﻿ 钻井液脉冲发生器转子结构优化设计

Optimum Design of Rotor on Mud Pulse Generator
Huang Kai, Wang Peng, Zhao Yu, Lu Chang, Feng Ding
School of Mechanical Engineering, Yangtze University; Oil and Gas Drilling and Completion Tools Research Center, Yangtze University
Abstract: The continuous wave mud pulse generator has a high transmission rate, and the generated pressure wave signal quality is mainly determined by the signal amplitude and spectral characteristics, which are closely related to the rotor shape.In order to obtain ideal sinusoidal waveform to improve the transmission distance and signal quality of the pulse generator, a mathematical model of the triangular stator/rotor flow area has been established.Based on the design criterion of the pulse amplitude of the mud pulse generator and the maximum correlation coefficient of the pressure wave and sine wave, a shape optimization model of triangular stator/rotor has been established.Fluent software has also been used to conduct three-dimensional modeling and flow field simulation for the optimized results.The simulation results show that the pressure wave signal generated by the optimized triangular stator/rotor meets the design requirement and approximates with the ideal sine wave signal.The conclusion could provide a reference for the optimization of the continuous wave mud pulse generator.
Key words: continuous wave     signal amplitude     rotor design     pressure wave signal     optimal design     flow field simulation

0 引言

1 转子设计准则 1.1 压力幅值设计准则

 (1)

1.2 压力波与正弦波相关系数最大准则

 (2)

 (3)

2 转子形状参数化建模

 图 1 定子和转子的初始状态 Fig.1 Initial state of the stator and the rotor

 (4)
 (5)

 (6)
 (7)
 (8)

 图 2 面积计算示意图 Fig.2 Schematic diagram of area calculation

 (9)
 (10)
 (11)

 (12)
 (13)

 (14)
 (15)

(1) 当0＜αγ1时，如图 2a所示，直线y11(x)与y2(x)相交于点E1(e1x, e1y)，y3(x)与y1(x)相交于点F(fx, fy)，将上述方程联立可求得E1F点横坐标分别为：

 (16)
 (17)

 (18)
 (19)

(2) 当γ1αγ时，如图 2b所示，直线y11(x)与y2(x)相交于点E1(e1x, e1y)，此时流通面积为：

 (20)
 (21)

(3) 当时，如图 2c所示，直线y22(x)与y1(x)相交于点E2(e2x, e2y)，将2直线方程联立可求得E2点横坐标为：

 (22)

 (23)
 (24)

3 转子形状优化 3.1 优化模型

 (25)
3.2 优化结果

 n R k1 m1 k2 m2 相关系数 4 48.737 -0.897 43.738 -9.479 222.119 0.987 1 3 48.583 -0.892 43.312 17.794 -105.477 0.974 2

 图 3 流通面积及压力信号变化曲线 Fig.3 The effect of angle on the circulation area and pressure signal

4 流场仿真

4.1 模型与仿真设置

 图 4 脉冲发生器流道模型 Fig.4 Flow channel model of the mud pulse generator

4.2 仿真结果

 图 5 仿真波形与理想波形比较图 Fig.5 Comparison of simulation waveform and ideal waveform

5 结论

(1) 根据最大和最小流通面积设计准则及相关系数最大准则，使设计所得的压力波信号幅值和频谱特性最优。

(2) 建立了三角形转子的流通面积计算模型，并依据设计准则建立了三角形转子形状优化模型，进行结构优化。

(3) 对所得转子形状进行流体仿真，仿真结果表明所得转子形状可以产生较为理想的正弦压力波形。

 [1] 肖俊远, 王智明, 刘建领. 泥浆脉冲发生器研究现状[J]. 石油矿场机械, 2010, 39(10): 8–11. DOI: 10.3969/j.issn.1001-3482.2010.10.003 [2] 李荣喜, 房军. 井下旋转压力信号发生器的仿真[J]. 石油矿场机械, 2007, 36(2): 45–47. [3] 郑宏远, 白锐, 刘策. 石油钻井泥浆脉冲发生器数据传输速率分析[J]. 计算机仿真, 2016, 33(7): 194–199. [4] 张中伟, 孙峰. 基于卡尔曼滤波的钻井液脉冲信号处理方法[J]. 石油机械, 2015, 43(4): 39–42. [5] 耿亚楠, 李根生, 史怀忠, 等. 小井眼水力脉冲射流提速研究及应用[J]. 石油机械, 2015, 43(6): 1–5. [6] 房军, 王正旭, 贾朋, 等. 往复增流式井下压力信号发生器模型及特性分析[J]. 石油机械, 2016, 44(10): 11–16. [7] LAVRUT E, KANTE A, RELLINGER P, et al.Pressure pulse generator for downhole tool:6970398B2[P].2005. [8] HAHN D, PETERS V, ROUATBI C, et al.Oscillating shear valve for mud pulse telemetry and associated methods of use:6975244B2[P].2005. [9] 贾朋, 房军, 李林. 基于相关系数的连续波发生器转阀优化设计[J]. 石油矿场机械, 2012, 41(7): 37–42. [10] 郭仁生. 机械工程设计分析和MATLAB应用[M]. 4版. 北京: 机械工业出版社, 2014: 100-102. [11] 韩占忠, 王敬, 兰小平. FLUENT——流体工程仿真计算实例与应用[M]. 北京: 北京理工大学出版社, 2010. [12] 魏亮, 王赤忠, 程烨, 等. 泥浆脉冲发生器转子水力转矩多相流数值模拟[J]. 现代机械, 2015(6): 35–41.

#### 文章信息

Huang Kai, Wang Peng, Zhao Yu, Lu Chang, Feng Ding

Optimum Design of Rotor on Mud Pulse Generator

China Petroleum Machinery, 2017, 45(5): 47-51.
http://dx.doi.org/10.16082/j.cnki.issn.1001-4578.2017.05.009