上海海洋大学学报  2017, Vol. 26 Issue (6): 828-835    PDF    
温度变化对鱼类行为影响的研究进展
吕为群, 袁明哲     
上海海洋大学 水产与生命学院, 上海 201306
摘要:大多数鱼类是生活在水中的变温动物,因此温度是影响鱼类生长发育重要的非生物因素。在温度发生变化时,鱼类不会进行适应性基因变异,而是会通过忍受、抵制或偏好等热调控行为来降低环境压力。通过总结近年来鱼类热调控行为的研究成果,比较不同种类、同种异龄、同种同龄鱼在温度变化中生境选择、游泳、摄食、生殖洄游等行为差异,分析造成该差异可能的内在机制,以及温度突变中热调控蛋白和表观遗传学对鱼类生存影响的研究进展,阐述鱼类的热调控行为是其根据外界条件和自身需求做出的一个复杂的综合性行为,其目的是获得最大化的热调控优势。为了更深入解读全球气候突变对鱼类生存的影响,需要对鱼类热调控行为及调控机理进行更进一步的研究。
关键词温度变化    热调控    行为    鱼类    

自工业革命以来,由于化石能源燃烧和森林覆盖率下降,大气中CO2的浓度逐渐增加,引发了全球性的“温室效应”。据报道,目前大气的平均气温比19世纪高出了0.4~0.8 ℃,并且到21末,这个值将会提升到1.4~5.8℃[1-2],大气平均气温的改变又会直接影响到占地球表面积71%的水的温度。

鱼类是最原始、数量最大且终身生活在水中的一种脊椎动物[3],除了少数大型深海鱼类外,大多数鱼类由于自身无法生成和获取稳定的内源性热量,鳃和体表又在不断地与周围环境进行迅速的热量交换,因而鱼类无法保持与周围环境不同的恒定体温,温度就成了直接影响鱼类生长发育重要的非生物因素之一[4-5]。除此之外,温度升高还会通过改变水体中氧气溶解率[6]、浮游生物的种群结构和数量[7]、病原微生物繁殖速度等[8-9]间接影响到鱼类的生存。

在外界环境温度出现变化时,包括鱼在内的绝大多数物种不会进行相对的适应性变异,而是会通过忍受,如小群体聚集行为[10]、抵制,如选择不同温度的生境等热调控行为(Behavioral Thermoregulation)、或偏好,如向更高的海拔和纬度进行一系列复杂的种群飘移行为[11]来减少环境压力。因此,了解鱼类热调控行为有助于了解鱼类在全球气候变化下的生境选择行为、游泳行为、摄食行为、生殖洄游行为等的变化,为日后了解季节温度变化中鱼类对气候适应的调控机制提供研究思路。

1 鱼类热调控行为

环境温度对于变温动物来说是重要的限制因素,从直接或间接方面影响鱼类的行为。在温度对鱼类的直接影响方面,有研究表明绝大多数的鱼类在温度持续达35 ℃时,几乎无法生存[12],且鱼类体温每改变1 ℃,其体内的许多生理过程的效率会改变6%~10%[13],除此之外温度变化还会通过溶解氧、病原微生物的变化间接影响到鱼类。因而迄今为止,对鱼类的热调控行为做了大量的观察和研究,并得到了鱼类进行热调控行为的丰富的证据[14-17]

1.1 生境温度选择行为

大部分鱼类是终生生活在水中的变温生物,鱼类对温度场的选择行为会受到鱼类自身所处的生理过程、生存环境、种间竞争等各个方面的影响,因而鱼类对温度场的选择十分复杂。

鱼类对温度场的选择行为可能贯穿鱼类整个生命阶段。WARD等[18]比较了两种淡水鱼的幼体和成体对温度的选择后发现,幼鱼几乎在所有情况下都会选择比成鱼更高的水温和水位,这显示出了幼鱼对暖水区的偏爱性;而对于成鱼来说,它们会随着食物的增加逐渐回到较深冷水区域。这种温度偏爱差异的现象在很多野生鱼类中都有发现[19-22]。造成这种差异的原因可能是幼鱼因躲避捕食者捕食或为了顺利过冬,避免过冬时可造成幼体大规模死亡的环境温度压力,幼鱼选择了最有利于生长的生存策略。已有研究显示,血清中促进生长的胰岛素样生长因子(IGFs)的含量与温度变化成正相关,这样的结论在虹鳟鱼、斑点叉尾鮰中都得到了相应的验证[23-24],而在低温下鱼体内的消化酶活性降低,食欲下降会导致鱼体生长受阻[25]。因此,温度对IGFs和消化酶活性的影响可能是追求最大生长率的幼鱼偏爱暖水区的内在原因之一。相较于幼鱼,成鱼更注重新陈代谢效率,而JOBLING[26]发现了鱼类最适新陈代谢效率的温度要比最适生长率的温度要低的规律同样证实了以上的猜想。

对温度的选择在同一种鱼同一年龄阶段的研究中也发现了差异,BERTOLO等研究了分层湖泊中美洲红点鲑(Salvelinus fontinalis)温度选择策略,结果发现在相同的年龄群体中红点鲑出现了“冷型”“暖型”不同的温度选择策略,“暖型”策略的鱼所处温度较“冷型”高,每种策略又各自存在明显和不明显的昼夜温度变化的两种类型,选择四种不同策略的个体通过种内时空隔离减少相同生态位的重叠,从而最大化利用环境中的资源,增强种群整体的环境适应能力[27],这种种内温度选择行为的差异在其他鱼类的研究中同样存在[28-30]

鱼类对温度的选择策略并不是恒定不变的,鱼类在权衡不同生理过程采取的温度调控行为主要分为三大类:

其一是在外部环境限制的条件下,一部分的鱼类会选择一个可以妥协于不同生理功能需求的中间温度。例如:一些红点鲑(Salvelinus alpinus)的幼鱼因为环境中其他成年捕食者对资源的分割等影响,无法到达其最适温度区域,进而选择妥协在某一个中间温度,但这类群体长期处于非最适水温区域,所以更容易受到气候变化的影响[31]

相比于这种折中的选择,更多的鱼则是在不同的生理需求的时间区间内,选择能使其获得最高效率生理过程的温度[32]。例如:在软骨鱼中,鲨鱼对温度选择有日变化和季节变化,它们会在白天选择温度较高的浅滩区域活动,夜晚会远离散热较快的浅滩区域以提升体温[28];在硬骨鱼中,ARMSTRONG等研究发现大马哈鱼的稚鱼会在较冷的环境中摄取充足的食物,然后进行长距离移动(350~1 300 m的距离)到相对温暖的环境中加快它们的新陈代谢和同化能力[33],黄貂鱼则是在摄食后游向冷水区,以减少排泄和增加营养摄取率[34]。BRETT也发现了鱼类对生理过程最适温度的选择会影响到鱼类的垂直分布[32]。但并不是所有的鱼类都会随水温上升而增加热调控行为的次数[30],由此可见,鱼类的热调控行为策略与所处环境的热动态密切相关,行为策略随时间具有可塑性。

除了以上两种策略,部分鱼类还存在一种更为复杂的集群行为。有研究显示,在虹鳟生活的环境中,小支流温度适宜其生长但食物较少,相反在主干道区域,水温较高但食物丰富,此时虹鳟鱼通过集群行为在河流主干道低于平均水温的热避难所区域形成竞争垄断,占领了适宜温度和丰富的食物,达到最大生长率[35]

1.2 温度与游泳行为

当鱼类在进行摄食、洄游、逃逸等行为时,游泳行为就成了鱼类此时最重要的环境适应指标。从生理代谢的方面来看,鱼类的游泳运动分为有氧运动和无氧运动。衡量鱼类最大有氧游泳能力的指标主要有临界游泳速度(Critical swimming speed, Ucrit)、代谢空间(Metabolic scope, MS);评价鱼类无氧游泳能力的指标为加速游泳实验(Constant acceleration test, UCAT),实际中采用鱼类恢复过程中耗氧增加量(Excess post-exercise oxygen consumption, EPOC)来衡量[36-37]

在通常的情况下,鱼类的临界游泳速度应该是在处于其最适温度的范围内的,但是有研究显示鱼类的最大游泳速度峰值与最适温度存在不同步的特点[38-39]。对鱼类临界游泳速度的大量研究显示,随着温度升高,鱼类的临界游泳速度的变化分为两种情况:一种是随温度上升,临界游泳速度成比例上升的“线性”关系;另一种是在达到最适温度前增加,在处于最适温度范围内是呈现平台期,超过最适温度范围随温度增加而减少的“钟形”关系[39-41]。已有的研究报道显示,力竭运动后耗氧增加量、力竭运动后耗氧增加量的最大值和代谢空间与温度的关系均成“钟形”的关系[42],且代谢空间随Ucrit的增加而上升,因此鱼类有氧代谢空间是限制鱼类有氧游泳能力的重要因素[43]

关于鱼类的游泳能力与温度之间存在“钟形”变化曲线,可能是因为低温环境中鱼体肌细胞线粒体数量减少,结构改变、功能降低,包括内嵴构造的改变、酶活性和细胞膜流动性的下降等方面,可能导致氧化磷酸化效率降低, 从而造成活性氧生产的增加[44-46];此外,冷环境中鱼体内调控细胞能量运转的肌酸激酶减少,肌酸激酶退化产物增加,导致ATP再生效率降低等[47],上述两个因素可能是造成低温条件下鱼类的临界游泳速度要显著低于高温的主要原因[48]

温度不仅仅会影响临界游泳速度值,还会影响到其重复运动的能力。据报道在低温时,某些鱼类在临界游泳速度一个小时后,能够恢复游泳能力,但在高温条件下重复临界游泳运动的能力会出现显著下降[49-51]。这可能是由于在高温下,鱼类维持自身代谢需求增加,然而水体中的溶氧水平下降将会限制其有氧代谢的能力,面对高代谢需求和低溶氧环境,鱼类必然会通过加快呼吸和加速内环境与水体的交换满足代谢需求,然而这可能会导致淡水鱼类体内离子大量流失,使鱼类面临离子平衡等问题无法达到最佳游泳运动能力[43, 52]

1.3 温度与摄食行为

鱼类的摄食是一种十分复杂的行为,与鱼类的生态多样性有关[53],温度是影响鱼类摄食重要的无机因子之一[12-13]。陈松波在研究不同温度条件下鲤鱼的摄食节律发现,随着温度的升高,鲤鱼的摄食量呈现先增加后减少的规律,在28 ℃左右为鲤鱼的最适摄食温度,水温在6 ℃以下不再摄食[54],这种摄食量随温度先增加后减少的现象在鱼类中非常普遍[55-57]。李昌达在对黑鮸消化酶的研究中发现,在一定范围内,黑鮸体内的酶催化反应随温度的升高速度加快,但超过一定数值后,酶催化反应的速度反而减慢,但酶活性的最适温度要远高于鱼类正常的生存温度范围[58],因此在温度升高后期鱼类摄食能力减弱可能是由于随着温度升高,水中溶氧降低,维持鱼类的静息代谢消耗上升导致鱼体无法分出多余的能量用于食物的消化,从而表现出鱼类摄食量的减少[55]

值得注意的是,鱼类的最适摄食温度与鱼类的最适温度之间同样存在偏差,这与鱼类所处外界环境和其体内不同的生理过程有关。当外界环境中的食物缺乏时,鱼类因处于饥饿状态会出现在低于最适温度区域,从而减少能量支出;当外界的食物丰富时,鱼类处于补偿生长期为获得最大的生长量则会出现在高于最适温度区域[59]。最适摄食温度高于最适温度的情况在红大马哈鱼、大比目鱼、河鳟等鱼中有所体现[60-61]。造成这种差异的原因可能与其摄食食物所处温度、游泳行为等有关。

1.4 温度与生殖、洄游行为

大部分洄游性鱼类的洄游行为与其生殖行为是相关的,在洄游的过程中,通过改变其周围环境的光照、温度、盐度、水流等刺激性腺达到成熟[62]

有研究表明,鱼类在不断变化的水温中,生殖能力会受到消极影响[63]。在相对稳定的环境中温度每上升1 ℃,处于怀孕期的雌性鱼怀孕的时间会减少2周[34],相比于雄鱼,怀孕的雌鱼更偏爱高水温区域,故温度对于雌性鱼类的影响要远远高于雄性。大马哈鱼属于生殖洄游性鱼类,产卵场的水温在9~12 ℃,要高于它们正常的栖息地,ARMSTRONG等研究了5年中洄游大马哈鱼的产卵场位置发现,它的产卵场只出现在温度适宜的水域,与上下游的位置无关[64]。CAUDILL等人发现,部分洄游性鱼类因受到水库中放流的下层冷水的影响,难以达到性成熟条件,因而出现逐渐退出水坝放水的冷水区的现象[65]

除了生殖洄游以外,还有一些鱼类在季节变换中会进行洄游的行为。例如:蓝鲨在冬季会进行越冬洄游中,会出现明显的昼夜垂直分布变化,白天处于更冷更深的水体中,晚上到达较浅的水层。经过计算,尽管这样极端昼夜分布变化的行为会减少其摄食的成功率,但这种行为会在游泳和摄食中产生2.5倍的热调节优势[66]

2 鱼类热调控机制的研究

鱼类对温度的选择行为是鱼类根据外界条件和自身需求做出的一个非常复杂的综合选择的行为,其本质是鱼体在不同温度下的体内热调控机制的外在体现。因此只有了解鱼体内的热调控机制的成因,才能深入了解鱼类的热调控行为。

目前关于温度对鱼类的影响研究集中在不同温度下鱼类耗氧变化、生长曲线、摄食能力、新陈代谢、游泳行为等方面的影响,近年来的研究开始逐渐涉及温度对鱼类体内组织结构、功能,物质转化效率和体温调节等生理生化指标影响的研究上。国外对此类研究较为广泛和深入,尤其是在热调控蛋白[67-69]和表观遗传学方面的研究[70-72]

在温度对热激蛋白(HSPs)影响的研究中,发现当鱼类暴露在温度胁迫下时,将会引起热激蛋白的表达以保护细胞抵抗胁迫因素[67-68]。但同一个物种中开始感应热休克反应温度并不相同,这与鱼类的适应能力和适应历史有关。另外,在自然条件下鱼类中HSPs的产物显示出季节差异,这与鱼类处理自然环境中不同季节的不同水温有关[73]。近期对鱼类热激蛋白的研究显示鱼类对温度适应或许还具有预知性。研究发现HSP70基因表达的感应在夜晚要低于白天,且白天HSP70 mRNA的基本水平在白天要高于晚上,这就表明鱼类可能通过夜间hsp的预转录来适应更温暖的白天温度[69]。但在南极鱼的研究中发现,南极鱼体内的热休克反应是缺失的,即在受到热刺激后, 南极鱼体内的HSP70无论在mRNA的水平上还是蛋白质水平上的表达量都没有增加[74],因此可以推论出在南极鱼中,热激蛋白并不参与热休克反应。研究又发现大多数的南极鱼能产生一种抗冷冻蛋白(antifreeze protein, AFP), 这一类蛋白存在于鱼体血液和细胞中, 它不仅可以与体内微小冰晶结合, 甚至还能降低血液和体液的结冰点, 使南极鱼能够在海水冰点以下保持血液正常流动, 从而保证机体不受冷冻的损伤,从而代替了热激蛋白的热调控作用,使其能够适应极地寒冷环境[75]

另外在早期发育中,温度对鱼类会引起表观遗传学变化。经典的遗传学认为决定生命的遗传信息储存于核酸的碱基序列中,但后来发现因环境条件引起的DNA甲基化、组蛋白修饰、染色质重塑等均可导致遗传的表型发生变化,这种基因结构没有变化, 只是其表达发生改变的遗传变化称之为表观遗传改变[76]。鱼类受温度的影响存在大量的表观遗传学现象,这些表观遗传改变能对鱼类产生持久性的影响,目前大多数的工作都集中在表观遗传表型可塑性中的发育可塑性上,当温度影响到发育的一个特定关键阶段就会引起成年表型的变化[77-79]。在对鳕鱼的研究中,早期暴露在不同温度下的鳕鱼会引起发育的可塑性[80]。在棘鱼的研究中发现,低温发育的鱼恢复到正常的温度后会将一部分能量用于补偿生长,使繁殖能力降低;而高温发育的鱼在恢复到正常的温度后生长速率将会降低,生殖能力加强[81]。发育温度还会对成鱼的体型,体长和鳍条排列及数目等的特征产生影响,某些改变还会与肌肉发育关联[70-72]。这些变化将会直接影响到鱼类的游泳能力。

3 展望

鱼类的行为是复杂的,目前有关鱼类热胁迫的研究主要关注于急性热胁迫对鱼类生理生化指标、摄食量、游泳行为等单因子的变化情况,对鱼类长期季节性的热调控行为、生殖洄游行为、表观遗传学及其内在成因等多因子交互的研究相对较少,大部分领域的研究仍在起步阶段。因此,对鱼类热调控行为的研究内容应从目前的单因子宏观行为层面,逐步转移到蛋白表达、激素调控、表观遗传学等更深入的多因子交互调控机制层面。

参考文献
[1] IPCC. Contribution of working groups Ⅰ, Ⅱ, Ⅲ to the third assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge University Press, 2001.
[2] LEVITUS S, ANTONOV J I, WANG J L, et al. Anthropogenic warming of earth's climate system[J]. Science, 2001, 292(5515): 267–270. DOI:10.1126/science.1058154
[3] 刘凌云, 郑光美. 普通动物学[M]. 3版. 北京: 高等教育出版社, 1997.
LIU L Y, ZHENG G M. General zoology[M]. 3rd ed. Beijing: Higher Education Publishing Press, 1997.
[4] STEVENS E D, SUTTERLIN A M. Heat transfer between fish and ambient water[J]. The Journal of Experimental Biology, 1976, 65(1): 131–145.
[5] HAZEL J R, PROSSER C L. Molecular mechanisms of temperature compensation in poikilotherms[J]. Physiological Reviews, 1974, 54(3): 620–677.
[6] 王亚民, 李薇, 陈巧媛. 全球气候变化对渔业和水生生物的影响与应对[J]. 中国水产, 2009, 397(1): 21–23.
WANG Y M, LI W, CHEN Q Y. The global climate change effects and response on fisheries and aquatic biological[J]. China Fisheries, 2009, 397(1): 21–23.
[7] BEAUGRAND G, REID P C, LBAÑEZ F, et al. Re-organization of North Atlantic marine copepod biodiversity and climate[J]. Science, 2002, 296(5573): 1692–1694. DOI:10.1126/science.1071329
[8] JONSSON B, JONSSON N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow[J]. Journal of Fish Biology, 2009, 75(10): 2381–2447. DOI:10.1111/jfb.2009.75.issue-10
[9] MARCOGLIESE D J. Implications of climate change for pa-rasitism of animals in the aquatic environment[J]. Canadian Journal of Zoology, 2001, 79(8): 1331–1352. DOI:10.1139/z01-067
[10] BREAU C, CUNJAK R A, BREMSET G. Age-specific ag-gregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events[J]. Journal of Fish Biology, 2007, 71(4): 1179–1191. DOI:10.1111/jfb.2007.71.issue-4
[11] 曹福祥, 徐庆军, 曹受金, 等. 全球变暖对物种分布的影响研究进展[J]. 中南林业科技大学学报, 2008, 28(6): 86–89.
CAO F X, XU Q J, CAO S J, et al. Advances of global warming impact on species distribution[J]. Journal of Central South University of Forestry & Technology, 2008, 28(6): 86–89.
[12] 孙儒泳. 动物生态学原理[M]. 北京: 北京师范大学出版社, 2001.
SUN R Y. The principle of animal ecology[M]. Beijing: Beijing Normal University Press, 2001.
[13] JOHNSTON I A, BENNETT A F. Animals and temperature:phenotypic and evolutionary adaptation[M]. Cambridge, UK: Cambridge University Press, 1996.
[14] BEITINGER T L, MAGNUSON J J. Growth rates and temperature selection of bluegill, Lepomis macrochirus[J]. Transactions of the American Fisheries Society, 1979, 108(4): 378–382. DOI:10.1577/1548-8659(1979)108<378:GRATSO>2.0.CO;2
[15] REYNOLDS W W, CASTERLIN M E. Behavioral th-ermoregulation and locomotor activity of Perca flavescens[J]. Canadian Journal of Zoology, 1979, 57(11): 2239–2242. DOI:10.1139/z79-291
[16] MATERN S A, CECH J J, HOPKINS T E. Diel movements of bat rays, Myliobatis californica, in tomales bay, california:evidence for behavioral thermoregulation?[J]. Environmental Biology of Fishes, 2000, 58(2): 173–182. DOI:10.1023/A:1007625212099
[17] NEWELL J C, QUINN T P. Behavioral thermoregulation by maturing adult sockeye salmon (Oncorhynchus nerka) in a stratified lake prior to spawning[J]. Canadian Journal of Zoology, 2005, 83(9): 1232–1239. DOI:10.1139/z05-113
[18] WARD A J W, HENSOR E M A, WEBSTER M M, et al. Behavioural thermoregulation in two freshwater fish species[J]. Journal of Fish Biology, 2010, 76(10): 2287–2298. DOI:10.1111/jfb.2010.76.issue-10
[19] WILDHABER M L, CROWDER L B. Testing a bioener-getics-based habitat choice model:bluegill (Lepomis macrochirus) responses to food availability and temperature[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47(9): 1664–1671. DOI:10.1139/f90-190
[20] GARNER P, CLOUGH S, GRFFITHS S W, et al. Use of shallow marginal habitat by Phoxinus phoxinus:a trade-off between temperature and food?[J]. Journal of Fish Biology, 1998, 52(3): 600–609.
[21] WILDHABER M L. The trade-off between food and tem-perature in the habitat choice of bluegill sunfish[J]. Journal of Fish Biology, 2001, 58(5): 1476–1478. DOI:10.1111/jfb.2001.58.issue-5
[22] HATTORI A, WARBURTON K. Microhabitat use by the rainbowfish Melanotaenia duboulayi in a subtropical Australian stream[J]. Journal of Ethology, 2003, 21(1): 15–22.
[23] SILVERSTEIN J T, WOLTERS W R, SHIMIZU M, et al. Bovine growth hormone treatment of channel catfish:strain and temperature effects on growth, plasma IGF-Ⅰ levels, feed intake and efficiency and body composition[J]. Aquaculture, 2000, 190(1/2): 77–88.
[24] GABILLARD J C, WEILA C, RESCAN P Y, et al. Effects of environmental temperature on IGF1, IGF2, and IGF type Ⅰ receptor expression in rainbow trout (Oncorhynchus mykiss)[J]. General and Comparative Endocrinology, 2003, 133(2): 233–242. DOI:10.1016/S0016-6480(03)00167-9
[25] 谢忠明. 牙鲆石斑鱼养殖技术[M]. 北京: 中国农业出版社, 1999.
XIE Z M. Aquaculture technique[M]. Beijing: China Agriculture Press, 1999.
[26] JOBLING M. Temperature and growth:modulation of growth rate via temperature change[M]//WOOD C M, MCDONALD D G, eds. Global Warming:Implications for Freshwater and Marine Fish. Cambridge:Cambridge University Press, 1997.
[27] BERTOLO A, PÉPINO M, ADAMS J, et al. Behavioural thermoregulatory tactics in lacustrine brook charr, Salvelinus fontinalis[J]. PLoS One, 2011, 6(4): e18603. DOI:10.1371/journal.pone.0018603
[28] HIGHT B V, LOWE C G. Elevated body temperatures of adult female leopard sharks, Triakis semifasciata, while aggregating in shallow nearshore embayments:Evidence for behavioral thermoregulation?[J]. Journal of Experimental Marine Biology and Ecology, 2007, 352(1): 114–128. DOI:10.1016/j.jembe.2007.07.021
[29] BOURKE P, MAGNAN P, RODRÍGUEZ M A. Diel loco-motor activity of brook charr, as determined by radiotelemetry[J]. Journal of Fish Biology, 1996, 49(6): 1174–1185. DOI:10.1111/jfb.1996.49.issue-6
[30] GOYER K, BERTOLO A, PÉPINO M, et al. Effects of lake warming on behavioural thermoregulatory tactics in a cold-water stenothermic fish[J]. PLoS One, 2014, 9(3): e92514. DOI:10.1371/journal.pone.0092514
[31] SINNATAMBY R N, SHEARS M, BRIAN DEMPSON J, et al. Thermal habitat use and growth in young-of-the-year Arctic charr from proximal fluvial and lacustrine populations in Labrador, Canada[J]. Journal of Thermal Biology, 2013, 38(8): 493–501. DOI:10.1016/j.jtherbio.2013.08.002
[32] BRETT R J. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka)[J]. American Zoologist, 1971, 11(1): 99–113. DOI:10.1093/icb/11.1.99
[33] ARMSTRONG J B, SCHINDLER D E, RUFF C P, et al. Diel horizontal migration in streams:Juvenile fish exploit spatial heterogeneity in thermal and trophic resources[J]. Ecology, 2013, 94(9): 2066–2075. DOI:10.1890/12-1200.1
[34] WALLMAN H L, BENNETT W A. Effects of parturition and feeding on thermal preference of Atlantic stingray, Dasyatis sabina (Lesueur)[J]. Environmental Biology of Fishes, 2006, 75(3): 259–267. DOI:10.1007/s10641-006-0025-1
[35] PETTY J T, THORNE D, HUNTSMAN B M, et al. The temperature-productivity squeeze:constraints on brook trout growth along an Appalachian river continuum[J]. Hydrobiologia, 2014, 727(1): 151–166. DOI:10.1007/s10750-013-1794-0
[36] REIDY S P, KERR S R, NELSON J A. Aerobic and an-aerobic swimming performance of individual Atlantic cod[J]. Journal of Experimental Biology, 2000, 203(Pt 2): 347–357.
[37] ZENG L Q, CAO Z D, FU S J, et al. Effect of temperature on swimming performance in juvenile southern catfish (Silurus meridionalis)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2009, 153(2): 125–130.
[38] GUDERLEY H, BLIER P. Thermal acclimation in fish:con-servative and labile properties of swimming muscle[J]. Canadian Journal of Zoology, 1988, 66(5): 1105–1115. DOI:10.1139/z88-162
[39] ROME L C, FUNKE R P, ALEXANDER R M. The in-fluence of temperature on muscle velocity and sustained performance in swimming carp[J]. Journal of Experimental Biology, 1990, 154: 163–178.
[40] KEEN J E, FARRELL A P. Maximum prolonged swimming speed and maximum cardiac performance of rainbow trout, Oncorhynchus mykiss, acclimated to two different temperatures[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1994, 108(2-3): 287–295. DOI:10.1016/0300-9629(94)90097-3
[41] JAIN K E, HAMILTON J C, FARRELL A P. Use of a ramp velocity test to measure critical swimming speed in Rainbow trout (Onchorhynchus mykiss)[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1997, 117(4): 441–444. DOI:10.1016/S0300-9629(96)00234-4
[42] ZENG L Q, ZHANG Y G, CAO Z D, et al. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise[J]. Fish Physiology and Biochemistry, 2010, 36(4): 1243–1252. DOI:10.1007/s10695-010-9404-9
[43] FRY F E J. The effect of environmental factors on the phy-siology of fish[M]//HOAR W S, RANDALL D J, eds. Fish Physiology. New York:Academic Press, 1971.
[44] JOHNSON T P, BENNETT A F. The thermal acclimation of burst escape performance in fish:an integrated study of molecular and cellular physiology and organismal performance[J]. Journal of Experimental Biology, 1995, 198(Pt 10): 2165–2175.
[45] GUDERLEY H. Locomotor performance and muscle metabolic capacities:impact of temperature and energetic status[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2004, 139(3): 371–382. DOI:10.1016/j.cbpc.2004.04.001
[46] DAY N, BUTLER P J. The effects of acclimation to reversed seasonal temperatures on the swimming performance of adult brown trout Salmo trutta[J]. The Journal of Experimental Biology, 2005, 208(Pt 14): 2683–2692.
[47] MCLEAN L, YOUNG I S, DOHERTY M K, et al. Global cooling:Cold acclimation and the expression of soluble proteins in carp skeletal muscle[J]. Proteomics, 2007, 7(15): 2667–2681. DOI:10.1002/(ISSN)1615-9861
[48] RANDALL D, BRAUNER C. Effects of environmental factors on exercise in fish[J]. Journal of Experimental Biology, 1991, 160: 113–126.
[49] MACNUTT M J, HINCH S G, FARRELL A P, et al. The effect of temperature and acclimation period on repeat swimming performance in cutthroat trout[J]. Journal of Fish Biology, 2004, 65(2): 342–353. DOI:10.1111/jfb.2004.65.issue-2
[50] TIERNEY K. The repeated swimming performance of sockeye, coho, and rainbow trout in varying environmental and physiological conditions[D]. Canada:Simon Fraser University, 2000.
[51] JAIN K E, FARRELL A P. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss[J]. Journal of Experimental Biology, 2003, 206(20): 3569–3579. DOI:10.1242/jeb.00588
[52] MOTAIS R, ISAIA J. Temperature-dependence of permeability to water and to sodium of the gill epithelium of the eel Anguilla Anguilla[J]. Journal of Experimental Biology, 1972, 56: 587–600.
[53] ПАВЛОВД С, КАСУМЯНА О, 王作楷. 鱼类摄食行为的感觉基础[J]. 水利渔业, 1992: 53–56.
ПАВЛОВ Д С, КАСУМЯН А О, WANG Z K. Feeling basis fish feeding behavior[J]. Reservoir Fisheries, 1992: 53–56.
[54] 陈松波. 不同温度条件下鲤鱼摄食节律与呼吸代谢的研究[D]. 哈尔滨: 东北农业大学, 2004.
CHEN S B. Study on feeding rhythm and respiratory metabolism of common carp at different temperature[D]. Harbin:Northeast Agricultural University, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10224-2004118064.htm
[55] 孙濡泳, 张玉书. 温度对罗非鱼生长的影响[J]. 生态学报, 1982, 2(2): 181–188.
SUN R Y, ZHANG Y S. The influence of temperatures on growth of Tilapia[J]. Acta Ecologica Sinica, 1982, 2(2): 181–188.
[56] 谢小军, 孙濡泳. 南方鲇的最大摄食率及其与体重和温度的关系[J]. 生态学报, 1992, 12(3): 225–231.
XIE X J, SUN R Y. Maximum ration level in the Southern catfish (Silurus meridionalis CHEN) in relation to body weight and temperature[J]. Acta Ecologica Sinica, 1992, 12(3): 225–231.
[57] ELLIOTT J M. Number of meals in a day, maximum weight of food consumed in a day and maximum rate of feeding for brown trout, Salmo trutta L[J]. Freshwater Biology, 1975, 5(3): 287–303. DOI:10.1111/fwb.1975.5.issue-3
[58] 李昌达. 黑鮸消化酶活力研究[D]. 青岛: 中国海洋大学, 2006.
LI C D. Research on digestive enzymes of Miichthys miiuy[D]. Qingdao:Ocean University of China, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10423-2006181964.htm
[59] KILLER S S. Growth trajectory influences temperature preference in fish through an effect on metabolic rate[J]. Journal of Animal Ecology, 2014, 83(6): 1513–1522. DOI:10.1111/1365-2656.12244
[60] BJÖRNSSON B, STEINARSSON A, ODDGEIRSSON M. Optimal temperature for growth and feed conversion of immature cod (Gadus morhua L.)[J]. ICES Journal of Marine Science, 2001, 58(1): 29–38. DOI:10.1006/jmsc.2000.0986
[61] 欧阳力剑, 郭学武. 温度对鱼类摄食及生长的影响[J]. 海洋科学集刊, 2009: 87–95.
OUYANG L J, GUO X W. The effection of temperature on the feeding and growth of fish[J]. Studia Marina Sinica, 2009: 87–95.
[62] 王成友. 长江中华鲟生殖洄游和栖息地选择[D]. 武汉: 华中农业大学, 2012.
WANG C Y. Migrations for Reproduction of Chinese Sturgeon (Acipenser sinensis) and its Habitat Selections in the Yangtze River[D]. Wuhan:Huazhong Agricultural University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10504-1012458209.htm
[63] PODRABSKY J E, CLELEN D, CRAWSHAW L I. Temperature preference and reproductive fitness of the annual killifish Austrofundulus limnaeus exposed to constant and fluctuating temperatures[J]. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 2008, 194(4): 385–393. DOI:10.1007/s00359-008-0313-7
[64] ARMSTRONG J B, SCHINDLER D E. Going with the Flow:Spatial Distributions of Juvenile Coho Salmon Track an Annually Shifting Mosaic of Water Temperature[J]. Ecosystems, 2013, 16(8): 1429–1441. DOI:10.1007/s10021-013-9693-9
[65] CAUDILL C C, KEEFER M L, CLABOUGH T S, et al. Indirect effects of impoundment on migrating fish:temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead[J]. PLoS One, 2013, 8(12): e85586. DOI:10.1371/journal.pone.0085586
[66] CAMPANA S E, DOREY A, FOWLER M, et al. Migration pathways, behavioural thermoregulation and overwintering grounds of Blue Sharks in the Northwest Atlantic[J]. PLoS One, 2011, 6(2): e16854. DOI:10.1371/journal.pone.0016854
[67] MORIMOTO R I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators[J]. Genes & Development, 1998, 12(24): 3788–3796.
[68] MORIMOTO R I, KROEGER P E, COTTO J J, et al. The transcriptional regulation of heat shock genes:a plethora of heat shock factors and regulatory conditions[M]//MORIMOTO R I, YAHARA I, POLLA B S, eds. Stress-Inducible Cellular Responses. Basel:Birkh user-Verlag, 1996, 77:139-164.
[69] HEALY T M, SCHULTE P M. Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus)[J]. Journal of Comparative Physiology B-Biochemical System and Environmental Physiology, 2012, 182(1): 49–62. DOI:10.1007/s00360-011-0595-x
[70] GEORGAKOPOULOU E, SFAKIANAKIS D G, KOUTTOUKI S, et al. The influence of temperature during early life on phenotypic expression at later onto genetic stages in sea bass[J]. Journal of Fish Biology, 2007, 70(1): 278–291. DOI:10.1111/jfb.2007.70.issue-1
[71] GEORGA I, KOUMOUNDOUROS G. Thermally induced plasticity of body shape in adult zebrafish Danio rerio (Hamilton, 1882)[J]. Journal of Morphology, 2010, 271(11): 1319–1327. DOI:10.1002/jmor.v271:11
[72] JOHNSTON I A, ANDERSEN O. Number of muscle fibres in adult Atlantic cod varies with temperature during embryonic development and pantophysin (PanI) genotype[J]. Aquatic Biology, 2008, 4(2): 167–173.
[73] FADER S C, YU Z M, SPOTILA J R. Seasonal variation in heat shock proteins (hsp 70) in stream fish under natural conditions[J]. Journal of Thermal Biology, 1994, 19(5): 335–341. DOI:10.1016/0306-4565(94)90070-1
[74] HOFMANN G E, BUCKLEY B A, AIRAKSINEN S, et al. Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae)[J]. Journal of Experimental Biology, 2000, 203(Pt 15): 2331–2339.
[75] RAYMOND J A, DEVRIES A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(6): 2589–2593. DOI:10.1073/pnas.74.6.2589
[76] 李光雷, 喻树迅, 范术丽, 等. 表观遗传学研究进展[J]. 生物技术通报, 2011: 40–49.
LI G L, YU S X, FAN S L, et al. Advances of research on epigenitics[J]. Biotechnology Bulletn, 2011: 40–49.
[77] DE LA SERRANA D G, VIEIRA V L A, ANDREE K B, et al. Development temperature has persistent effects on muscle growth responses in gilthead sea bream[J]. PLoS One, 2012, 7(12): e51884. DOI:10.1371/journal.pone.0051884
[78] SCHAEFER J, RYAN A. Developmental plasticity in the thermal tolerance of zebrafish Danio rerio[J]. Journal of Fish Biology, 2006, 69(3): 722–734. DOI:10.1111/jfb.2006.69.issue-3
[79] SCHNURR M E, YIN Y, SCOTT G R. Temperature during embryonic development has persistent effects on metabolic enzymes in the muscle of zebrafish[J]. Journal of Experimental Biology, 2014, 217(8): 1370–1380. DOI:10.1242/jeb.094037
[80] HURST T P, MUNCH S B, LAVELLE K A. Thermal reaction norms for growth vary among cohorts of Pacific cod (Gadus macrocephalus)[J]. Marine Biology, 2012, 159(10): 2173–2183. DOI:10.1007/s00227-012-2003-9
[81] LEE W S, MONAGHAN P, METCALFE N B. The pattern of early growth trajectories affects adult breeding performance[J]. Ecology, 2012, 93(4): 902–912. DOI:10.1890/11-0890.1
The literature review of temperature change effect on fish behavior
LÜ Weiqun, YUAN Mingzhe     
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
Abstract: Most of the fish are ectotherms which live in the water for the whole life, so temperature is the important abiotic factor which can influence the growth and development of fish. When temperature changing, fish won't reduce the environment stress by using behavioral thermoregulation like endure, boycott or preference rather than adaptable genovariation. The review summarize the recent study on fish behavioral thermoregulation, comparing their behavioral change of habitat selection, swimming, feeding and breeding migration of different species, allogeneic age and the same kind and age fishes. And also analyze the possible internal mechanism which can course the difference, as well as the research progress of the Heat Shock Protein (HSPs) and epigenetics effect on survival. The article expound the behavior of thermoregulation is a complex and comprehensive selection behavior based on external environmental conditions and their physiological needs to maximize the advantage of thermoregulation. In order to further understand the effect of global climate change on fish, the further on research of fish thermoregulation behavior and its mechanism are needed.
Key words: temperature change     thermoregulation     behavior     fish