文章快速检索 高级检索

Fuzzy-PID based automatic support force control system of advance supporting equipment
MAO Jun, ZHENG Guanghui , XIE Miao, PAN Deweng
School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Abstract: According to the performance requirements for an automatic support force control system of temporary support equipment in the mining process in roadway, this paper uses a comparative research method, and combines theoretical analysis and experimental study methods. It analyzes the principle of automatic support force control systems in advance supporting equipment. The mathematical model of control object, an electro hydraulic servo valve and a hydraulic cylinder, was constructed, and a fuzzy-PID controller for automatic control of supporting force was designed. Through comparitive simulation, it was found that the fuzzy-PID control is better than the conventional PID control. An experiment was conducted on the simulation platform of the advance supporting equipment. From the experiment results, it can be seen that the fuzzy-PID based automatic control system of supporting force can work very well, and it has good response characteristic and stability.
Key words: advance supporting     support force     fuzzy-PID     comparison simulation     experimental research

1 超前支护装备支撑力自动控制原理 1.1 超前支护装备工作原理及主要控制过程分析

 图 1 超前支护装备整机控制系统 Fig. 1 Control system of advance supporting equipment

1.2 支撑力自动控制原理

 图 2 支撑力自动控制原理框图 Fig. 2 Automatic control principle diagram of supporting force

2 控制对象的数学模型

 图 3 超前支护装备液压系统简化图 Fig. 3 Simplified diagram for the hydraulic system advanced supporting equipment

1) 电液伺服阀为理想的零开口四通滑阀，且节流口为对称型，节流口处的液体流动为紊流，忽略阀内液体的压缩性；

2) 假设伺服阀具有理想的动态响应，即阀芯的位移、伺服阀进出口压力降和流量是瞬间发生；

3) 液压系统的供油压力ps恒定不变，回油压力p0为零，忽略液压管路、液体质量和管路动态特性的影响；

4) 液压缸每个工作腔内压力都相同，内外泄露认为是层流，油液温度和容积弹性模数设为常数。

1)阀的流量方程为

2)液压缸的流量方程为

3)液压缸力平衡方程

3 模糊PID的支撑力控制系统模型及仿真

 图 4 模糊PID支撑力自动控制系统结构图 Fig. 4 Structure graph of fuzzy-PID support force automatic control system

 e Δkp ec= NB ec= NS ec= ZO ec= PS ec= PB NB PB PM PM PS ZO NS PM PM NS ZO NS ZO PM PS ZO NS NB PS PS ZO NS NB NB PB ZO NS NB NB NB

 e Δkp ec= NB ec= NS ec= ZO ec= PS ec= PB NB NB NB NS NS ZO NS NB NS NS ZO PS ZO NS NS ZO PS PS PS NS ZO PS PS PB PB ZO PS PS PB PB

 e Δkp ec= NB ec= NS ec= ZO ec= PS ec= PB NB PS NB NB NS PS NS ZO NS NS NS ZO ZO ZO NS NS NS ZO PS ZO ZO ZO ZO ZO PB PB PS PS PS PB

ke=n/emax=0.5

kec=m/ecmax=1

kup=umax/l=3

kui=umax/l=0.3

kud=umax/l=0.6

 参数 数值 参数 数值 A1/m2 3.1×10-3 cd 0.62 w/m 0.023 7 ρ/(kg· m3) 850 n 0.5 β e/Pa 7×10 8 P s/Pa 16×10 6 B c/(N·s·m -1) 800 F L/N 3 000 K/(N·m-1) 40 000 V/m 3 0.1×10 -3 c ic/(m 3·s -1·Pa -1) 4×10 -11 P 0/Pa 0 c ec/(m 3·s -1·Pa -1) 0 A 2/m 2 1.5×10 -3 m/kg 40

 图 5 仿真模型 Fig. 5 Simulation model

 图 6 阶跃信号响应仿真曲线 Fig. 6 Step signal response curves

 图 7 正弦信号响应仿真曲线 Fig. 7 Sine signal response curves

4 实验研究 4.1 超前支护装备模拟实验平台的组成

 图 8 模拟实验平台实物 Fig. 8 Experimental platform for the simulation

1)迎头顶板模拟实验框架可通过调节框架顶部加载液压缸组的油压值，对模拟顶板进行不同载荷的工况模拟。迎头顶板模拟实验框架的加载液压伺服系统可以实现静力学加载曲线压力值保压调控，也可以实现按照多种激励作用下的动力学加载曲线压力变化规律对模拟顶板进行加载实验。

2)实验样机具有双组支撑、单组支撑、交替支撑以及液压迈步移动功能；利用双组交替支撑结构使超前支护在交替移动时，模拟巷道顶板始终存在有效支撑，并且保证顶板受力基本保持稳定。样机上安装有位移、压力、油压等传感器和电控装置。

3)测量基准框架不受实验加载力和框架设备变形影响，为实现系统的不同测量面提供相对地面的水平和垂直测量基准点。

4.2 过渡状态下支撑力自动控制实验

 图 9 固定支撑组立柱支撑力变化曲线 Fig. 9 Fixed support column support force curve

 图 10 迈步组立柱支撑力变化曲线 Fig. 10 Move column support force curve

1)固定支撑组立柱的支撑力出现较大波动发生在5~7 s时间段内，因为在此时间段内，迈步组立柱逐渐完全脱离顶板，超前支护装备由双组支撑变为单组支撑，固定支撑组立柱受顶板负载及其他振动影响较大，支撑力与预期值最大误差为117.3 N；在其他时间段支撑力与预期值呈波动平衡态，最小误差13.5 N。

2)由于迈步支撑组立柱执行“卸载—迈步—加载”的过程，支撑力的较大波动的出现在立柱刚刚开始脱离顶板和即将完全支撑顶板2个阶段，即图中0~1.5 s和26~28 s 2个时间段，在这2个阶段中立柱受顶板负载影响较大，与预期值最大误差为102.7 N ；在其他时间段，支撑力与预期值呈波动平衡态，最小误差为11.3 N。

5 结束语

2)通过在超前支护装备模拟实验平台上进行的模拟实验研究，证明本文基于模糊PID的支撑力控制系统可以很好地应用在超前支护装备上，响应速度快，稳定，抗干扰能力强，能够对超前支护装备的支撑力进行良好地自动控制。

 [1] 齐占波, 王宇, 王士伟. 煤矿巷道掘进成套设备及施工工艺研究[J]. 煤炭技术, 2010, 29(9): 60-62.QI Zhanbo, WANG Yu, WANG Shiwei. Research on coal-mining laneway excavating whole sets and constructing techniques[J]. Coal Technology, 2010, 29(9): 60-62. [2] JACOBI O. Testing the suitability of face roof Supports—Duty of the research institute for mine supports and rock mechanics[J].Bergbau and Energie, 1974, 110(5): 159-164. [3] 叶明亮. 采场顶板破断规律及其应力状态的研究[J]. 贵州工业大学学报, 1998, 27(3): 13-22. YE Mingliang. Study of the rupture pattern and stress of the roof rock in aworkplace[J]. Journal of Guizhou University of Technology, 1998, 27(3): 13-22. [4] 鹿志发. 浅埋深煤层顶板力学结构与支架适应性研究[D]. 北京: 煤炭科学研究总院, 2007: 16-22.LU Zhifa. Study on strata mechanical structure and support adaptability of shallow seam[D]. Beijing: Coal Science Research Institute, 2007: 16-22. [5] SPOONER J T, PASSION K M. Stable adaptive control using fuzzy systems and neutral networks[J]. IEEE Trans Fuzzy Systems, 1996, 4(3): 339-359. [6] 蒋伟. 模糊自适应PID控制算法在电液伺服系统中的应用[D]. 南京: 南京理工大学, 2004: 3-9.JIANG Wei. Application of fuzzy adaptive PID control algorithm in electro hydraulic servo system[D]. Nanjing, China: Nanjing University of Science and Technology, 2004: 3-9. [7] 史文萍. 基于模糊自适应PID控制在液压支架监控中的应用[J]. 煤矿机械, 2011, 32(1): 196-197.SHI Wenping. Application of controlling system for hydraulic support based on fuzzy adaptive PID control[J]. Coal Mine Machinery, 2011, 32(11): 196-197. [8] 王永安. 综放面端头自移式超前支护液压支架的设计研究[D]. 青岛: 山东科技大学, 2005: 6-10.WANG Yongan. Design and research of the automatic advanced hydraulic bracket in compositive area[D]. Qingdao: Shandong University of Science and Technology, 2005: 6-10. [9] 王士伟,王宇,赵成雷,等.掘进机机载临时支护机的设计与研究[J].煤矿机械,2011,32(6):52-53.WANG Shiwei, WANG Yu, ZHAO Chenglei, et al. Design and research of the temporary support machine for the boring machine[J]. Coat Mine Machinery, 2011,32(6):52-53. [10] 任金萍. 巷道用自移式辅助支护设备的结构研究[D]. 阜新: 辽宁工程技术大学, 2009: 3-9.REN Jinping. The research of the structure of self-motion assistanced powered support equipment for roadway[D]. Fuxin, China: Liaoning Technical University, 2009: 3-9. [11] 张立春. 自适应控制器及其在阀控非对称缸力系统中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2006: 17-26.ZHANG Lichun. Adaptive controller and its application in the force system of asymmetrical cylinder controller by symmetric valve[D]. Harbin: Harbin Institute of Technology, 2009: 17-26. [12] PARNICHKUN M, NGAECHAROENKUL C. Kinematics control of a pneumatic system by hybrid fuzzy PID[J]. Mechatronics, 2001, 11(8): 1001-1023. [13] 陈斌, 史艳红, 邢志伟. 模糊PID控制在液压缸力控制中的应用[J]. 自动化技术与应用, 2007, 26(6): 27-29.CHEN Bin, SHI Yanhong, XING Zhiwei. Fuzzy PID control in the force control of hydraulic cylinder[J]. Techniques of Automation and Application, 2007, 26(6): 27-29. [14] 曹春平, 孙宇. 液压机压边力模糊PID智能控制系统研究[J]. 中国机械工程, 2010, 21(21): 2551-2554.CAO Chunping, SUN Yu. Study on fuzzy PID intelligent control system for hydraulic press blank-holder force[J]. China Mechanical Engineering, 2010, 21(21): 2551-2554. [15] 刘金棍. 先进PID控制MATLAB仿真[M]. 北京: 电子工业出版社, 2006: 55-67.
DOI: 10.11992/tis.201406047

0

#### 文章信息

MAO Jun, ZHENG Guanghui, XIE Miao, PAN Deweng

Fuzzy-PID based automatic support force control system of advance supporting equipment

CAAI Transactions on Intelligent Systems, 2015, 10(05): 762-768.
DOI: 10.11992/tis.201406047