2. 上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;
3. 上海海洋大学 农业农村部鱼类营养与环境生态研究中心, 上海 201306;
4. 安徽省水产技术推广总站, 安徽 合肥 230000
克氏原螯虾(Procambarus clarkii)属甲壳纲(Crustacea)十足目(Decapoda)螯虾科(Cambaridae),是淡水杂食性虾类,其具有生命力强、繁殖率高、肉鲜味美、营养丰富等特点,肌肉中的脂肪酸以多不饱和脂肪酸为主,是淡水中营养价值最高的虾类之一[1]。之前国内外对克氏原螯虾的研究主要集中在生态[2-3]和病害方面[4-5],随着近年来国内克氏原螯虾的养殖规模迅速扩增,对优质、廉价的克氏原螯虾饲料的需求日益迫切。目前对克氏原螯虾脂质营养方面的研究多为对脂肪需求的研究[6-7],而对克氏原螯虾饲料的适宜脂肪源的使用研究较少。
脂肪是虾蟹类生长必需的营养物质之一,因其对碳水化合物特别是多糖利用率低[8],通过饲料中提供的脂肪源为机体提供能量、作为组织组成成分、提供必需脂肪酸(essential fatty acids,EFA)、激素和维生素类的合成原料[9]。淡水种类饲料多用豆油、菜籽油和棕榈油等植物油作为脂肪源,脂肪酸以棕榈酸(palmitic acid, PA, C16∶ 0)、油酸(oleic acid, OA, C18∶ 1n9)、亚油酸(linoleic acid, LA, C18∶ 2n6)和亚麻酸(linolenic acid, LNA, C18∶ 3n3)为主。在饲料中添加适宜的LNA能够改善日本沼虾(Macrobrachium nipponense)的生长性能, 增强抗氧化和免疫性能[10];使用豆油作为红螯螯虾(Cherax quadricarinatus)的主要脂肪来源,能获得较好的饲养效果,降低饲料成本[11]。虽然有研究[12]显示,在一些海水种类中添加适量的大豆油和棕榈油等植物油作为脂肪源能获得较好的效果,但仍需要依靠鱼油中较高含量的二十碳五烯酸(eicosa pentaenoic acid, EPA, C20∶ 5n-3)和二十二碳六烯酸(docosa hexaenoic acid, DHA, C22∶ 6n-3)作为主要脂肪源满足营养的需要[13]。有研究[14]显示,不少淡水虾蟹具有将植物油中的C18不饱和脂肪酸转化为长链多不饱和脂肪酸(long-chain polyunsaturated fatty acid,LC-PUFA)的能力。克氏原螯虾生活在淡水中,属于杂食性种类,主要以大型植物、藻类、无脊椎动物和碎屑为食,能够很好地适应植物性食物来源,同时植物性食源可以提供必要的营养物质维持体内的新陈代谢和其他生理功能[15]。豆油产量高,价格低且营养价值较好,是淡水种类中常用的优质脂肪源[16]。棕榈油中单不饱和脂肪酸(monounsaturated fatty acid,MUFA)含量约为40%,多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)约为10%,并富含维生素E和胡萝卜素等[17]。有研究[18]报道,棕榈油替代部分鱼油有利于半滑舌鳎(Cynoglossus semilaevis)的健康生长、提高肌肉的营养成分。因此,本试验配制不同质量比例的饲料饲养克氏原螯虾幼体,并对其生长性能、抗氧化能力及生化组成进行比较分析,探讨克氏原螯虾对脂肪营养需求及脂肪源的适宜添加比例,以期进一步降低饲料成本,提高养殖性能。
1 材料与方法 1.1 实验饲料以棕榈油、豆油和鱼油作为脂肪源,配制6种等氮等脂的不同比值脂肪源实验饲料,饲料中棕榈油、鱼油、豆油质量比分别为6∶ 0∶ 0、4∶ 1∶ 1、2∶ 2∶ 2、0∶ 3∶ 3、0∶ 6∶ 0和0∶ 0∶ 6,依次记为F1~F6组。饲料原料经粉碎、过筛(80目)后逐级扩大法添加,混合均匀后挤压制成粒径1.2 mm、长度10 mm的沉性膨化饲料,冷却、干燥后将饲料磨碎成适宜大小粒径(0.1~0.3 mm),放入黑色自封袋中于-20 ℃冰箱中保存待用。饲料配方见表 1。
实验所用克氏原螯虾幼体来自上海海洋大学崇明基地,均为当年健康幼虾。实验开始前,于室内12个循环水玻璃缸(1.0 m×1.0 m×0.4 m)中暂养1周,暂养期间用商业饲料进行投喂。实验开始挑选附肢完整,体质量为(5.26±0.10)g的幼虾,随机分配到6个实验组中,每组42尾幼虾。单养于小型循环水族箱(30 cm×24 cm×11 cm)中,箱底部放置PVC管(直径3 cm,长10 cm)和假水草作为隐蔽物。养殖期间,每天投喂实验饲料2次(7: 00和19: 00),每天换水量约1/3,及时吸除粪便和残饵。实验期间水循环不间断进行增氧,养殖期间溶氧高于5 mg/L,水温为21.5~24.0 ℃,氨氮质量浓度小于0.01 mg/L,pH为7.2~8.5,养殖周期为120 d。
1.3 样品采集与测量实验经120 d饲养结束后,将虾饥饿24 h,用毛巾擦干虾体表面水分并用电子天平称量体质量,精确至0.01 g,对每只虾分别进行体长的测量。剥离腹部肌肉,装入自封袋中放在-40 ℃冰箱中保存,用于肌肉脂肪酸分析及常规成分分析,剥离肝胰腺置于1.5 mL的离心管中,并迅速放入-40 ℃冰箱中保存,用于肝胰腺抗氧化酶的检测。统计各组成活率等相关指标,计算成活率(survival rate, SR)、特定生长率(specific growth rates,SGR)和肝胰腺指数(hepatopancreas index, HI),计算公式如下:
式中:RSR为成活率,%;RSG为特定生长率,%/d;IH为肝胰腺指数,%;N为终末克氏原螯虾数量,尾;N0为初始克氏原螯虾数量,尾;W为终末体质量,g;W0为初始体质量,g;Wh为终末肝胰腺质量,g;t为养殖天数,d。
1.4 生化组成及脂肪酸测定饲料和虾体常规成分的分析参照AOAC[19]的方法。粗蛋白含量测定采用凯氏定氮法;粗脂肪含量采用Folch氯仿-甲醇抽提法;水分含量测定采用105 ℃烘干恒重法;灰分检测采用马弗炉550 ℃高温灼烧法。
根据FOLCH等[20]的方法,采用体积分数为14%的三氟化硼-甲醇溶液对样品进行甲酯化处理,采用Agilent 7890B-5977A气象色谱-质谱联用仪(GC-MS)进行脂肪酸分析。色谱柱为Omegawax 320毛细管柱(30 m×0.25 mm×0.25 μm;Supelco,Billefonte,PA,USA),进样口温度为240 ℃,辅助加热器温度为245 ℃。升温程序:由40 ℃以10 ℃/min速率升至170 ℃,再以2 ℃/min速率升至220 ℃,保持1 min,最后以2 ℃/min速率升至230 ℃,直到所有脂肪酸全部出峰。采用峰面积归一化法对脂肪酸进行定量。
1.5 抗氧化能力测定称取0.2 g肝胰腺鲜样,用T10B型微型匀浆器(德国IKA公司)匀浆30 s,在4 ℃、10 000 r/min条件下离心20 min,并取中层清液再次离心后,取中间清液用于后续分析。采用苏州科铭生物公司试剂盒测定丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase,CAT)、总抗氧化能力(total antioxidant capacity,T-AOC),相应操作均参照说明书进行。
1.6 数据分析及统计所有数据采用平均值±标准误(Mean±SE)表示,采用SPSS 22.0软件对实验数据进行统计分析。采用单因素方差分析法对实验数据进行方差分析;采用Duncan氏法进行多重比较,取P<0.05为差异显著。
2 结果 2.1 不同脂肪源对幼体克氏原螯虾生长性能及生化组成的影响饲料中脂肪酸的组成见表 2。各组饱和脂肪酸(saturated fatty acid,SFA)和MUFA的相对含量存在显著性差异(P<0.05),随添加棕榈油水平增加呈上升趋势。PUFA的相对含量随添加豆油水平的增加呈上升趋势,在F6组显著最高(P<0.05)。在F1和F6组中未检测到花生四烯酸(arachidonic acid, ARA, C20∶ 4n6)、EPA和DHA。
不同脂肪源饲料对克氏原螯虾的终末体质量、SGR和SR等生长指标的影响如表 3所示。各组实验幼虾的初始平均体质量为(4.35±0.22)g,终末体质量在F4组与F1组间存在显著性差异(P<0.05)。在饲料组中幼虾的SR随棕榈油添加水平的增加逐渐下降,添加棕榈油的组别SR显著低于其他饲料组(P<0.05)。在SGR方面,呈现出与SR相似的变化趋势,在F3组和F4组中显著高于其他组(P<0.05)。不同饲料组对幼虾的肝胰腺指数不存在显著差异(P>0.05)。
腹部肌肉中F1组中的水分含量与F3~F6组存在显著性差异(P<0.05),粗灰分含量在各组间差异不显著(P>0.05)。F1~F3组粗蛋白含量随棕榈油添加水平的增加逐渐升高,在F3组最低;粗脂肪含量在F1组最高,在F6组最低,在F1~F5组无显著差异(P>0.05)。
由表 5所示,不同脂肪源对克氏原螯虾肝胰腺中SOD活性、MDA含量、CAT活性和T-AOC均有显著影响(P<0.05)。MDA含量、SOD和CAT在F5组中显著最高(P<0.05)。T-AOC在F1组、F5组和F6组较高,其中F6组显著高于其他各组(P<0.05),F1~F3组随棕榈油添加水平的升高呈现逐渐增加的趋势。
各实验组幼虾腹部肌肉中∑SFA含量为25.51%~26.16%,各组间无显著差异(P>0.05),C16∶ 0含量随棕榈油添加水平的升高而上升,F1组最高,其次为F2组,F5组最低。MUFA中的C18∶ 1n9含量随棕榈油的添加水平增加逐渐上升,F1组最高,与其他各组存在显著性差异(P<0.05)。∑n-6PUFA主要以C18∶ 2n6为主,F6组最高,F5组最低。EPA、DHA和∑n-3PUFA含量在F5组显著高于其他组(P<0.05)。∑PUFA在F1组显著低于其他各组(P<0.05)。n-3/n-6在F6组最低为1.18,F5组最高为1.84。
经过120 d的饲喂,投喂以豆油为脂肪源的饲料对幼虾的SGR与鱼油比有显著的促进作用。有研究[21]报道,以豆油或鱼油为红螯螯虾的脂肪源具有较好的生长性能,在对凡纳滨对虾幼体的研究[22]中,鱼油的增重效果优于植物油。一般淡水种类对PUFA需求低于海水种类,克氏原螯虾为淡水杂食性种类,其更容易适应以植物为主的脂肪源。棕榈油可以作为脂肪源供水产经济动物使用,研究[23]结果显示,使用棕榈油对生长没有明显的负面影响。在对罗非鱼(Oreochromis niloticus)研究中添加过量的棕榈油作为脂肪源则对其肌肉粗脂肪含量和血清生化指标产生不利影响[24]。研究结果显示,随棕榈油添加水平的增加,克氏原螯虾的成活率具有明显的降低趋势,可能原因是饲料中SFA过高,PUFA较低,缺乏LC-PUFA或必需脂肪酸不能满足克氏原螯虾的脂肪营养需求,对成活率产生负面影响。同时,在缺乏LC-PUFA的F6组中,LA含量较高使得豆油在体内的利用效果优于其他脂肪源,增加了克氏原螯虾的成活率[25]。
已有研究表明,饲料中适宜的n-3/n-6PUFA能提高虾蟹的生长性能且对机体的生长和存活有重要影响。在本实验中,n-3/n-6PUFA范围为0.42~0.49时,幼虾的生长性能最好,日本沼虾则在饲料n-3/n-6PUFA为1.02~2.20时获得最佳的生长性能[26]。n-3/n-6失衡会导致生物体生命活动絮乱影响其健康生长[28]。饲料中n-3/n-6PUFA过高也会对生长起到抑制作用,当n-6PUFA过低时会抑制动物体内EPA的生物转化[28],过量的n-3PUFA则易氧化导致虾体一直处于免疫应激状态,对虾体的生长产生抑制作用[29]。
生化组成及其含量可在一定程度上反映甲壳动物的营养物质储备情况[30]。投喂不同脂肪源对克氏原螯虾肌肉的灰分没有显著影响。F1组粗脂肪含量明显高于F6组,原因可能是豆油比棕榈油优先被利用,棕榈油中丰富的棕榈酸会增加机体脂质积累[31]。除此以外,棕榈油缺少LC-PUFA,影响机体中脂蛋白脂肪酶的表达及酶活性,进而影响体内脂肪代谢[32]。
3.2 不同脂肪源对克氏原螯虾抗氧化指标的影响丙二醛(MDA)是机体内脂质受自由基影响生成的过氧化代谢物,其含量越高反映机体受自由基攻击的损伤可能越大[33]。肝胰腺中的MDA含量在F4组最少,F5组中含量较高,原因可能是鱼油中丰富的PUFA在加工或者储存过程中容易氧化[34],造成肝胰腺损伤使MDA含量升高的原因。投喂50%的豆油和50%的鱼油作为脂肪源MDA含量降低。陈彦良等[35]用75%的豆油可明显提高幼蟹免疫机能和抗病力,豆油在饲料中的使用能增加亚油酸的比例,可以改变n-3/n-6PUFA比值,从而影响机体的免疫和抵抗胁迫的能力。
甲壳类动物的抗氧化防御由酶促和非酶促2个体系组成,其中酶促体系包括SOD和CAT等抗氧化酶,与非酶促体系相互协同使机体免受自由基的侵害[36],在本实验中,F5组对克氏原螯虾肝胰腺中的SOD和CAT活性影响最高,同样可能是鱼油氧化造成的。鱼油组饲料中丰富的PUFA,自由基从脂质尤其是PUFA中获得电子造成脂质氧化降解会诱发机体过氧化胁迫状态,产生氧化应激,提高了肝胰腺中的SOD和CAT活力,降低过氧化物对机体的危害[37]。T-AOC可作为反映动物抗氧化能力的重要指标,是机体内抗氧化能力的总体体现,一方面说明了机体受到了一定的刺激,另一方面说明机体对外界刺激做出的反应,通过提高酶活保护机体免受更多的损伤[38-39]。F1组、F5组和F6组最高,可能原因是仅添加单一的脂肪源导致了克氏原螯虾的脂肪酸营养失衡,引起了机体氧化应激反应,提高酶活性保护机体免受损伤。目前,有关脂肪源对组织抗氧化能力影响的研究存在矛盾,可能是养殖品种或饲料脂肪酸组成不同所致[40]。
3.3 不同脂肪源对克氏原螯虾腹部肌肉脂肪酸组成的影响本研究中投喂不同饲料对克氏原螯虾肌肉中脂肪酸的组成产生明显的影响,在对红螯螯虾投喂不同脂肪源的实验结果显示饲料对肌肉中SFA/MUFA/PUFA影响不大[21]。在对罗氏沼虾投喂不同脂肪源的研究中报道虾体脂肪酸组成受饵料中脂肪酸组成的影响[41]。本实验中克氏原螯虾摄入的脂肪酸均来自添加的脂肪源,肌肉中的LC-PUFA含量在一定程度受到饲料中脂肪酸含量的影响。但各组克氏原螯虾腹部肌肉中的脂肪酸仍以C16∶ 0、C18∶ 1n9、C18∶ 2n6和C20∶ 5n3为主,这在一定程度上可以反映克氏原鳌虾幼虾肌肉组织脂肪酸积累的特点[42]。
PUFA具有参与调节细胞膜流动性以及促进幼体生长等重要作用[43]。海洋甲壳动物缺乏n-3和n-6PUFA的合成能力,主要通过从食物摄取[44]。淡水种类具有将短链脂肪酸通过延长去饱和生成EPA和DHA的能力[45]。尽管F1组和F6组缺乏EPA和DHA,但LA和LNA在功能上可以替代EPA和DHA[46]。肌肉中LC-PUFA为28.84%~33.72%,虽受饲料影响存在一定差异,但含量均在28%以上。这一方面与幼虾为满足生理功能及生长优先保留LC-PUFA有关,另一方面可能与淡水甲壳动物可能具有将LA和LNA转化为EPA和DHA的能力相关[47],而克氏原螯虾的转化能力则需要进一步研究。
4 结论综上所述,饲料中过多添加棕榈油会对克氏原螯虾生长产生负面影响,豆油更适合作为克氏原螯虾主要的植物性脂肪源,在本研究条件下50%鱼油与50%豆油混合脂肪源能获得较好的生长性能。在使用鱼油为脂肪源时,则需要注意抗氧化处理,易使克氏原鳌虾长期处于氧化应激状态影响生长性能。脂肪源n-3/n-6PUFA在0.45左右时较适合克氏原螯虾的生长。
[1] |
丁建英, 康琎, 徐建荣. 东北螯虾和克氏原螯虾肌肉营养成分比较[J]. 食品科学, 2010, 31(24): 427-431. DING J Y, KANG J, XU J R. Comparison of nutritional compositions in muscle of Cambaroides dauricus and Procambarus clarkii[J]. Food Science, 2010, 31(24): 427-431. |
[2] |
黄锦, 成永旭, 王海锋, 等. 不同施肥模式下的稻-克氏原螯虾田块水体菌群初探[J]. 上海海洋大学学报, 2020, 29(4): 516-525. HUAGN J, CHENG Y X, WANG H F, et al. A preliminary study on the water bacteria of rice-crayfish co-culture paddy field in different fertilization modes[J]. Journal of Shanghai Ocean University, 2020, 29(4): 516-525. |
[3] |
MARQUES M, BANHA F, ÁGUAS M, et al. Environmental cues during overland dispersal by three freshwater invaders: Eriocheir sinensis, Pacifastacus leniusculus, and Procambarus clarkii(Crustacea, Decapoda)[J]. Hydrobiologia, 2015, 742(1): 81-93. DOI:10.1007/s10750-014-1968-4 |
[4] |
LIN L J, CHEN Y J, CHANG Y S, et al. Neuroendocrine responses of a crustacean host to viral infection: effects of infection of white spot syndrome virus on the expression and release of crustacean hyperglycemic hormone in the crayfish Procambarus clarkii[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 164(2): 327-332. |
[5] |
JHA R K, XU Z R, SHEN J, et al. The efficacy of recombinant vaccines against white spot syndrome virus in Procambarus clarkii[J]. Immunology Letters, 2006, 105(1): 68-76. DOI:10.1016/j.imlet.2006.01.004 |
[6] |
徐维娜, 刘文斌, 沈美芳, 等. 饲料中不同蛋白质和脂肪水平对克氏螯虾(Procambarus clarkii)生长性能、体组成和消化酶活性的影响[J]. 海洋与湖沼, 2011, 42(4): 521-529. XU W N, LIU W B, SHEN M F, et al. Effect of different dietary protein and lipid level on growth performance, body composition and digestive enzymes activities of red swamp crayfish Procambarus clarkii[J]. Oceanologia et Limnologia Sinica, 2011, 42(4): 521-529. |
[7] |
张家宏, 王守红, 寇祥明, 等. 饲料中蛋白质和脂肪水平对克氏原螯虾生长的影响研究[J]. 江西农业学报, 2012, 24(8): 88-93. ZHAGN J H, WANG S H, KOU X M, et al. Study on effect of dietary protein and lipid levels on growth of Procambarus clarkii[J]. Acta Agriculture Jiangxi, 2012, 24(8): 88-93. DOI:10.3969/j.issn.1001-8581.2012.08.027 |
[8] |
XU W N, LIU W B, SHEN M F, et al. Effect of different dietary protein and lipid levels on growth performance, body composition of juvenile red swamp crayfish (Procambarus clarkii)[J]. Aquaculture International, 2013, 21(3): 687-697. DOI:10.1007/s10499-012-9603-8 |
[9] |
SARGENT J, BELL G, MCEVOY L, et al. Recent developments in the essential fatty acid nutrition of fish[J]. Aquaculture, 1999, 177(1/4): 191-199. |
[10] |
罗娜, 丁志丽, 张易祥, 等. 饲料亚麻酸含量对日本沼虾生长、抗氧化能力、非特异性免疫性能及抗氨氮胁迫能力的影响[J]. 动物营养学报, 2017, 29(1): 134-146. LUO N, DING Z L, ZHAGN Y X, et al. Effects of dietary linolenic acid content on growth, antioxidant capacity, non-specific immunity and anti-ammonia-nitrite stress ability of oriental river prawn (Macrobrachium nipponense)[J]. Chinese Journal of Animal Nutrition, 2017, 29(1): 134-146. DOI:10.3969/j.issn.1006-267x.2017.01.016 |
[11] |
郭占林, 李嘉尧, 甘信辉, 等. 不同脂肪源对红螯光壳螯虾幼虾生长、消化酶活性及其肌肉生化组成的影响[J]. 中国水产科学, 2010, 17(5): 995-1004. GUO Z L, LI J Y, GAN X H, et al. Influence of different lipid sources on growth, digestive enzyme activity and fatty acid composition in juvenile red claw crayfish, Cherax quadricarinatus[J]. Journal of Fishery Sciences of China, 2010, 17(5): 996-1004. |
[12] |
CABALLERO M J, OBACH A, ROSENLUND G, et al. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2002, 214(1/4): 253-271. |
[13] |
ROMDHANE M S, DEVRESSE B, LÉGER P, et al. Effects of feeding (ω-3) HUFA-enriched Artemia during a progressively increasing period on the larviculture of freshwater prawns[J]. Aquaculture International, 1995, 3(3): 236-242. DOI:10.1007/BF00118105 |
[14] |
从娇娇, 庾庭驰, 于立志, 等. 饲料中植物油替代鱼油对中华绒螯蟹脂肪酸组成的影响[J]. 上海海洋大学学报, 2020, 29(4): 559-567. CONG J J, YU T C, YU L Z, et al. Errects or dietary replacement or rish oil by vegetable oil on ratty acid composition or Chinese mitten crab(Eriocheir sinensis)[J]. Journal of Shanghai Ocean University, 2020, 29(4): 559-567. |
[15] |
GEIGER W, OTERO M, ALCORLO P. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitats differing in food item diversity[J]. Crustaceana, 2004, 77(4): 435-453. DOI:10.1163/1568540041643283 |
[16] |
赵磊, 龙晓文, 吴旭干, 等. 混合植物油替代鱼油对中华绒螯蟹成体雄蟹常规成分和脂肪酸组成的影响[J]. 动物学杂志, 2016, 51(6): 1071-1083. ZHAO L, LONG X W, WU X G, et al. Effects of fish oil replacement by blending vegetable oils in fattening diets on proximate composition and fatty acid composition of adult male Chinese mitten crab (Eriocheir sinensis)[J]. Chinese Journal of Zoology, 2016, 51(6): 1071-1083. |
[17] |
COTTRELL R C. Introduction: nutritional aspects of palm oil[J]. The American Journal of Clinical Nutrition, 1991, 53(4): 989-1009. |
[18] |
程民杰. 棕榈油替代鱼油对半滑舌鳎生长、生理生化和肌肉营养品质影响的研究[D]. 天津: 天津农学院, 2014: 39-62. CHENG M J. Effect of substitution of fish oil by palm oil on growth performance, physiological and biochemical parameters and muscle nutritional quality in Cynoglossuss emilaevis[D]. Tianjin: Tianjin Agricultural University, 2014: 39-62. |
[19] |
AO AC. Official methods of analysis of the association of official analytical chemists[M]. 16th ed. Arlington: Association of Analytical Communities International, 1995.
|
[20] |
FOLCH J, LEES M, STANLEY G H S. A simple method for the isolation and purification of total lipides from animal tissues[J]. The Journal of Biological Chemistry, 1957, 226(1): 497-509. DOI:10.1016/S0021-9258(18)64849-5 |
[21] |
LI J Y, GUO Z L, GAN X H, et al. Effect of different dietary lipid sources on growth and gonad maturation of pre-adult female Cherax guadricarinatus(von Martens)[J]. Aquaculture Nutrition, 2011, 17(4): e853-e860. DOI:10.1111/j.1365-2095.2011.00852.x |
[22] |
LIM C, AKO H, BROWN C L, et al. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid[J]. Aquaculture, 1997, 151(1/4): 143-153. |
[23] |
FONSECA-MADRIGAL J, KARALAZOS V, CAMPBELL P J, et al. Influence of dietary palm oil on growth, tissue fatty acid compositions, and fatty acid metabolism in liver and intestine in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture Nutrition, 2005, 11(4): 241-250. DOI:10.1111/j.1365-2095.2005.00346.x |
[24] |
文远红, 米海峰, 张璐, 等. 棕榈油替代大豆油对吉富罗非鱼幼鱼生长性能、肌肉营养组成和血清生化指标的影响[J]. 动物营养学报, 2016, 28(3): 953-960. WEN Y H, MI H F, ZHAGN L, et al. Effects of soybean oil replacement by palm oil on growth performance, muscle nutritional composition and serum biochemical indexes of juvenile genetically improved farmed tilapia (Oreochromis niloticus)[J]. Chinese Journal of Animal Nutrition, 2016, 28(3): 953-960. DOI:10.3969/j.issn.1006-267x.2016.03.038 |
[25] |
CHEN Y L, CHEN L Q, QIN J G, et al. Growth and immune response of Chinese mitten crab (Eriocheir sinensis) fed diets containing different lipid sources[J]. Aquaculture Research, 2016, 47(6): 1984-1995. DOI:10.1111/are.12654 |
[26] |
蒋振廷, 刘波, 戈贤平, 等. 饲料不同n-3/n-6脂肪酸比值对日本沼虾生长、虾体组分、血清抗氧化及相关基因表达的影响[J]. 水产学报, 2019, 43(10): 2109-2122. JIAGN Z T, LIU B, GE X P, et al. Effects of dietary n-3/n-6 fatty acid ratio on growth performance, body composition, serum antioxidant capacity and related genes expression of oriental river prawn (Macrobrachium nipponense)[J]. Journal of Fisheries of China, 2019, 43(10): 2109-2122. |
[27] |
谭青, 王际英, 李宝山, 等. n-3/n-6 HUFA对大菱鲆幼鱼生长性能、全鱼脂肪酸组成和血清生化指标的影响[J]. 水产学报, 2018, 42(5): 754-765. TAN Q, WANG J Y, LI B S, et al. Effect of dietary n-3/n-6 HUFA on growth performance, fatty acid composition of whole fish and serum biochemical indices in turbot(Scophthalmus maximus)[J]. Journal of Fisheries of China, 2018, 42(5): 754-765. |
[28] |
FURUITA H, YAMAMOTO T, SHIMA T, et al. Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus[J]. Aquaculture, 2003, 220(1/4): 725-735. |
[29] |
左然涛, 麦康森, 徐玮, 等. 脂肪酸对鱼类免疫系统的影响及调控机制研究进展[J]. 水产学报, 2015, 39(7): 1079-1088. ZUO R T, MAI K S, XU W, et al. Advance of studies on the effects of fatty acids on immune responses and nutritional regulation mechanism in fish species[J]. Journal of Fisheries of China, 2015, 39(7): 1079-1088. |
[30] |
ROSA R, NUNES M. Biochemical changes during the reproductive cycle of the deep-sea decapod Nephrops norvegicus on the south coast of Portugal[J]. Marine Biology, 2002, 141(6): 1001-1009. DOI:10.1007/s00227-002-0911-9 |
[31] |
MONGE-ORTIZ R, TOMáS-VIDAL A, RODRIGUEZ-BARRETO D, et al. Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value[J]. Aquaculture Nutrition, 2018, 24(1): 605-615. DOI:10.1111/anu.12595 |
[32] |
MA J J, WANG J Y, ZHANG D R, et al. Estimation of optimum docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) for juvenile starry flounder, Platichthysstellatus[J]. Aquaculture, 2014, 433: 105-114. DOI:10.1016/j.aquaculture.2014.05.042 |
[33] |
JANERO D R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury[J]. Free Radical Biology and Medicine, 1990, 9(6): 515-540. |
[34] |
MARTINS D A, AFONSO L O B, HOSOYA S, et al. Effects of moderately oxidized dietary lipid and the role of vitamin E on the stress response in Atlantic halibut (Hippoglossus hippoglossu L.)[J]. Aquaculture, 2007, 272(1/4): 573-580. |
[35] |
陈彦良, 李二超, 禹娜, 等. 豆油替代鱼油对中华绒螯蟹幼蟹生长、非特异性免疫和抗病力的影响[J]. 中国水产科学, 2014, 21(3): 511-521. CHEN Y L, LI E C, YU N, et al. Effect of replacing dietary fish oilwith soybean oil on growth, non-specific immune response, and resistance to aeromonas hydrophila challenge in Chinese mitten crab, Eriocheir sinensis[J]. Journal of Fishery Sciences of China, 2014, 21(3): 511-521. |
[36] |
崔燕燕, 张南南, 马倩倩, 等. 四种植物蛋白对中华绒螯蟹幼蟹生长性能、氨基酸沉积率和抗氧化酶活性的影响[J]. 水生生物学报, 2017, 41(1): 146-154. CUI Y Y, ZHANG N N, MA Q Q, et al. Effects of four commonly used plant protein sources on growth performance, amino acids retention and antioxidant enzyme activities in juvenile Chinese mitten crab, Eriochier sinensis[J]. Acta Hydrobiologica Sinica, 2017, 41(1): 146-154. |
[37] |
JI H, LI J, LIU P. Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodo nidellus[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2011, 159(1): 49-56. DOI:10.1016/j.cbpb.2011.01.009 |
[38] |
赵亚婷, 吴旭干, 常国亮, 等. 饲料中DHA含量对中华绒螯蟹幼蟹生长、脂类组成和低氧胁迫的影响[J]. 水生生物学报, 2013, 37(6): 1133-1144. ZHAO Y T, WU X G, CHANG G L, et al. Effects of dietary DHA levels on growth, lipid composition and hypoxia stress of juvenile Chinese mitten crab Eriocheir sinensis[J]. Acta Hydrobiologica Sinica, 2013, 37(6): 1133-1144. |
[39] |
韩雨哲, 姜志强, 任同军, 等. 氧化鱼油与棕榈油对花鲈肝脏抗氧化酶及组织结构的影响[J]. 中国水产科学, 2010, 17(4): 798-806. HAN Y Z, JIANG Z Q, REN T J, et al. Effects of oxidized fish oil blended with palm oil on antioxidant capacity and histology of Japanese sea bass (Lateolabraxmaculatus) juvenile[J]. Journal of Fishery Sciences of China, 2010, 17(4): 798-806. |
[40] |
潘瑜, 毛述宏, 关勇, 等. 饲料中不同脂肪源对鲤鱼生长性能、脂质代谢和抗氧化能力的影响[J]. 动物营养学报, 2012, 24(7): 1368-1375. PAN Y, MAO S H, GUAN Y, et al. Effects of different lipid sources in diets on growth performance, lipid metabolism and antioxidant ability of common carp (Cyprinus carpio)[J]. Chinese Journal of Animal Nutrition, 2012, 24(7): 1368-1375. DOI:10.3969/j.issn.1006-267x.2012.07.023 |
[41] |
杨家威, 孙龙生, 王恒, 等. 不同脂肪源对罗氏沼虾脂肪酸组成的影响[J]. 水产养殖, 2013, 34(4): 8-13. YANG J W, SUN L S, WANG H, et al. Effect of different lipid sources on fatty acid composition in body tissues of Macrobrachium rosenbergii[J]. Journal of Aquaculture, 2013, 34(4): 8-13. DOI:10.3969/j.issn.1004-2091.2013.04.003 |
[42] |
HENDERSON R J, SARGENT J R. Chain-length specificities of mitochondrial and peroxisimalβ-oxidation of fatty acids in livers of rainbow trout (Salmo gairdneri)[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1985, 82(1): 79-85. DOI:10.1016/0305-0491(85)90131-2 |
[43] |
COSSINS A R. Adaptation of biological membranes to temperature. The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1977, 470(3): 395-411. DOI:10.1016/0005-2736(77)90131-6 |
[44] |
READ G H L. The response of Penaeusindicus(Crustacea: Penaeidea) to purified and compounded diets of varying fatty acid composition[J]. Aquaculture, 1981, 24: 245-256. DOI:10.1016/0044-8486(81)90060-0 |
[45] |
刘丽, 姜晓东, 吴旭干, 等. 育肥饲料中植物油替代鱼油对中华绒螯蟹生殖性能的影响[J]. 上海海洋大学学报, 2017, 26(4): 501-510. LIU L, JIAGN X D, WU X G, et al. Effects of dietary fish oil replacement by vegetable oils on reproductive performance of Chinese mitten crab (Eriocheir sinensis)[J]. Journal of Shanghai Ocean University, 2017, 26(4): 501-510. |
[46] |
YING X P, YANG W X, ZHANG Y P. Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mitten crab[J]. Aquaculture, 2006, 256(1/4): 617-623. |
[47] |
LI M Z, MAI K S, AI Q H, et al. Effects of dietary grape seed oil and linseed oil on growth, muscle fatty acid composition and expression of putative Δ5 fatty acyl desaturase in abalone Haliotis discus hannai Ino[J]. Aquaculture, 2013, 406-407: 105-114. DOI:10.1016/j.aquaculture.2013.05.013 |
2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
3. Center for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China;
4. Aquatic Technology Promotion Station of Anhui Province, Hefei 230000, Anhui, China