文章快速检索 高级检索

1. 海军驻锦州地区军事代表室，辽宁 锦州 121000;
2. 哈尔滨工程大学 自动化学院，黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 机电工程学院，黑龙江 哈尔滨 150001

Depth control method for UUV maneuvering near surface under wave disturbance
XU Dawei1, WU Di2, HOU Shuping3, ZHAO Yufei2
1. Navy Military Representative Office in Jinzhou, Jinzhou 121000, China ;
2. College of Automation, Harbin Engineering University, Harbin 150001, China ;
3. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: This paper mainly studies the near surface depth control problems of the unmanned underwater vehicle (UUV). Due to the strong coupling condition of the UUV dynamics, the pole assignment of the integral variable structure control could be rather complicated. So in this paper, the authors extended the traditional integral variable structure control with the extension control algorithm and designed an extension integral variable structure controller with increased robustness when solving the pole assignment problem with the UUV depth control system. In the meantime, frequent changes in the depth caused by the ocean waves generated lots of problems with the motion control of the UUVs when operated near the surface, such as wear and tear of the motors, consumption of energy, etc. Based on the mathematical model of the ocean wave, this paper estimates the disturbance of the depth according to the nonlinear output disturbance observer with the stability proved by the Lyapunov theory. Finally, the controller and observer were used in the depth control simulation system. The results demonstrate the effectiveness and practical significance of this method.
Key words: UUV     disturbance observer     variable structure control     extension control     wave disturbance     depth control method

1 UUV模型与海浪模型 1.1 UUV模型

 (1)

 (2)
 (3)

 (4)

1.2 海浪模型

 (5)

 (6)

 (7)
 (8)
 (9)
2 可拓积分变结构控制器设计 2.1 可拓UUV深度控制系统

 图 1 UUV可拓深度控制系统框图 Fig. 1 UUV extension depth control system

 图 2 系统状态的可拓集合 Fig. 2 Extension set of UUV states

 (10)

 (11)
2.2 可拓控制算法

2.2.1 经典域：测度模式M1

 (12)

 (13)

2.2.2 可拓域：测度模式M2

 (14)

 (15)

2.2.3 非域：测度模式M3

3 输出干扰观测器设计

3.1 干扰观测器设计

 (16)

 (17)

 (18)
3.2 稳定性分析

CTP+P C < 0时，可得，即eξ趋近于0，则干扰观测器的稳定性得证。取PK=DT，可得

4 仿真实验与分析

 图 3 定深航行舵角曲线 Fig. 3 Deflection angle for constant depth maneuvering
 图 4 定深航行纵倾曲线 Fig. 4 Pitch angle for constant depth maneuvering

 图 5 加入观测器后舵角曲线 Fig. 5 Deflection angle with disturbance observer
 图 6 加入观测器后纵倾曲线 Fig. 6 Pitch angle with disturbance observer
 图 7 加入观测器后深度控制曲线 Fig. 7 Depth control with disturbance observer

 对比项 舵角幅值/(°) 舵角频率/Hz 纵倾幅值/(°) 纵倾频率/Hz 无观测时 15 0.5 3.5 0.2 加入EKF观测器 10 0.3 2.5 0.13 加入输出干扰观测器 5 0.2 2 0.1

5 结束语

 [1] 熊华胜, 边信黔. 积分变结构控制原理在AUV航向控制中的应用仿真[J]. 船舶工程 , 2005, 27 (5) : 30-33 XIONG Huasheng, BIAN Xinqian. Simulation of AUV heading control system using integral variable structure control principle[J]. Ship Engineering , 2005, 27 (5) : 30-33 [2] 蔡文. 物元分析[M]. 广州: 广东高等教育出版社, 1987 : 23 -26. [3] 潘东, 金以慧. 可拓控制的探索与研究[J]. 控制理论与应用 , 1996, 13 (3) : 305-311 PAN Dong, JIN Yihui. Exploration and research on extension control[J]. Control Theory and Applications , 1996, 13 (3) : 305-311 [4] MOREIRA L, SOARES C G. H2 and H∞designs for diving and course control of an autonomous underwater vehicle in presence of waves[J]. IEEE J Ocean Eng , 2008, 33 (2) : 69-88 DOI:10.1109/JOE.2008.918689 [5] LIU S, WANG D, POH E. Non-linear output feedback tracking control for AUVs in shallow wave disturbance condition[J]. Int J Control , 2008, 81 (11) : 1806-1823 DOI:10.1080/00207170801898885 [6] SANYAL A K, CHYBA M. Robust feedback tracking of autonomous underwater vehicles with disturbance rejection[C]//2009 American Control Conference. St. Louis, MO, USA, 2009: 3585-3590. [7] GOODMAN L, LEVINE E R, WANG Z K. Subsurface observations of surface waves from an autonomous underwater vehicle[J]. IEEE J Ocean Eng , 2010, 35 (4) : 779-784 DOI:10.1109/JOE.2010.2060551 [8] CHEN W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Trans on Mechatronics , 2004, 9 (4) : 706-710 DOI:10.1109/TMECH.2004.839034 [9] 胡慧, 刘国荣. 基于神经网络干扰观测器的一类不确定非线性MIMO系统H∞跟踪控制[J]. 控制与决策 , 2009, 24 (3) : 468-471 HU Hui, LIU Guorong. H∞ tracking control of a class of uncertain nonlinear MIMO systems based on neural network disturbance observer[J]. Control and Decision , 2009, 24 (3) : 468-471 [10] 尹正男, 苏剑波, 刘艳涛. 基于H∞范数优化的干扰观测器的鲁棒设计[J]. 自动化学报 , 2011, 37 (3) : 331-341 YIN Zhengnan, SU Jianbo, LIU Yantao. Design of disturbance observer with robust performance based on H∞norm optimization[J]. Acta Automatica Sinica , 2011, 37 (3) : 331-341 [11] 李殿璞. 船舶运动与建模[M]. 北京: 国防工业出版社, 2008 : 14 -16. [12] 金鸿章. 船舶控制原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001 : 18 -24.
DOI: 10.3969/j.issn.1673-4785.201311068

0

#### 文章信息

XU Dawei, WU Di, HOU Shuping, ZHAO Yufei

Depth control method for UUV maneuvering near surface under wave disturbance

CAAI Transactions on Intelligent Systems, 2014, 9(4): 407-412
http://dx.doi.org/10.3969/j.issn.1673-4785.201311068