{\boldsymbol{P}}}_k}\left( {{{\mathit{\boldsymbol{A}}}_k}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{C}}}_{k,i}}} \right) + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i} + \\[5pt]{\rm{ }}{\left( {{{\mathit{\boldsymbol{A}}}_k}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{C}}}_{k,i}}} \right)^{\rm{T}}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{U}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,k}}=\end{array}$
 $\begin{array}{c}\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}} \right){{\mathit{\boldsymbol{A}}}_i} + {\mathit{\boldsymbol{A}}}_i^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}} \right) - \\[4pt]{\rm{ }}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{U}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,k}} = \\[4pt]{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + \\[4pt]{\rm{ }}{{\mathit{\boldsymbol{U}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,k}}\end{array}$

 $\left( {{{\mathit{\boldsymbol{P}}}_{i,k}}{\rm{ + }}{{\mathit{\boldsymbol{U}}}_{i,k}}} \right){{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}\left( {{{\mathit{\boldsymbol{P}}}_{i,k}}{\rm{ + }}{{\mathit{\boldsymbol{U}}}_{i,k}}} \right) > 0$

 ${{\mathit{\boldsymbol{P}}}_{i,k}}{\rm{ + }}{{\mathit{\boldsymbol{U}}}_{i,k}} = {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_i}{\rm{ + }}{{\mathit{\boldsymbol{U}}}_{i,k}} < 0$

3.4 鲁棒二次Lyapunov函数矩阵寻找算法

 $\left\{ \begin{array}{l}\left[ {\begin{array}{*{20}{c}}{{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{L}}}_k}} & {{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{H}}}_{a,k}}}\\* & { - {\varepsilon _k}{\mathit{\boldsymbol{I}}}}\end{array}} \right] < 0,\\[9pt]\left[ {\begin{array}{*{20}{c}}{{\Xi _{i,k}}} & {\left( {{\mathit{\boldsymbol{I}}} - {\mathit{\boldsymbol{A}}}_k^{\rm{T}}} \right){{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{H}}}_{a,i}}}\\* & {{\varepsilon _i}{\mathit{\boldsymbol{I}}}}\end{array}} \right] > 0,{\rm{ }}i = 1, 2, \cdots ,k - 1\end{array} \right.$ (21)

 $\begin{array}{c}{\Xi _{i,k}} = {\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - \\[4pt]{\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{L}}}_i}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{L}}}_i}\end{array}$ (22)

证明　式（21）中第1个LMI证明 ${{\mathit{\boldsymbol{P}}}_k}$ ${{\mathit{\boldsymbol{A}}}_k}$ 的鲁棒二次Lyapunov函数矩阵，等价于式（19）的第1个不等式。若式（21）第二个LMI满足，有

 ${\Xi _{i,k}} - \left( {{\mathit{\boldsymbol{I}}} - {\mathit{\boldsymbol{A}}}_k^{\rm{T}}} \right){{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k}\left( {{\mathit{\boldsymbol{I}}} - {{\mathit{\boldsymbol{A}}}_k}} \right) > 0$

 $\begin{array}{c}{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + \\[4pt]{{\mathit{\boldsymbol{L}}}_i}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{L}}}_i} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k} + \\[4pt]{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k} - {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} > 0\end{array}$

 $\begin{array}{c}{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + {{\mathit{\boldsymbol{U}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + \\[4pt]{\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,k}} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k} - {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{G}}}_i}{{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{A}}}_k} > 0\end{array}$

 $\begin{array}{c}{\mathit{\boldsymbol{A}}}_i^{\rm{T}}{{\mathit{\boldsymbol{P}}}_{k,k}} + {{\mathit{\boldsymbol{P}}}_{k,k}}{{\mathit{\boldsymbol{A}}}_i} - {{\mathit{\boldsymbol{P}}}_k}{{\mathit{\boldsymbol{C}}}_{k,i}} - {\mathit{\boldsymbol{C}}}_{k,i}^{\rm{T}}{{\mathit{\boldsymbol{P}}}_k} + \\[4pt]{{\mathit{\boldsymbol{U}}}_{i,k}}{{\mathit{\boldsymbol{A}}}_k} + {\mathit{\boldsymbol{A}}}_k^{\rm{T}}{{\mathit{\boldsymbol{U}}}_{i,k}} > 0\end{array}$

4 应用仿真

 $\begin{array}{c}{C_T}\displaystyle\frac{{{\rm{d}}{T_i}}}{{{\rm{d}}t}} = {C_1}\left( {{T_p} - {T_i}} \right) - \left( {{C_2}\left( {{C_3}G + {\varphi _1}} \right) + {C_4}} \right) \times \\[4pt]\left( {{T_i} - {T_o}} \right) + {C_5}\left( {{T_1} - {T_i}} \right) + {C_6}{T_{{\rm{rad}}}}\\[4pt]{C_H}\displaystyle\frac{{{\rm{d}}{\omega _i}}}{{{\rm{d}}t}} = {C_8}{C_9}\left( {{C_{10}}{C_{11}}{T_i} - {\omega _i}} \right) - {C_{12}}\left( {{T_p} - {T_i}} \right) - \\[4pt]\left( {{C_3}G + {\varphi _1}} \right)\left( {{\omega _i} - {\omega _o}} \right) + {C_H}\left( {{C_5}{T_1} + {C_{14}}} \right)\end{array}$

 $\begin{array}{c}{{\dot x}_1} = - \left( {{b_1} + {b_3} + {b_4}} \right){x_1} + {b_1}{u_1} + \left( { - {b_2}{x_1} + {b_2}{v_2}} \right){u_2} + \\[2pt]{b_5}{v_3} + {b_3}{v_1} + {b_4}{v_4}\\[2pt]{{\dot x}_2} = {c_4}{x_1} + {c_1}{x_2} + {c_6}{v_2} + {c_8}{u_1} + {c_2}{u_2}{v_2} + {c_2}{u_2}{x_2} + \\[2pt]{c_5}{v_1} + {c_3}{v_4} + {c_7}\end{array}$

 $\begin{array}{c}{b_1} = {C_1}/{C_T},\;{b_2} = {C_2}{C_3}/{C_T}\\[4pt]{b_3} = \left( {{C_2}_1\varphi + {C_4}} \right)/{C_T},\;{b_4} = {C_5}/{C_T}\\[4pt]{b_5} = {C_6}/{C_T}\\[4pt]{c_1} = \left( {{C_{15}} - {C_8}{C_9} - {\varphi _1}} \right)/{C_H},\;{c_2} = {C_3}/{C_H}\\[4pt]{c_4} = {C_8}{C_9}{C_{10}}/{C_H},\;{c_5} = {C_{15}}/{C_H}\\[4pt]{c_6} = {\varphi _1}/{C_H}\end{array}$

 $\begin{array}{c}{{\dot x}_1} = - \left( {{b_1} + {b_3} + {b_4}} \right){x_1} + {b_1}{u_1} + \left( { - {b_2}{x_{10}} + {b_2}{v_2}} \right){u_2} + \\[0pt]{b_5}{v_3} + {b_3}{v_1} + {b_4}{v_4}\\[0pt]{{\dot x}_2} = {c_4}{x_1} + {c_1}{x_2} + {c_8}{u_1} + {c_2}{v_2}{u_2} + {c_2}{x_{20}}{u_2} + {c_6}{v_2} + \\[0pt]{c_5}{v_1} + {c_3}{v_4} + {c_7}\end{array}$

${{\mathit{\boldsymbol{A}}}_1} = \left[ {\begin{array}{*{20}{c}} { - 0.038 \,\, 9} & 0\\ { - 0.082} & { - 0.163 \,\, 2} \end{array}} \right]$

（这里设计反馈控制系数与文献[15]不同）

${{\mathit{\boldsymbol{A}}}_2} = \left[ {\begin{array}{*{20}{c}} { - 0.158} & {0.002 \,\, 2}\\ { - 0.067 \,\, 4} & { - 0.339 \,\, 1} \end{array}} \right]$

（这里设计最优反馈控制系数与文献[15]相同）

${{\mathit{\boldsymbol{A}}}_3} = \left[ {\begin{array}{*{20}{c}} { - 0.158} & {0.002 \,\, 2}\\ { - 0.067 \,\, 4} & { - 0.339 \,\, 1} \end{array}} \right]$

 ${{\mathit{\boldsymbol{A}}}_1} = \left[ {\begin{array}{*{20}{c}}{0.148 \,\, 2} & {0.374 \,\, 6}\\{0.374 \,\, 6} & {1.892 \,\, 7}\end{array}} \right],\;{{\mathit{\boldsymbol{A}}}_2} = \left[ {\begin{array}{*{20}{c}}{0.148 \,\, 2} & {0.374 \,\, 6}\\{0.374 \,\, 6} & {1.892 \,\, 7}\end{array}} \right]$

 ${\mathit{\boldsymbol{P}}} = \left[ {\begin{array}{*{20}{c}}{0.148 \,\, 2} & {0.374 \,\, 6}\\{0.374 \,\, 6} & {1.892 \,\, 7}\end{array}} \right]$

 $\begin{array}{c}\Delta {{\mathit{\boldsymbol{A}}}_1} = \left[ {\begin{array}{*{20}{c}}{0.001\sin \, (0.02\pi t)} & 0\\0 & {0.014{{\rm{e}}^{ - 0.1t}}}\end{array}} \right],\\[8pt]\Delta {{\mathit{\boldsymbol{A}}}_2} = \left[ {\begin{array}{*{20}{c}}{0.000\;1\cos \, (0.01t)} & {0.000\;2\cos \, (0.01t)}\\0 & {0.005{{\rm{e}}^{ - 0.2t}}}\end{array}} \right],\\[8pt]\Delta {{\mathit{\boldsymbol{A}}}_3} = \left[ {\begin{array}{*{20}{c}}0 & 0\\0 & {0.026{{\rm{e}}^{ - 0.01{t^2}}}}\end{array}} \right].\end{array}$

 $\begin{array}{c}{{\mathit{\boldsymbol{H}}}_{a,1}} = \left[ {\begin{array}{*{20}{c}}{0.1} & 0\\0 & 1\end{array}} \right],{{\mathit{\boldsymbol{F}}}_{a,1}} = \left[ {\begin{array}{*{20}{c}}{\sin \, (0.02\pi t)} & 0\\0 & {{{\rm{e}}^{ - 0.1t}}}\end{array}} \right]\\[9pt]{{\mathit{\boldsymbol{E}}}_{a,1}} = \left[ {\begin{array}{*{20}{c}}{0.01} & 0\\0 & {0.014}\end{array}} \right]\end{array}$

 $\begin{array}{c}{{\mathit{\boldsymbol{H}}}_{a,2}} = \left[ {\begin{array}{*{20}{c}}{0.01} & 0\\0 & {0.1}\end{array}} \right],{{\mathit{\boldsymbol{F}}}_{a,2}} = \left[ {\begin{array}{*{20}{c}}{\cos \, (0.01t)} & 0\\0 & {{{\rm{e}}^{ - 0.2t}}}\end{array}} \right]\\[9pt]{{\mathit{\boldsymbol{E}}}_{a,2}} = \left[ {\begin{array}{*{20}{c}}{0.01} & {0.02}\\0 & {0.05}\end{array}} \right]\end{array}$

 ${{\mathit{\boldsymbol{H}}}_{a,3}} = \left[ {\begin{array}{*{20}{c}}0\\{0.1}\end{array}} \right],{{\mathit{\boldsymbol{F}}}_{a,3}} = {{\rm{e}}^{ - 0.01{t^2}}},{{\mathit{\boldsymbol{E}}}_{a,3}} = \left[ {\begin{array}{*{20}{c}}0 & {0.26}\end{array}} \right]$

k=2时子系统1、2的公共Lyapunuov矩阵为 ${{\mathit{\boldsymbol{P}}}_2} = \left[ {\begin{array}{*{20}{c}} {{\rm{99}}{\rm{.798 \,\, 9}}} & {{\rm{15}}{\rm{.509 \,\, 9}}}\\ {{\rm{15}}{\rm{.509 \,\, 9}}} & {{\rm{11}}{\rm{.897 \,\, 6}}} \end{array}} \right]$

k=3时子系统1、2、3的公共Lyapunuov矩阵为 ${{\mathit{\boldsymbol{P}}}_3} = \left[ {\begin{array}{*{20}{c}} {{\rm{39}}{\rm{.144 \,\, 9}}} & {{\rm{2}}{\rm{.714 \,\, 1}}}\\ {{\rm{2}}{\rm{.714 \,\, 1}}} & {{\rm{1}}{\rm{.541 \,\, 1}}} \end{array}} \right]$

 图 1 切换规则下系统状态曲线 Fig.1 The state curves under switching signal
 图 2 切换信号曲线 Fig.2 The switching signal curve
5 结束语

 [1] LIBERZON D, MORSE A S. Basic problems in stability and design of switched systems[J]. IEEE transaction on control systems, 1999, 19(5): 59-70. (0) [2] DOGRUEL M, OZGUNER U. Stability of a set of matrices: an application to hybrid systems[C]//Proc of IEEE International Symposium on Intelligent Control. [S.l.], 1995: 59–64. (0) [3] BELDIMAN O, BUSHNELL L. Stability, linearization and control of switched systems[C]//Proc of American Control Conference. San Diego, CA, 1999: 2950–2955. (0) [4] OOBA T, FUNAHASHI Y. Two conditions concerning common quadratic Lyapunov functions for linear syste- ms[J]. IEEE trasactions on automatic control, 1997, 42(5): 719-721. (0) [5] NARENDRA K S, BALAKRISHNAN J A. A common Lyapimov function for stable LTI systems with commuting A-matrices[J]. IEEE transactions on automatic control, 1994, 39(12): 2469-2471. (0) [6] LIBERZON D, MORSE J P. Stability of switched systems: a Lie algebraic condition[J]. Systems and control letters, 1999, 37(3): 117-122. (0) [7] MARGALIOTA M, LIBERZON D. Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions[J]. Systems and control letters, 2006, 55(1): 8-16. (0) [8] CHENG D Z, ZHU Y H, HU Q X. Stabilization of switched systems via common Lyapunov function[C]//Proc of the World Congress on Intelligent Control and Automation (WCICA). [S.l.], 2006: 183–187. (0) [9] DAYAWANSA W P, MARTIN C F. A converse Lyapunov theorem for a class of dynamical systems which undergo switching[J]. IEEE transactions on automatic control, 1999, 44(4): 751-760. (0) [10] LIN H, ANTSAKLIS P J. Stability and stabilizability of switched linear systems: a survey of recent results[J]. IEEE transactions on automatic control, 2009, 54(2): 308-322. (0) [11] CHENG D Z, GUO L, HUANG J. On quadratic Lyapunov functions[J]. IEEE transactions on automatic control, 2003, 48(5): 885-890. (0) [12] ZHU Y H, CHENG D Z, QIN H S. Constructing conmmon Lyapunov functions for a class of stable matrices[J]. Acta automatica sinica, 2007, 33(2): 202-204. (0) [13] BOYD S, GHAOUI L E, FERON E, et al. Linear Matrix Inequalities in system and control theory[M]. Philadelphia: SIAM, 1994: 7–35. (0) [14] 俞立. 鲁棒控制—线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002. YU Li. Robust control-linear matrix inequality methods [M]. Beijing: Tsinghua University Press, 2002. (0) [15] 王向东, 何南思. 温室大棚温湿度跟踪切换最优控制器[J]. 沈阳工业大学学报, 2014, 36(5): 543-549. WANG Xiangdong, HE Nansi. Tracking switching optimal controller for temperature and humidity of greenhouse[J]. Journal of Shenyang university of technology, 2014, 36(5): 543-549. (0)