﻿ 空心球双密度钻井水下注入阀设计与分析

1. 中国石油大学(华东);
2. 胜利石油工程有限公司钻井工艺研究院

Design and Analysis of Underwater Injection Valve for HGS Dual Density Drilling
Li Sen1,2, Ren Hongwei2
2. Drilling Technology Research Institute, Shengli Petroleum Engineering Co., Ltd
Abstract: To address the HGS (hollow glass sphere) injection issue in HGS dual density drilling, an underwater injection valve based on hydrocyclone has been designed. The three-dimensional model of underwater injection valve and the whole injection system has been established by using SolidWorks. For the mechanical analysis of the injection valve, by using the RNG κ-ε model for the turbulence model and the Euler model equation for the solid-liquid two-phase flow, the mechanical model of the injection valve has been established. Fluent software has been used to simulate the separation effect when the carrier liquid is seawater and base liquid. The results show that the separation efficiency decreases with the volume fraction. The seawater separation efficiency is higher given the same conditions. High-efficiency separation of the HGS can be achieved by using the two-stage cyclones connected in series. The study results could promote the development of deepwater drilling technology in China.
Key words: dual density drilling     hollow glass sphere     underwater injection valve     simulation analysis

0 引言

1 技术分析 1.1 工作原理

 图 1 空心球注入循环示意图 Fig.1 HGS injection cycle diagram

1.2 结构参数

 (1)

 图 2 注入阀结构示意图 Fig.2 Structural schematic diagram of injection valve

1.3 三维模型

 图 3 注入阀三维模型 Fig.3 Three-dimensional model of injection valve

 图 4 空心球注入系统三维模型 Fig.4 Three-dimensional model of HGS injection system

2 力学模型

 (2)
 (3)

 (4)
 (5)

 (6)

 (7)
 (8)

3 模拟计算

 图 5 携带液为海水时空心球分布情况 Fig.5 Distribution of HGS while applying seawater as the carrier liquid

 w/% 35.2 20 15 10 入口m球/(kg·s-1) 13.1 13.1 13.1 13.1 底部出口m球/(kg·s-1) 3.63 0.66 0.43 0.04 上部出口m球/(kg·s-1) 9.37 12.44 12.53 12.54 入口m水/(kg·s-1) 24.09 52.4 74.25 131.35 底部出口m水/(kg·s-1) 17.35 36.99 59.73 83.65 上部出口m水/(kg·s-1) 6.61 15.09 14.23 48.66 携带液为海水时η/% 71.55 94.95 95.64 95.72

 图 6 携带液为基液时空心球分布情况 Fig.6 Distribution of HGS while applying base liquid as the carrier liquid

 w/% 20 15 10 5 入口m球/(kg·s-1) 5 4 2.9 1.6 底部出口m球/(kg·s-1) 0.63 0.77 0.55 0 上部出口m球/(kg·s-1) 4.09 3.42 2.58 1.53 入口m基/(kg·s-1) 19.9 22.7 26 26.32 底部出口m基/(kg·s-1) 14.3 18.6 20.5 17.13 上部出口m基/(kg·s-1) 2.29 3.82 5.17 9.03 携带液为基液时η/% 81.79 85.6 89.1 95.62

4 结论

(1) 基于水力旋流器原理，设计了空心球水下注入阀方案，并建立了注入系统整体三维模型。

(2) 采用Fluent软件模拟注入阀内部压力场，采用直径2.5 mm空心球，携带液分别使用海水和基液进行模拟，理论上可以达到多梯度钻井的分离效果。通过分析结果可以看出，分离效率随着空心球的体积分数增加而降低，应根据所需浓度选择合适体积分数注入，从而达到最佳注入效果。

(3) 空心球与基液密度相差较小，同等条件下分离效率较海水携带低，试验中可优先考虑使用海水携带注入。同时为了提高空心球注入浓度，可设计2级旋流器串联来实现空心球的高效分离。

 [1] 侯芳, 彭军生. 海底泵举升双梯度钻井技术进展[J]. 石油机械, 2013, 41(6): 68–71. [2] 陈国明, 殷志明, 许亮斌, 等. 深水双梯度钻井技术研究进展[J]. 石油勘探与开发, 2007, 34(2): 246–251. [3] COHEN J H.Gulf of mexico's first application of riserless mud recovery for top-hole drilling-A case study[C]//Offshore Technology Conference, Houston, Texas, USA, 2010. [4] ALAWAMI M B.Investigation of the stability of hollow glass spheres in drilling fluids in diverse pH environments and assessment of potential field applications in Saudi Arabia[R].SPE 175737, 2015. [5] HALKYARD J, ANDERSON M R, MAURER W C.Hollow glass microspheres:An option for dual gradient drilling and deep ocean mining lift[R].OTC 25044, 2014. [6] 杨树东, 陈国明, 殷志明, 等. 含空心球钻井液分离流场数值模拟[J]. 石油机械, 2007, 35(1): 9–11. [7] 张鹏飞, 陈国明, 谢丽婉, 等. 基于仿真的海底钻井液举升钻井返回系统[J]. 石油机械, 2011, 39(5): 23–26, 96. [8] 王卓显. 深水海底泥浆举升钻井系统分析及旋转分隔器设计[D]. 东营: 中国石油大学(华东), 2007.

#### 文章信息

Li Sen, Ren Hongwei

Design and Analysis of Underwater Injection Valve for HGS Dual Density Drilling

China Petroleum Machinery, 2017, 45(5): 57-60.
http://dx.doi.org/10.16082/j.cnki.issn.1001-4578.2017.05.011