上海海洋大学学报  2022, Vol. 31 Issue (6): 1382-1393    PDF    
黑水虻幼虫粉替代鱼粉在暗纹东方鲀饲料中的应用
崔锡帅1,2, 孟晓雪1,2, 卫育良2, 段美2, 刘兴旺3, 徐后国2, 朱永祥4, 梁萌青2     
1. 上海海洋大学 水产与生命学院, 上海 201306;
2. 中国水产科学研究院黄海水产研究所, 山东 青岛 266071;
3. 广州飞禧特生物科技有限公司, 广东 广州 510640;
4. 江苏中洋集团股份有限公司, 江苏 海安 226601
摘要:以初始均体质量为(16.33±0.34)g的暗纹东方鲀(Takifugu obscurus)幼鱼为实验对象,利用黑水虻幼虫粉替代饲料中不同比例(0、8%、16%和24%,分别记为HM0、HM8、HM16和HM24)的鱼粉配制成4种等氮等脂的实验饲料。每组饲料投喂3个重复桶,每桶30尾鱼。每天表观饱食投喂3次。实验周期为56 d。实验结果表明:黑水虻幼虫粉替代鱼粉并未对实验鱼的生长、机体粗成分、肌肉粗成分、肌肉氨基酸组成、肌肉质地和血清生化指标产生显著影响。与对照组相比,16%替代组增重率提高19%,显示出黑水虻幼虫粉低比例替代鱼粉具有潜在的提高生长性能的作用。与低比例(8%)替代组相比,高比例(24%)替代组降低了饲料效率,且具有升高肝体比和脏体比的趋势。黑水虻幼虫粉中含有较高含量的C12:0和C18:2n-6,能够满足鱼类对能量供应和18碳不饱和脂肪酸的需求;黑水虻幼虫粉的添加提高了鱼体C14:0和n-6脂肪酸的含量。结果表明,黑水虻幼虫粉替代暗纹东方鲀幼鱼饲料中24%以内的鱼粉不影响鱼体的生长、体成分、肌肉质地和健康状态;低比例(8%~16%)替代还具有潜在的提高生长性能和饲料利用的作用。
关键词黑水虻    暗纹东方鲀    鱼粉替代    生长性能    饲料利用    脂肪酸    

鱼粉是水产动物饲料中主要的蛋白质来源。但近年来集约化养殖的蓬勃发展导致鱼粉需求大大增加[1],而全球渔获产量趋于稳定,因此造成鱼粉相对短缺,价格飙升,迫使人们寻找价格更低、蛋白含量高的新型蛋白源[2]。植物性蛋白源以其来源广、价格低、产量高等优点被广泛应用于养殖鱼类饲料中[3-5],但是植物蛋白源中的抗营养因子会影响水产动物的生长[6],且适口性差从而影响摄食量[7], 而且氨基酸组成极不平衡[8],营养物质消化率降低[9]。动物性蛋白源同样被应用到水产饲料中来缓解鱼粉短缺[10-11],但动物性蛋白源存在某些必需“氨基酸不平衡”、“适口性差”和“灰分含量高”等问题[12]

近年来,昆虫蛋白作为鱼粉的部分或全部替代品得到了非常高的关注。昆虫蛋白源蛋白含量高,氨基酸组成质量较高,在鱼类饲料中取得了较理想的应用效果。黑水虻(Hermetia illucens)属于昆虫纲(Insecta)双翅目(Diptera)水虻科(Stratiomyidae)扁角水虻属(Hermetia latreille),在全球热带和亚热带大部分地区均有分布[13]。黑水虻幼虫能够利用工厂废物、动物粪便以及食物残渣等[14]转换成自身营养物质,在自然界分布较为广泛、产量高、易养殖,价格比鱼粉便宜50%以上[15-16],黑水虻蛋白含量较高,含有丰富的单不饱和脂肪酸和n-6系列多不饱和脂肪酸,氨基酸均衡且富含矿物质,适口性好,黑水虻幼虫能够将废弃有机物转化为富含蛋白质的营养物质来替代鱼粉,从而有助于水产养殖可持续发展[17]。现有研究表明,在大菱鲆(Pesetta maxima)[18]、罗非鱼(Oreochromis niloticus)[19]、凡纳滨对虾(Litopenaeus vannamei)[20]、虹鳟(Oncorhynchus mykiss)[21-22]、大西洋鲑(Salmo salar)[23]、欧洲鲈(Dicentrarchus labrax)[24]、建鲤(Cyprinus carpio var. Jian)[25]、大黄鱼(Larimichthys crocea)[26]、黄颡鱼(Pelreobagrus fulvidraco)[27]等饲料中使用黑水虻虫粉替代部分鱼粉均取得良好的效果。

暗纹东方鲀(Takifugu obscurus)为鲀形目(Tetraodontidormes)鲀科(Tetraodontidae)东方鲀属(Takifugu),肉质极其鲜美,蛋白脂肪含量高,具有较高的经济价值。暗纹东方鲀对饲料中蛋白需求量较高,约为46%~49%[1]。暗纹东方鲀仔鱼的开口饵料以草履虫、轮虫为主,13日龄后的仔鱼开始陆续投喂卤虫无节幼体和小型的枝角类、桡足类等,饲料中添加黑水虻虫粉符合其部分食性特点,目前黑水虻虫粉替代鱼粉添加到饲料中对暗纹东方鲀生长性能的影响还未见报道,因此,本实验研究黑水虻虫粉替代不同比例的鱼粉对暗纹东方鲀幼鱼生长性能、体成分、血清生化指标的影响。

1 材料与方法 1.1 实验设计与实验饲料

实验饲料利用鱼粉、豆粕、玉米蛋白粉、小麦粉作为蛋白源,各组饲料的蛋白含量约为47%,脂肪含量约为11%。利用黑水虻幼虫粉替代不同比例的鱼粉(替代0、8%、16%和24%的鱼粉)配制成4种等氮等脂的实验饲料,分别记为HM0、HM8、HM16和HM24 (表 1)。黑水虻幼虫为干虫,购买自广州飞禧特生物科技有限公司,黑水虻幼虫在低温条件下保存。本实验所用黑水虻幼虫未进行抽脂处理,蛋白含量为34.90%,脂肪含量为37.94%。将幼虫研磨成粉,实验饲料按照实验室标准程序进行制作,使用小型单螺杆挤压机制得直径约为3 mm的颗粒状饲料,所有饲料使用前放于-20 ℃冷库中保存。同时,取样品测定氨基酸(表 2)和脂肪酸组成(表 3)。

表 1 4种实验饲料配方及营养水平(%干物质) Tab.1 Formulation and proximate composition of four experimental diets (% dry matter basis)
表 2 4种实验饲料的氨基酸组成(%干物质基础) Tab.2 Amino acids composition of four experimental diets (% dry matter basis)
表 3 4种实验饲料的脂肪酸组成(%总脂肪酸) Tab.3 Fatty acids composition of four experimental diets (% total fatty acids)
1.2 实验用鱼和养殖管理

以初体质量为(16.33±0.34)g的同一批人工繁育的暗纹东方鲀幼鱼(江苏南通)为实验对象,养殖实验在江苏中洋现代科技产业园进行。实验开始前,将实验鱼用商品饲料暂养驯化1周以适应环境,驯化结束后从缸内捞取10尾鱼储存在-20 ℃用作后续分析,然后实验鱼随机分到12个玻璃钢桶(直径×高度=1.5 m×0.6 m)中,每组3个重复,每桶30尾鱼。每天7:00、11:30和16:30手工缓慢投喂至表观饱食。采用室内静水养殖,每天喂食两小时后换水2/3。实验时间为2020年8月到2020年11月,养殖周期为56 d。养殖过程中全程使用地下淡水,水温为20~24 ℃,及时清除残饵和粪便,并定期对养殖用缸进行刷洗,每天记录各养殖缸饲料摄入量以及鱼死亡情况。

1.3 样品采集与分析

在养殖实验结束前24 h停止投喂,统计各养殖缸中存活鱼的数量并称质量。每个缸中随机选取6尾鱼来进行实验研究,通过尾静脉取血后在4 ℃条件下凝结6~8 h,然后离心10 min(4 ℃ 836g)获得血清样品。通过解剖全鱼来收集肝脏和肌肉。将取得的样品当场置于液氮中保存,最后再转移到-80 ℃冰箱中储存以待进一步实验。取样结束后,每缸随机挑选4尾鱼放入-20 ℃冰箱备用。

饲料和鱼体组成的粗蛋白、粗脂肪、粗灰分和水分是利用AOAC(2005)方法进行的,105 ℃烘干法测得水分含量;粗蛋白含量利用凯氏定氮仪测得(Kieltec 2300, FOSS, 丹麦);粗脂肪利用索氏抽提仪测定(Foss Tecator, Hoganas, 瑞典);粗灰分利用马弗炉(Thermo F6000型)高温(550 ℃)灼烧法测定;饲料、肌肉以及肝脏全氨基酸先在6 mol/L的盐酸中110 ℃水解22~24 h,然后利用氨基酸分析仪(Hitachi L-8900 automatic amino acid analyzer, Hitachi, 日本)测定;血清生化指标利用南京建成试剂盒测得;使用配备有25 N重力传感器的TMS-Pro质地分析仪测定肌肉质地。测定条件:环境温度23 ℃, 8 mm圆形探头,压缩速率30 mm/min,形变量30%。测定指标包括硬度、黏附性、内聚性、胶黏性、弹性、咀嚼性。饲料、肌肉和肝脏脂肪酸组成用气相色谱仪(GC-2010 Pro, 岛津, 日本)进行检测。首先将样品进行冷冻干燥处理,然后先用KOH-甲醇再用HCL-甲醇在72 ℃水浴条件下进行甲酯化,脂肪酸甲酯用正己烷萃取。气相色谱仪条件:石英毛细管柱(SH-RT-2560, 100 m×0.25 mm×0.20 μm, 日本岛津)、火焰电离探测器。升温程序:以15 ℃/min的速率从150 ℃升高到200 ℃;然后以2 ℃/min速率从200 ℃升高到250 ℃。喷射器和探测器的温度都是250 ℃。结果用每种脂肪酸相对于总脂肪酸的百分比表示。

1.4 计算公式
    (1)
    (2)
    (3)
    (4)
    (5)
    (6)
    (7)
    (8)
    (9)

式中: SR为存活率, %; Nt为终末尾数; No为初始尾数; WGR为增重率, %; Wt为终末体质量, g; Wo为初始体质量, g; SGR为特定生长率, %/d; D为实验天数, d; FER为饲料效率; Fd为饲料摄入量, g; PER为蛋白质效率; Dp为蛋白质沉积质量, g; Fp为摄入蛋白质质量, g; PDR为蛋白质沉积率, %; CF为肥满度, g/cm3; Wb为鱼体质量, g; Lb为体长, cm; HSI为肝体比, %; Wl为肝脏质量, g; VSI为脏体比, %; Wv为内脏质量, g。

1.5 统计方法

使用SPSS 26.0软件进行单因素方差分析(One-way ANOVA),当差异达到显著性水平(P < 0.05),则用Tukey法进行分析,试验数据以平均值±标准误(Mean±SE)表示。

2 结果 2.1 生长性能

黑水虻幼虫粉的添加显著影响了暗纹东方鲀的饲料效率、肝体比、脏体比和肥满度(P < 0.05),饲料效率随着黑水虻虫粉替代比例的增加呈先上升后下降的趋势,而肝体比、脏体比、肥满度随着替代比例增加呈现持续上升的趋势(表 4)。终末体质量、增重率、特定生长率、成活率、饲料效率和蛋白质效率在各组之间无显著性差异(P>0.05)。值得一提的是,随着黑水虻虫粉替代水平的增加,虽然各处理组间在增重率、特定生长率、饲料效率和蛋白质效率方面无显著性差异(P>0.05),但具有先上升后下降的趋势。

表 4 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀生长性能的影响 Tab.4 Effects of fishmeal replacement by black soldier fly larvae meal on growth performance of Takifugu obscurus
2.2 暗纹东方鲀鱼体概略成分组成

黑水虻幼虫粉的添加并未对暗纹东方鲀鱼体粗蛋白、粗脂肪、水分、灰分产生显著性影响(P>0.05),见表 5;肌肉、肝脏的概略成分同样并未产生显著性差异(P>0.05),见表 6

表 5 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀鱼体概略成分的影响(%湿质量) Tab.5 Effects of fishmeal replacement by black solider fly larvae meal on proximate composition of Takifugu obscurus (% wet mass)
表 6 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀肝脏和肌肉概略成分组成的影响(%湿质量) Tab.6 Effects of fishmeal replacement by black solider fly larvae meal on liver and muscle proximate composition of Takifugu obscurus (% wet mass)
2.3 暗纹东方鲀肌肉质构

黑水虻幼虫粉的添加并未对暗纹东方鲀肌肉的硬度、黏附性、内聚性、弹性、胶黏性、咀嚼性产生显著性影响(P>0.05),见表 7

表 7 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀幼鱼肌肉质地的影响 Tab.7 Effects of fishmeal replacement by black solider fly larvae meal on the muscle texture of Takifugu obscurus
2.4 暗纹东方鲀肌肉氨基酸

在喂食不同处理组饲料8周后,肌肉氨基酸并未产生显著性变化(P>0.05),见表 8

表 8 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀肌肉氨基酸组成的影响(%干物质基础) Tab.8 Effects of fishmeal replacement by black solider fly larvae meal on muscle amino acids composition of Takifugu obscurus(% dry matter basis)
2.5 暗纹东方鲀肌肉脂肪酸

随着黑水虻虫粉替代鱼粉水平增加,使得肌肉中C14∶ 0(肉豆蔻酸)、18∶ 2n-6(亚油酸)、n-6 ∑PUFA含量显著升高(P < 0.05),C16∶ 1n-7(棕榈油酸)、C20∶ 1n-9(芥子酸)、C20∶ 4n-6(花生四烯酸)、C20∶ 5n-3(EPA)、C22∶ 6n-3(DHA)、n-3 ∑PUFA含量和n-3 ∑PUFA/ n-6 ∑PUFA显著下降(P < 0.05),其余脂肪酸含量未产生显著性差异。见表 9

表 9 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀肌肉脂肪酸组成的影响(%总脂肪酸) Tab.9 Effects of fishmeal replacement by black solider fly larvae meal on muscle fatty acid composition of Takifugu obscurus (% total fatty acids)
2.6 暗纹东方鲀肝脏脂肪酸

黑水虻虫粉添加量的增加使得肝脏中C12∶ 0(月桂酸)、C14∶ 0(肉豆蔻酸)、C18∶ 1n-9(油酸)、C18∶ 2n-6(亚油酸)、C20∶ 2n-6(二十碳二烯酸)和n-6∑PUFA的含量显著上升(P < 0.05),而C15∶ 0(十五烷酸)、C17∶ 0(十七烷酸)、C18∶ 0(硬脂酸)、C17∶ 1n-7(十七碳烯酸)、C20∶1n-9(二十碳烯酸)、C20∶ 5n-3(EPA)、C22∶ 6n-3(DHA)、n-3∑PUFA含量以及∑n-3/∑n-6显著降低(P < 0.05),其余脂肪酸含量未产生显著性差异(P>0.05)。见表 10

表 10 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀肝脏脂肪酸组成的影响(%总脂肪酸) Tab.10 Effects of fishmeal replacement by black solider fly larvae meal on liver fatty acid composition of Takifugu obscurus(% total fatty acids)
2.7 暗纹东方鲀血清生化指标

黑水虻幼虫粉替代鱼粉比例增加并未使暗纹东方鲀血清中甘油三酯、总胆固醇、高低密度脂蛋白胆固醇、丙二醛、白蛋白、总蛋白产生显著性变化(P>0.05),见表 11

表 11 饲料黑水虻幼虫粉替代鱼粉水平对暗纹东方鲀血清生化指标的影响 Tab.11 Effects of fishmeal replacement by black solider fly larvae meal level on biochemical parameters in serum of Takifugu obscurus
3 讨论 3.1 黑水虻幼虫粉对暗纹东方鲀生长性能的影响

在本研究中,实验组和对照组的存活率、增重率、特定生长率、蛋白质效率等都未出现显著性变化。这充分表明了黑水虻幼虫粉替代鱼粉的潜力。即使黑水虻幼虫粉替代高达24%的鱼粉后也没有对暗纹东方鲀幼鱼的生长性能产生显著影响。而且,从数值上来看,增重率在16%鱼粉替代组最高,比对照组提高19%,显示出黑水虻幼虫粉低比例替代鱼粉具有潜在的提高生长性能的作用。增重率之所以没有出现显著性差异,可能跟较大的组内误差有一定关系,在环境条件一致的情况下,组内差异的出现主要跟遗传背景差异有关。因此,营养学实验最好使用同胞家系进行。黑水虻幼虫粉并未影响到暗纹东方鲀生长性能的原因可能跟暗纹东方鲀原始食性有关。暗纹东方鲀仔鱼开口时期会食用一些虫体,因此饲料中加入黑水虻幼虫粉后表现出较好的生长结果。本实验结果与其他黑水虻虫粉替代鱼粉实验研究结果类似。欧洲鲈鱼[28]饲料中45%的鱼粉可被黑水虻幼虫粉替代。有研究[29]甚至发现,黑水虻虫粉能够替代61.3%的鱼粉对于西伯利亚鲟的生长无不利影响。黑水虻虫粉完全替代鱼粉对大西洋鲑[30]的生长性能、饲料利用、营养物质消化率、肝脏健康和鱼片口感品质也均未产生负面影响。

然而,即便生长没有显著性影响,与低比例(8%)的替代相比,高比例(24%)替代会显著降低饲料效率。有研究[20]发现,在南美白对虾中,当黑水虻虫粉含量超过7%时,饲料系数明显上升,鱼体的蛋白和脂肪含量下降。KROECKEL等[18]在黑水虻幼虫替代饲料中鱼粉的研究时发现大菱鲆幼鱼的蛋白质、脂肪和能量消化率显著低于鱼粉组,所有的黑水虻虫粉饲料组特定生长率均低于鱼粉组,作者推测是虫粉中几丁质影响到大菱鲆对饲料的摄入量以及营养物质的利用。本研究并未发现黑水虻幼虫粉替代鱼粉后对暗纹东方鲀摄食情况产生负面影响。

随着黑水虻幼虫粉的增加,暗纹东方鲀肝体比、脏体比以及肥满度呈现显著性上升的趋势,EWALD等[31]发现黑水虻饲料组大西洋鲑的肝体比、脏体比要高于纯鱼粉组。黑水虻虫粉替代大西洋鲑[32]饲料中的鱼粉对其肥满度无显著性影响,而在虹鳟[21]饲料中添加黑水虻粉使得鱼体的肝体比显著下降。这些结果的差异可能主要跟实验鱼的脂肪含量有关,与鲑鳟鱼类相比,暗纹东方鲀体脂含量较低,更易受到饲料营养因素的影响。

3.2 黑水虻幼虫粉对暗纹东方鲀全鱼、肝脏、肌肉概略成分组成的影响

添加不同水平的黑水虻幼虫粉并未对暗纹东方鲀鱼体的粗蛋白、粗脂肪、粗灰分和水分产生显著性影响,肌肉粗蛋白、粗脂肪、水分以及肝脏脂肪、水分含量也无显著性差异。同样,BELGHIT等[30]发现黑水虻虫粉替代鱼粉对大西洋鲑鱼体蛋白和脂肪含量无显著性影响,而KARAPANAGIOTIDIS等[33]发现黑水虻幼虫粉替代鱼粉比例的增加使得金头鲷鱼体脂肪含量降低。黑水虻虫粉替代黄颡鱼饲料中的鱼粉使得全鱼脂肪含量和肌肉蛋白含量显著升高[34],黄鳝饲料中加入黑水虻粉也使得其鱼体脂肪含量显著性上升[35]。不同实验间的差异可能主要跟基础配方、替代比例和替代原料对象方面的差异有关。

3.3 黑水虻幼虫粉对暗纹东方鲀氨基酸和脂肪酸组成的影响

黑水虻幼虫粉氨基酸组成较为平衡,实验组除牛磺酸含量低于对照组外,其余氨基酸组成与对照组相似。本研究中各组生长无显著差异,表明实验组饲料中牛磺酸的量可能已经能够满足暗纹东方鲀正常生长需求。MAKKAR等[36]研究发现黑水虻幼虫粉蛋氨酸含量不足,此外有研究[32]发现饲料中牛磺酸含量较低时会造成肝体比、脏体比的变化。牛磺酸是一种非必需氨基酸,在机体调节脂质代谢过程中具有重要作用[37],当含量不足时鱼体会利用含硫的氨基酸(如蛋氨酸、半胱氨酸)产生牛磺酸。李峰等[38]发现黑水虻中精氨酸、赖氨酸含量较少,而在本实验中,黑水虻虫粉替代24%鱼粉饲料精氨酸、赖氨酸含量确实有所减少,但是在肌肉、肝脏中各氨基酸含量无显著性变化,证明黑水虻虫粉替代鱼粉添加到暗纹东方鲀饲料中对鱼体肌肉氨基酸含量无显著性影响。

由于黑水虻幼虫粉在替代鱼粉蛋白的同时也替代掉部分鱼油,因此也需要了解黑水虻虫油对暗纹东方鲀脂肪酸带来的影响。黑水虻的脂肪含量以及脂肪酸组成很大程度取决于它的培养材料,在牛粪基础上加入部分鱼的内脏来饲喂能使黑水虻体内具有更多的亚麻酸、DHA和EPA[39]。黑水虻虫油的高可塑性也使得其成为饲料脂肪成分调节的有效途径。本实验所用黑水虻幼虫是以食物残渣为食而并非动物粪便或工业废物,因此虫体内含有较高含量的饱和脂肪酸(如C12∶ 0)和C18∶ 2n-6等n-6系列脂肪酸。C12∶ 0(月桂酸)是一种非常重要的中链脂肪酸[40],与C8∶ 0、C10∶ 0相反,C12∶ 0被认为能更好地被鱼类利用,能够被优先用来供能[41-43]。而且,随着黑水虻添加比例的升高,虽然饲料中C14∶ 0含量减少,但肌肉和肝脏中C14∶ 0含量显著升高,这主要来源于从C12∶ 0到C14∶ 0的生物转化。不饱和脂肪酸方面,黑水虻中C18∶ 2n-6含量较高,能够满足具有长链多不饱和脂肪酸合成能力鱼类对18碳不饱和脂肪酸的需求。黑水虻幼虫粉替代鱼粉水平的增加也使得暗纹东方鲀肌肉和肝脏中n-6系列多不饱和脂肪酸比例显著上升,而n-3系列多不饱和脂肪酸比例显著下降。这是因为黑水虻虫油和鱼油脂肪酸的组成差异造成的。鱼体组织中脂肪酸的组成主要受饲料脂肪酸含量的影响。n-3系列多不饱和脂肪酸的减少可能是造成饲料效率下降的原因。

3.4 黑水虻幼虫粉对暗纹东方鲀肌肉质地和血清生化指标的影响

黑水虻幼虫粉替代不同比例的鱼粉未对鱼肌肉的硬度、黏附性、内聚性、弹性、胶黏性和咀嚼性产生显著性差异。RENNA等[44]发现添加黑水虻粉使得肌肉必需氨基酸产生显著性差异,但是并未影响到鱼片的品质。血清生化指标能够反映机体代谢情况以及健康状态[45],丙二醛反映脂肪氧化情况,总胆固醇和甘油三酯含量体现机体脂肪代谢情况。本实验中黑水虻虫粉替代24%鱼粉并未显著影响到血清中甘油三酯、总胆固醇、白蛋白、高低密度脂蛋白胆固醇以及总蛋白含量,这表明黑水虻幼虫粉替代鱼粉后并没有对暗纹东方鲀代谢产生不利影响。

4 结论

对于暗纹东方鲀来说,黑水虻幼虫粉是一种优质蛋白源,黑水虻幼虫粉替代暗纹东方鲀饲料24%的鱼粉并不会对鱼的生长性能、体成分、肌肉质地和健康状态产生不利影响。而且,黑水虻幼虫粉替代暗纹东方鲀饲料16%的鱼粉具有潜在的促进生长的作用。黑水虻幼虫粉脂肪含量较高,且脂肪酸中C12∶ 0和C18∶ 2n-6含量较高,有利于满足鱼体的供能代谢及对18碳不饱和脂肪酸的需要。

参考文献
[1]
王晓晨, 李勇, 周邦维, 等. 东方鲀属鱼类营养需求特点与饲料研发新进展[J]. 饲料工业, 2014, 35(10): 33-38.
WANG X C, LI Y, ZHOU B W, et al. Advanced research and development on nutrient requirement characteristics and feed in fugu[J]. Feed Industry, 2014, 35(10): 33-38. DOI:10.13302/j.cnki.fi.2014.10.008
[2]
GHOSH K, RAY A K, RINGØ E, et al. Applications of plant ingredients for tropical and subtropical freshwater finfish: possibilities and challenges[J]. Reviews in Aquaculture, 2019, 11(3): 793-815. DOI:10.1111/raq.12258
[3]
RUMSEY G L, SIWICKI A K, ANDERSON D P, et al. Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout[J]. Veterinary Immunology and Immunopathology, 1994, 41(3/4): 323-339.
[4]
OLLI J J, KROGDAHL Å, VÅBENØ A. Dehulled solvent-extracted soybean meal as a protein source in diets for Atlantic salmon, Salmo salar L.[J]. Aquaculture Research, 1995, 26(3): 167-174. DOI:10.1111/j.1365-2109.1995.tb00899.x
[5]
KIKUCHI K. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture, 1999, 179(1/4): 3-11.
[6]
FRANCIS G, MAKKAR H P S, BECKER K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish[J]. Aquaculture, 2001, 199(3/4): 197-227.
[7]
BONALDO A, PARMA L, MANDRIOLI L, et al. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles[J]. Aquaculture, 2011, 318(1/2): 101-108.
[8]
SLAWSKI H, ADEM H, TRESSEL R P, et al. Austausch von fischmehl durch rapsproteinkonzentrat in futtermitteln fur steinbutt (Psetta maxima L.)[J]. Züchtungskunde, 2011, 83(6): 451-460.
[9]
DENG J M, MAI K, AI Q H, et al. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus[J]. Aquaculture, 2006, 258(1/4): 503-513.
[10]
DAVIES S J, GOUVEIA A, LAPORTE J, et al. Nutrient digestibility profile of premium (category Ⅲ grade) animal protein by-products for temperate marine fish species (European sea bass, gilthead sea bream and turbot)[J]. Aquaculture Research, 2009, 40(15): 1759-1769. DOI:10.1111/j.1365-2109.2009.02281.x
[11]
MILLAMENA O M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides[J]. Aquaculture, 2002, 204(1/2): 75-84.
[12]
周歧存, 麦康森, 刘永坚, 等. 动植物蛋白源替代鱼粉研究进展[J]. 水产学报, 2005, 29(3): 404-410.
ZHOU Q C, MAI K S, LIU Y J, et al. Advances in animal and plant protein sources in place of fish meal[J]. Journal of Fisheries of China, 2005, 29(3): 404-410. DOI:10.3321/j.issn:1000-0615.2005.03.021
[13]
刘兴, 孙学亮, 李连星, 等. 黑水虻替代鱼粉对锦鲤生长和健康状况的影响[J]. 大连海洋大学学报, 2017, 32(4): 422-427.
LIU X, SUN X L, LI L X, et al. Effects of dietary fish meal replaced by Hermetia illucens meal on growth and health of koi cap Cyprinus carpio[J]. Journal of Dalian Fisheries University, 2017, 32(4): 422-427. DOI:10.16535/j.cnki.dlhyxb.2017.04.008
[14]
安新城, 李军, 吕欣. 黑水虻处理养殖废物的研究现状[J]. 环境科学与技术, 2010, 33(3): 113-116.
AN X C, LI J, LYU X. Development of manure management system with Hermetia illucens[J]. Environmental Science & Technology, 2010, 33(3): 113-116. DOI:10.3969/j.issn.1003-6504.2010.03.025
[15]
陈柏宇, 李楚君, 胡斌, 等. 黑水虻幼虫饲用价值[J]. 饲料工业, 2020, 41(10): 9-15.
CHEN B Y, LI C J, HU B, et al. Value of black soldier fly larvae as feed[J]. Feed Industry, 2020, 41(10): 9-15. DOI:10.13302/j.cnki.fi.2020.10.002
[16]
FURMAN D P, YOUNG R D, CATTS P E. Hermetia illucens (Linnaeus) as a factor in the natural control of musca domestica Linnaeus[J]. Journal of Economic Entomology, 1959, 52(5): 917-921. DOI:10.1093/jee/52.5.917
[17]
DIENER S, ZVRBRUGG C, TOCKNER K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates[J]. Waste Management & Research, 2009, 27(6): 603-610.
[18]
KROECKEL S, HARJES A G E, ROTH I, et al. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima)[J]. Aquaculture, 2012, 364-365: 345-352. DOI:10.1016/j.aquaculture.2012.08.041
[19]
DEVIC E, LESCHEN W, MURRAY F, et al. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal[J]. Aquaculture Nutrition, 2018, 24(1): 416-423. DOI:10.1111/anu.12573
[20]
CUMMINS V C, RAWLES S D, THOMPSON K R, et al. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2017, 473: 337-344. DOI:10.1016/j.aquaculture.2017.02.022
[21]
SEALEY W M, GAYLORD T G, BARROWS F T, et al. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens[J]. Journal of the World Aquaculture Society, 2011, 42(1): 34-45. DOI:10.1111/j.1749-7345.2010.00441.x
[22]
KUMAR V, FAWOLE F J, ROMANO N, et al. Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil[J]. Fish & Shellfish Immunology, 2021, 109: 116-124.
[23]
BELGHIT I, LILAND N S, WAAGBØ R, et al. Potential of insect-based diets for Atlantic salmon (Salmo salar)[J]. Aquaculture, 2018, 491: 72-81. DOI:10.1016/j.aquaculture.2018.03.016
[24]
MOUTINHO S, PEDROSA R, MAGALHÃES R, et al. Black soldier fly (Hermetia illucens) pre-pupae larvae meal in diets for European seabass (Dicentrarchus labrax) juveniles: effects on liver oxidative status and fillet quality traits during shelf-life[J]. Aquaculture, 2021, 533: 736080. DOI:10.1016/j.aquaculture.2020.736080
[25]
LI S L, JI H, ZHANG B X, et al. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio varvar. Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure[J]. Aquaculture, 2017, 477: 62-70. DOI:10.1016/j.aquaculture.2017.04.015
[26]
韩星星, 叶坤, 王志勇, 等. 脱脂黑水虻虫粉替代鱼粉对大黄鱼幼鱼生长、体成分、血清生化指标及抗氧化能力的影响[J]. 中国水产科学, 2020, 27(5): 524-535.
HAN X X, YE K, WANG Z Y, et al. Effect of substitution of fish meal with defatted black soldier fly larvae meal on growth, body composition, serum biochemical parameters, and antioxidant capacity of juvenile large yellow croaker (Larimichthys crocea)[J]. Journal of Fishery Sciences of China, 2020, 27(5): 524-535.
[27]
XIAO X P, JIN P, ZHENG L Y, et al. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture Research, 2018, 49(4): 1569-1577. DOI:10.1111/are.13611
[28]
MAGALHÃES R, SÁNCHEZ-LÓPEZ A, LEAL R S, et al. Black soldier fly (Hermetia illucens) prepupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2017, 476: 79-85. DOI:10.1016/j.aquaculture.2017.04.021
[29]
RAWSKI M, MAZURKIEWICZ J, KIERON ' CZYK B, et al. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in siberian sturgeon nutrition: the effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization[J]. Animals, 2020, 10(11): 2119. DOI:10.3390/ani10112119
[30]
BELGHIT I, LILAND N S, GJESDAL P, et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar)[J]. Aquaculture, 2019, 503: 609-619. DOI:10.1016/j.aquaculture.2018.12.032
[31]
EWALD N, VIDAKOVIC A, LANGELAND M, et al. Fatty acid composition of black soldier fly larvae (Hermetia illucens) - Possibilities and limitations for modification through diet[J]. Waste Management, 2020, 102: 40-47. DOI:10.1016/j.wasman.2019.10.014
[32]
LOCK E R, ARSIWALLA T, WAAGBØ R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt[J]. Aquaculture Nutrition, 2016, 22(6): 1202-1213. DOI:10.1111/anu.12343
[33]
KARAPANAGIOTIDIS I T, DASKALOPOULOU E, VOGIATZIS I, et al. Substitution of fishmeal by fly hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata)[C]//HydroMedit 2014. Volos, Greece, 2014: 110-114.
[34]
陈晓瑛, 胡俊茹, 王国霞, 等. 黑水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、肌肉品质及血清生化指标的影响[J]. 动物营养学报, 2019, 31(6): 2788-2799.
CHEN X Y, HU J R, WANG G X, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, serum biochemical indices and meat quality of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2788-2799.
[35]
胡俊茹, 王国霞, 莫文艳, 等. 黑水虻幼虫粉替代鱼粉对鲈鱼幼鱼生长性能、体组成、血浆生化指标和组织结构的影响[J]. 动物营养学报, 2018, 30(2): 613-623.
HU J R, WANG G X, MO W Y, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens L.) Larvae meal on growth performance, body composition, plasma biochemical indexes and tissue structure of juvenile Lateolabrax japonicas[J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 613-623. DOI:10.3969/j.issn.1006-267x.2018.02.026
[36]
MAKKAR H P S, TRAN G, HEUZÉ V, et al. State-of-the-art on use of insects as animal feed[J]. Animal Feed Science and Technology, 2014, 197: 1-33. DOI:10.1016/j.anifeedsci.2014.07.008
[37]
RIPPS H, SHEN W. Review: taurine: a "very essential" amino acid[J]. Molecular Vision, 2012, 18: 2673-2686.
[38]
李峰, 张文蕾, 郝小雨, 等. 利用黑水虻处理餐厨垃圾和豆腐渣及幼虫营养价值分析[J]. 河南水产, 2020(1): 21-25.
LI F, ZHANG W L, HAO X Y, et al. Nutritional value analysis of black soldier fly larvae (Hermetia illucens) treating with kitchen waste and bean curd residue[J]. Henan Fisheries, 2020(1): 21-25.
[39]
ST-HILAIRE S, CRANFILL K, MCGUIRE M A, et al. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids[J]. Journal of the World Aquaculture Society, 2007, 38(2): 309-313. DOI:10.1111/j.1749-7345.2007.00101.x
[40]
LEONG S Y, KUTTY S R M, MALAKAHMAD A, et al. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste[J]. Waste Management, 2016, 47: 84-90. DOI:10.1016/j.wasman.2015.03.030
[41]
孙彩云, 董宏标, 王文豪, 等. 月桂酸单甘油酯对花鲈脂质代谢的影响[J]. 南方水产科学, 2021, 17(1): 67-75.
SUN C Y, DONG H B, WANG W H, et al. Effects of glycerol monolaurate on lipid metabolism of Lateolabrax maculatus[J]. South China Fisheries Science, 2021, 17(1): 67-75.
[42]
FONTAGNÉS, ROBIN J, CORRAZE G, et al. Growth and survival of European sea bass (Dicentrarchus Labrax) larvae fed from first feeding on compound diets containing medium-chain triacylglycerols[J]. Aquaculture, 2000, 190(3/4): 261-271.
[43]
CRAIG S R, GATLIN D M Ⅲ. Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition[J]. Journal of Nutrition, 1995, 125(12): 3041-3048.
[44]
RENNA M, SCHIAVONE A, GAI F, et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets[J]. Journal of Animal Science and Biotechnology, 2017, 8: 57.
[45]
毕清竹, 梁萌青, 廖章斌, 等. 饲料中胆汁酸对红鳍东方鲀脂肪酸组成及抗氧化能力的影响[J]. 上海海洋大学学报, 2020, 29(6): 829-839.
BI Q Z, LIANG M Q, LIAO Z B, et al. Effect of dietary bile acid supplementation on fatty acid composition and anti-oxidative capacity of tiger puffer Takifugu rubripes[J]. Journal of Shanghai Ocean University, 2020, 29(6): 829-839.
Fish meal replacement with black soldier fly larvae meal in the diet of juvenile obscure puffer Takifugu obscurus
CUI Xishuai1,2, MENG Xiaoxue1,2, WEI Yuliang2, DUAN Mei2, LIU Xingwang3, XU Houguo2, ZHU Yongxiang4, LIANG Mengqing2     
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China;
3. Guangzhou Feixite Aquatic Product Technology Co., Ltd., Guangzhou 510640, Guangdong, China;
4. Jiangsu Zhongyang Group Co., Ltd, Hai'an 226601, Jiangsu, China
Abstract: Black sodier fly larvae meal is a potential high-quality protein source for fish meal replacement in aquaculture, which has attracted much attention in recent years. This experiment, with juvenile Takifugu obscurus with an initial average weight of (16.33±0.34) g, was aimed at evaluating the utilization efficiency of black sodier fly larvae meal in the diet. Four isonitrogenous and isolipid experimental feeds were prepared, with black soldier fly larvae meal as a substitute for fish meal in different proportions(0, 8%, 16% and 24%, designated as HM0, HM8, HM16 and HM24, respectively). Each group was fed to 3 replicate tanks, with 30 fish in each tank. Fish were fed to satiation three times a day. The feeding trial lasted for 56 days. The results showed that the supplementation of black soldier fly larvae meal had no significant effects on the growth, body composition, muscle composition, muscle amino acid composition, muscle texture and serum biochemical indexes of experimental fish. Compared with the control group, the weight gain rate was increased by 19% in group HM16, indicating that the replacement of fish meal with black soldier fly meal at a low level had a potential positive effect on growth performance. Compared with group HM8, HM24 decreased the feed efficiency and tended to increase the HSI and VSI. The high content of C12:0 and C18:2n-6 in black soldier fly larvae meal can meet the energy demand and 18C polyunsaturated fatty acids requirement of fish, which increased the content of C14:0 and n-6 fatty acids in fish. In conclusion, replacement of 24% fish meal in the diet of juvenile Takifugu obscurus by black soldier fly larvae meal did not affect the growth, body composition, muscle texture and health status of obscure puffer. A low replacement level (8%-16%) could have potential positive effects on growth performance and feed utilization of obscure puffer.
Key words: Takifugu obscurus     black soldier fly     fishmeal replacement     growth performance     feed utilization     fatty acid