气象学报  2020, Vol. 78 Issue (3): 419-450   PDF    
http://dx.doi.org/10.11676/qxxb2020.057
中国气象学会主办。
0

文章信息

罗亚丽, 孙继松, 李英, 夏茹娣, 杜宇, 杨帅, 张元春, 陈静, 代刊, 沈学顺, 陈昊明, 周菲凡, 刘屹岷, 傅慎明, 吴梦雯, 肖天贵, 陈杨瑞雪, 黎慧琦, 李明鑫. 2020.
LUO Yali, SUN Jisong, LI Ying, XIA Rudi, DU Yu, YANG Shuai, ZHANG Yuanchun, CHEN Jing, DAI Kan, SHEN Xueshun, CHEN Haoming, ZHOU Feifan, LIU Yimin, FU Shenming, WU Mengwen, XIAO Tiangui, CHEN Yangruixue, LI Huiqi, LI Mingxin. 2020.
中国暴雨的科学与预报:改革开放40年研究成果
Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of the People's Republic of China
气象学报, 78(3): 419-450.
Acta Meteorologica Sinica, 78(3): 419-450.
http://dx.doi.org/10.11676/qxxb2020.057

文章历史

2020-01-13 收稿
2020-05-19 改回
中国暴雨的科学与预报:改革开放40年研究成果
罗亚丽1,2 , 孙继松1 , 李英1 , 夏茹娣1 , 杜宇3,11 , 杨帅4 , 张元春4 , 陈静5 , 代刊5 , 沈学顺5 , 陈昊明1 , 周菲凡4,12 , 刘屹岷6,12,13 , 傅慎明4 , 吴梦雯7 , 肖天贵8 , 陈杨瑞雪9 , 黎慧琦10 , 李明鑫1     
1. 中国气象科学研究院灾害天气国家重点实验室,北京,100081;
2. 南京信息工程大学气象灾害预报预警与评估协同创新中心,南京,210044;
3. 中山大学大气科学学院/气候变化与自然灾害研究广东省重点实验室,珠海,519082;
4. 中国科学院大气物理研究所云降水物理与强风暴重点实验室,北京,100029;
5. 国家气象中心,北京,100081;
6. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京,100029;
7. 浙江省气象科学研究所,杭州,310008;
8. 成都信息工程大学大气科学学院,成都,610225;
9. 中国气象局武汉暴雨研究所,武汉,430205;
10. 中国气象局广州热带海洋气象研究所,广州,510640;
11. 南方海洋科学与工程广东省实验室(珠海),珠海,519082;
12. 中国科学院大学,北京,100049;
13. 中国科学院青藏高原地球科学卓越创新中心,北京,100101
摘要: 总结了改革开放以来中国学者在暴雨科学与预报领域取得的重要研究进展和主要成果。其中,暴雨机理研究成果从重要天气系统、中国主要区域的暴雨、台风暴雨等3个方面分别进行综述,而暴雨预报技术研发与应用则从中国数值天气预报发展和暴雨预报客观方法两方面进行归纳。
关键词: 暴雨研究进展    改革开放    物理机制    预报技术    
Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of the People's Republic of China
LUO Yali1,2 , SUN Jisong1 , LI Ying1 , XIA Rudi1 , DU Yu3,11 , YANG Shuai4 , ZHANG Yuanchun4 , CHEN Jing5 , DAI Kan5 , SHEN Xueshun5 , CHEN Haoming1 , ZHOU Feifan4,12 , LIU Yimin6,12,13 , FU Shenming4 , WU Mengwen7 , XIAO Tiangui8 , CHEN Yangruixue9 , LI Huiqi10 , LI Mingxin1     
1. State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China;
2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China;
3. School of Atmospheric Sciences,and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies,Sun Yat-sen University,Zhuhai 519082,China;
4. Key Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
5. National Meteorological Center,Beijing 100081,China;
6. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
7. Zhejiang Institute of Meteorological Sciences,Zhejiang Meteorological Bureau,Hangzhou 310008,China;
8. School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,China;
9. Institute of Heavy Rain,China Meteorological Administration,Wuhan 430205,China;
10. Institute of Tropical and Marine Meteorology,China Meteorological Administration,Guangzhou 510640,China;
11. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519082,China;
12. University of Chinese Academy of Sciences,Beijing 100049,China;
13. Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China
Abstract: This review describes research progresses and main achievements in the science and prediction of heavy rainfall over China since the beginning of the reform and opening-up of China between 1980 and 2019. The research progresses on the physical mechanisms of heavy rainfall over China are summarized from three aspects-namely, the relevant synoptic systems, heavy rainfall in the major sub-regions and heavy rainfall induced by typhoons. The development and application of forecasting techniques for heavy rainfall events are summarized from the perspectives of numerical weather prediction techniques and objective forecasting methods.
Key words: Research progresses of heavy rainfall    Reform and opening-up of China    Physical mechanisms    Forecasting techniques    
1 引 言

中国天气受东亚夏季风影响,活跃的季风加上复杂的地形造成中国经常出现暴雨天气(陶诗言等,1979陶诗言,1980)。在全球气候变化(IPCC,2014)和中国高速城市化发展的背景下,暴雨洪涝、城市内涝灾害更加严重,防灾、减灾形势越发严峻(秦大河,2015)。因此,暴雨研究在中国大气科学研究中具有十分重要的地位。

中国暴雨具有鲜明的地域性和季节性特征,每年随着夏季风的北推,暴雨区也由南向北推进,形成了华南、江淮、华北、东北暴雨区,同时,在青藏高原东缘复杂地形影响下形成了西南暴雨区(图1)。此外,中国东临太平洋,台风暴雨也是中国暴雨的主要类型之一。影响中国暴雨的重要天气系统除了低空急流、副热带高压、锋面、热带气旋外,还有东北冷涡,以及由于青藏高原及其周边特殊地形形成的西南低涡。丁一汇(2019)总结了1930—2010年中国暴雨理论研究发展历程,文中将着重回顾改革开放以来中国暴雨科学研究与预报技术发展的重要进展和主要成果。

图 1  中国 (a) 暴雨日和 (b) 大暴雨日的频次 (单位:d/(10 a))分布(暴雨日和大暴雨日定义为20时至次日20时日累计降水量分别高于50 和100 mm。1897个大陆地区观测站和10个海南岛观测站的统计时段均为1980—2018年,23个台湾地区观测站为1993—2015年。所有站点的资料逐年有效率均在80%以上) Fig. 1  Occurrence frequency (d/(10 a)) of heavy rainfall (a) and extreme rainfall (b) over mainland China and Hainan Island during 1980—2018 and over Taiwan area during 1993—2015 (Totally,the numbers of stations are 1897,10,and 23 over mainland China,Hainan Island,and Taiwan area,respectively. Yearly valid data ratio is>80% at all the stations in each individual year during the analysis period)
2 暴雨机理研究主要成果 2.1 重要天气系统

低空急流、锋面、西太平洋副热带高压和青藏高原天气系统对中国广大地区的暴雨产生重要影响,此节将主要总结中国学者对这4类天气系统及其与中国暴雨关系的研究成果。东北冷涡和西南低涡具有较强的地域特色,关于这两类天气系统的研究进展分别在2.2节东北地区暴雨和西南地区暴雨中予以介绍。

2.1.1 低空急流

低空急流通常是指在对流层低层或边界层发生水平风速最大值的现象(Stensrud,1996)。低空急流从特征和形成机理上可分为两类:与天气系统紧密联系的低空急流和边界层急流(Chen,et al,1994Du,et al,20122014bLiu,et al,2014)。前一类低空急流的最大风速位于1—4 km高度的对流层中低层,其形成主要是由于天气尺度或者中尺度系统的发展和移动(Uccellini,et al,1979Ucce-llini,1980袁信轩,1981高守亭等,1984),以及潜热释放所引起的气压梯度力的变化(Chen,et al,1988Uccellini,et al,1987黄士松,1981丁一汇,2005)。而后一类低空急流的最大风速出现在1 km以下的边界层内,其形成常用边界层内非地转风惯性振荡理论(Blackadar,1957)和斜压理论(Holton,1967)以及二者的综合效应(Du,et al,2014a2015Shapiro,et al,2016)来解释,此外,边界层低空急流的形成也与波动和热力引起的动量水平输送(何建中等,1989)、地形狭管效应(陈贵川等,2006)、西南季风加强(赵平等,2003)有关。

长期以来,大量研究揭示了对流层低空急流与中国暴雨紧密相关的物理机制。它输送来自热带海洋的暖湿空气,提高湿静力能,并且在急流下游产生辐合、加强风垂直切变,可能导致重力波不稳定发展(孙淑清等,1980a)和湿位涡发展(翟国庆等,1999),为产生暴雨提供有利的动力和热力条件(朱乾根,1975Tao,et al,1987Chen,et al,1998);而暴雨过程中凝结潜热加热导致地面气压降低和高空辐散增强,垂直次级环流增强,从而加速低空急流,这种正反馈作用对暴雨的发展起重要作用(Chou,et al,1990Qian,et al,2004Zhao,2012)。

近几年的研究显示边界层低空急流与江淮流域夜间和清晨的暴雨关系非常密切(Luo,et al,2015),对流层低空急流和边界层急流的耦合所造成的边界层辐合、对流层中低层辐散是触发华南海岸暖区暴雨的重要机制(Du,et al,2019aZhang M R,et al,2019Li,et al,2020Shen,et al,2020)(图2),并且这两类低空急流对华南降水的分布具有显著不同的影响(Du,et al,2018a2019b),研究者还发现边界层急流是影响中国多个地区降水日变化的重要因素之一(Chen,et al,2017Pan,et al,2019Zhang M R,et al,2019Zeng,et al,2019)。

图 2  华南海岸暖区暴雨的产生与低空急流的关系 (950 hPa海洋边界层急流 (BLJ) 出口区在海岸附近造成辐合,700 hPa天气尺度低空急流 (SLLJ) 伴随锋面向南移动,在海岸附近即SLLJ入口区造成辐散。海岸附近边界层辐合和对流层中低层辐散造成中尺度抬升,利于对流触发)(Du,et al,2019a Fig. 2  Schematic diagram depicting the relation between the formation of warm-sector heavy rainfall near the coast of South China and low-level jets (LLJs)(At 950 hPa,convergence presents near the coast at the exit of marine boundary-layer jet (BLJ). At 700 hPa,a synoptic-scale low-level jet (SLLJ) moves southward along with the front,causing divergence near the coast at the entrance of the SLLJ. The coupling configuration between boundary-layer convergence and mid-lower tropospheric divergence near the coast produces mesoscale lifting that is in favor ofconvective initiation)(Du,et al,2019a
2.1.2 锋面

锋面(这里特指天气尺度锋面)是不同性质气团的交界面。每年夏季,东亚季风向中国大陆输送暖湿气流,暖湿气流与其北侧相对干冷的气团之间常常形成锋面。锋面对暖湿空气的抬升作用是产生中国暴雨的重要动力学机制之一。由于中国南北跨度大,暖季锋面系统的结构具有较明显的南北区域差异:与华北暴雨事件相关的锋面系统一般具有典型的温带锋面结构,即存在较强的水平温度梯度或位温梯度,锋区两侧的干湿对比也很强;著名的梅雨锋(谢义炳,1956)具有副热带锋面结构特征,锋面西段位于中国江淮地区,是热带气团与极地变性气团的交汇区,具有明显的西南风与东南风的切变,水平温度梯度小,而湿度梯度大(Ninomiya,1984Cui,et al,2005郑永光等,2007Yang S,et al,20142015);华南前汛期,当冷空气到达华南地区后强度减弱,锋面系统常呈现准静止状态(Xu,et al,2009林宗桂等,2009),水平温度梯度相比中国中东部副热带锋面小(陈敏等,2007Luo,et al,2013)。

2.1.3 西太平洋副热带高压

西太平洋副热带高压(简称西太副高)是东亚季风环流系统中最重要的成员之一。经典理论认为,净太阳辐射的南北梯度和地球旋转速率决定了大气平均经圈环流,在哈得来环流圈中,较暖且密度小的空气在赤道地区上升,较冷且密度大的空气在副热带下沉,从而形成了副热带高压带(Peixoto,et al,1992)。而东亚季风潜热释放产生的暖性罗斯贝波与西风气流作用造成的下沉运动,是西太副高维持的基本机制(Hoskins,1996)。中国学者利用全型垂直涡度倾向方程讨论了空间非均匀加热对副热带高压形态变异的影响(吴国雄等,1999吴国雄,2002刘屹岷等,1999a1999b)。在大气环流、海温、海冰等因素的复杂作用下(陶诗言等,1964Li,et al,1988Ren,et al,2013Chen,et al,2015Qian,et al,2017),西太副高具有显著的季节性南北进退(叶笃正等,1958a1958bYe,et al,2014),准双周振荡,30—50 d低频振荡和年际变化(Lu,2001Lu,et al,2001Zhou,et al,2009Li T,et al,2017),西太副高的这些特征和变化显著地影响着中国暖季降水多寡和主雨带位置(陶诗言,1963黄士松,1978吴国雄,2002Ding,et al,2005;Zhou,et al,2009Yang J,et al,2014Wu,et al,2015Lin,et al,2016Guan,et al,2019)。

2.1.4 青藏高原天气系统

青藏高原通过动力和热力作用改变周边大气环流和天气系统,影响中国暴雨(叶笃正等,1977Tao,et al,1981Wu,1984)。如果青藏高原上非绝热加热足够强,那么在高原热源上方对流层高层会形成纬向分布的位涡低值带,低位涡(即反气旋)以东的高位涡中心向南移动到东风带,再西移,于是对流层高层形成强的位涡经向梯度(Liu,et al,2007),导致高原上空对流层高层反气旋不稳定,表现为南亚高压的经向位置发生准双周变化,从而对江淮地区暴雨的环境场产生影响(吴国雄等,2008图3)。高原地表感热加热正异常通过热成风调整而加强中层的气旋,出现位涡平流随高度增强的大尺度动力背景,上升运动发展;并且加强气旋东南侧的西南低空急流,改善水汽输送,增强中国东南地区的降水(Li,et al,2014施晓晖等,2015Wan,et al,2017马婷等,2020)。源于青藏高原的涡旋在发展东移过程中,非绝热加热的垂直梯度在低层产生正位涡,加强低层涡旋发展,增强涡旋的垂直范围;加热的水平梯度在水平风垂直切变的右、左侧分别产生了正、负位涡,加强局地垂直涡度且影响低涡东移和中国东部暴雨过程,由此提出了广义倾斜涡度发展理论(Zheng,et al,2013Wu,et al,2013)。

图 3  与中国江淮地区夏季持续性暴雨发生有关的高层南亚高压与低层西太副高耦合的天气背景 (吴国雄等,2008 Fig. 3  Schematic diagram depicting a synoptic situation of the upper-level South Asia High coupled with the lower-level western Pacific subtropical high that is associated with summer persistent heavy rainfall over the Yangtze and Huai Rivers Basin (Wu,et al,2008)
2.2 中国几个主要区域的暴雨 2.2.1 华南地区暴雨

华南主要指的是约26°N以南、青藏高原以东的地区,华南的雨季从4月直到10月初(Ramage,1952)。长期统计而言,华南小时至日尺度降水强度以及暴雨(>50 mm/d)和大暴雨(>100 mm/d)日数几乎都是中国之最(Luo,et al,2016Zheng,et al,2016)(图1),极端小时降水高达100 mm、甚至200 mm,十几小时累计降水可达400、500 mm(Wang H,et al,2014Wu,et al,2016),容易造成洪涝灾害。与东亚夏季风环流和降水的次季节跃进(Tao,et al,1987Ding,1994Ding,et al,2005)相对应,华南主要雨季可以分为前汛期和后汛期两个阶段,分割点大致在6月中下旬(Yuan F,et al,2010)。

以华南前汛期(4—6月)暴雨为重点,中国自改革开放以来先后开展了4次较大规模的包含外场观测试验的研究计划,包括1977—1981年中国第一次暴雨科学研究计划(黄士松,1986)、1998年海峡两岸及邻近地区暴雨试验(HUAMEX)(周秀骥等,2003)、2008—2009年中国南方暴雨试验(SCHeREX)(Zhang R H,et al,2011倪允琪等,2013)以及华南季风降水试验(SCMREX)(Luo,et al,2017),这些研究计划逐步推进了华南前汛期暴雨的多尺度作用机理研究、雷达和卫星等探测技术发展及其资料应用以及数值天气预报技术研发,取得了丰硕的成果(Luo,2017)。近10年研究开始系统深入探讨产生强降水的对流触发和演变机理(Luo,et al,2020),尤其是利用高时、空分辨率观测资料揭示了20世纪80年代就提出的“华南暖区暴雨”(黄士松,1986)对流触发演变的多尺度作用过程,并开始了强降水的云微物理特性的观测分析,还发现了华南西部与东部之间、华南东部海岸与陆地和北部山区之间的降水日变化特征显著不同,阐释了西南季风气流、锋面、海陆热力差异、地形等共同作用从而造成这些降水日变化特征的物理过程(Chen X C,et al,201420162017Jiang,et al,2017Chen G X,et al,2018Du,et al,2018b)。

20世纪80、90年代,中国学者就指出华南前汛期暴雨的频次和强度与南海季风爆发的时间和强度关系非常密切(黄士松,1986Ding,1994)。1994年6月中旬华南发生了20世纪最大的洪水,造成巨大经济损失和大量人员死亡(赵玉春等,2009),主要原因是南海夏季风异常强(吴尚森等,2003),同时华南受季风槽影响或位于副热带高压的西北缘,天气尺度形势利于强大的低空季风气流把中国南海的暖湿空气向华南地区输送,产生辐合、抬升(薛纪善,1999),加上地形作用促进中尺度对流系统发展(孙建华等,2000)。最近研究(Chen Y R X,et al,2018)揭示,在5月中下旬南海夏季风爆发之后,华南地区的水汽输送通道发生了显著改变,由孟加拉湾和印度洋输送的水汽占比大幅度上升,而由太平洋输送的水汽占比下降,同时,华南地区的水汽和对流有效位能明显增加,华南区域性极端降水主要发生在南海季风爆发之后(Huang,et al,2018),加密自动气象站观测极端小时降水(≥60 mm/h)日平均发生频次在季风爆发后升高约40%,而季风爆发前、后都以天气尺度系统弱强迫下的暖区型和地面锋面型极端降水为主,锋面型、低涡型、切变线型在华南西部频次高于华南东部,暖区型则相反(李争辉,2019Luo,et al,2020图4)。

图 4  华南前汛期极端小时降水发生时对流层中低层的环境条件(包括4种类型:a. 地面锋面(双三角形的深蓝色粗线)型,b. 低层涡旋(棕色粗线表示850 hPa切变线)型,c. 低层切变线(棕色粗线表示850 hPa切变线)型,d. 弱梯度型即暖区型;蓝色和绿色等值线分别代表850 hPa位势高度和相当位温,“L”表示天气尺度低压系统的中心,蓝色箭头表示850 hPa水平风;a、b、c 中粉色阴影表示700 hPa上升运动最大的区域,绿色、橙色和红色阴影分别表示雷达反射率值大致为20、40、50 dBz;海岸线 (粗黑色线条)以南的浅蓝色阴影表示中国南海;Luo,et al,2020 Fig. 4  Schematic diagrams of environmental conditions in the mid- and lower troposphere at the time of the extreme hourly rainfall (60 mm/ h) over South China during the pre-summer rainy season (a. surface front type,b. low-level vortex type,c. low-level shear line type,d. weak gradient type,i.e,the warm-sector type. Blue and green contours represent,respectively,the geopotential height (Hg) and equivalent potential temperature (θe) at 850 hPa. "L" denotes synoptic-scale low pressure center. Blue arrows denote 850 hPa horizontal winds. Thick blue line with double triangles in (a) represents surface front. Thick brown lines in (b) and (c) denote shear lines at 850 hPa. Purple shading indicates where 700 hPa ascent is maximized. Shadings in green,orange,and red represent radar reflectivities of roughly 20,40,and 50 dBz,respectively. Light blue shading to the south of the coastline (denoted by thick black line) indicates the South China Sea;Luo,et al,2020

近期研究获得了华南前汛期暴雨在年际尺度、天气尺度、日尺度和日内尺度上物理机制的新认识。华南前汛期暴雨的年际变化受到热带太平洋和印度洋海温的显著影响,其途径分别是激发Matsuno–Gill型罗斯贝波列和暖大气开尔文波,从而导致中国南海北部对流层低层西南风异常(Gu,et al,2018Yuan,et al,2019)。与华南前汛期区域性极端降水密切相关的天气尺度(3—8 d)扰动主要是气旋型和锋面低槽型异常(Huang,et al,2018),这些天气尺度扰动的形成和增强可以得到青藏高原地表强感热加热的正贡献(Li,et al,2014Wan,et al,2017),也和青藏高原对西风的阻挡和分流作用密切相关(Wu,et al,1985Kuo,et al,1986Chang,et al,1998)。日尺度和日内尺度上,华南常常观测到南北两条暴雨带共存的现象。位于北边的雨带与副热带天气尺度系统(低涡、锋面、切变线)的大尺度动力抬升密切相关,而西北太平洋副热带高压的西伸东退、切变线和低涡等副热带天气系统的停滞和东移,以及西南季风气流的增强对于朝着华南西部和东部输送暖湿空气起着重要作用,并大致决定了华南内陆强降水的位置(Li,et al,2020)。位于南边的雨带水平尺度较小,但强度更强,常常发生在华南陆地(广西南部、广东中部)或海岸的暖区。广东中部偏北山区的暖区暴雨主要是太阳辐射加热地面造成午后近地面空气不稳定性增强和地形抬升导致(Jiang,et al,2017),而珠三角城市群地区在城市热岛、海风、地形共同作用下也成为极端短时降水的高发区(Wu,et al,2019Yin,et al,2020)。

关于华南前汛期海岸暖区暴雨的对流触发机制,最近研究(Du,et al,2018a2019a图2)提出了双低空急流耦合作用的新概念:中国南海北部边界层内偏南风急流变弱,在海岸附近造成辐合和抬升,同时对流层低空急流在海岸附近造成辐散,这种双低空急流垂直耦合作用是触发海岸暖区对流的重要因子。统计分析华南海岸大样本降水事件的结果支持中国南海北部边界层偏南风的重要性,同时发现有时候中国南海北部的边界层气流没有达到急流强度,气流在海岸线附近减速、辐合造成的抬升作用较弱,也可能产生较强的降水(Li,et al,2020),甚至极端性的局地暴雨(Wang H,et al,2014),其原因是近地面暖湿空气具有很低的对流抑制能量,在海陆摩擦差异、海岸地形、先前对流遗留的冷池等共同作用下被抬升也可能触发对流(Wang H,et al,2014Wu,et al,2016)。产生海岸极端降水的中尺度对流系统得以维持的关键是潮湿大气环境下对流产生的近地面冷池较弱,其前缘形成稳定少动的中尺度出流边界,边界处不稳定暖湿空气被连续抬升、触发对流,形成多条对流带准平行排列的组织结构(Wang H,et al,2014图5),而对流系统内部先导弓状对流带的快速分裂和重建过程有助于这种多对流带组织结构的形成(Liu,et al,2018)。

图 5  产生华南海岸暖区极端降水的一类中尺度对流系统 (MCS) 发展初期 (a) 和成熟期 (b) 的关键因子(红色、橙色和绿色阴影分别表示3 km高度雷达反射率值为50、35、20 dBz。图 a 中线状MCS西南边缘的灰色区域代表一座山,灰色粗直线代表海岸线)(Wang H,et al,2014 Fig. 5  Schematic diagrams of the back building,echo training,and rainband training associated with the extreme rain-producing MCS during its (a) early development and (b) mature stages(Shadings in red,orange,and green represent roughly the radar reflectivity values of 50,35,20 dBz at 3 km above mean sea level,respectively. Gray area near the southwest edge of the linear-shaped MCS in (a) represents a mountain. The thick gray line represents coastline)(Wang H,et al,2014

相比对华南前汛期暴雨的研究,对华南后汛期(7—9月)暴雨(台风暴雨除外)的研究较少。其主要天气系统是季风槽、季风低压(黄忠等,2005蒋建莹等,2007蒙伟光等,2014)和热带气旋(Meng,et al,2016a2016b),南海夏季风的季节内振荡是发生持续性暴雨的关键因素(Hong,et al,2013Chen G J,et al,2014Li R C Y,et al,2015李春晖等,2017)。

最近研究利用星载测雨雷达、地基双偏振雷达等最新的遥感观测资料,揭示了关于华南暴雨微物理过程的一些特征。如5.7广州破纪录极端降水(Huang,et al,2019)主要由活跃的暖雨过程产生(Luo,et al,2020);TRMM卫星观测的强中尺度对流系统统计分析(Luo,et al,2013)和地基雷达观测强飑线个例研究(Wu,et al,2018)均发现,在最强的对流核内存在由较强凇附过程形成的霰和冰雹;扫过华南东部的一条飑线演变过程中,雨滴谱分布特征可以从海洋性对流为主转变为介于大陆性对流和海洋性对流之间(Wang,et al,2019)。

2.2.2 江淮地区暴雨

每年6月中下旬至7月上旬,随着西太副高北抬,西南季风与北方冷空气交汇于江淮流域,形成梅雨锋,使得中国的主要雨带维持在长江中下游,此雨季被称为江淮梅雨期(丁一汇,1993)。20世纪90年代至21世纪初,学者们(丁一汇,1993陆尔等,19941997陶诗言等,2001赵思雄等,2004)较系统地研究了造成严重灾害的1991年江淮持续性暴雨和1998年长江流域大暴雨,全面阐述了1991年江淮持续暴雨的雨情和水情、大暴雨的成因、暴雨的预报服务与检验,以及成灾原因与防灾对策等(丁一汇,1993),也对1998年洪涝的灾情和降水情况、大尺度大气环流特征和副热带高压异常变化机理、天气尺度系统的活动、梅雨期β中尺度对流系统的发生过程进行了分析和总结(陶诗言等,2001)。1998和1999年中日合作在淮河流域成功开展了水文-气象外场观测试验(HUBEX),利用数字天气雷达和多普勒雷达首次观测到梅雨锋系统内云降水中尺度系统的三维结构,这也是首次在东亚半湿润季风区开展的水文-气象联合观测试验(Fujiyoshi,et al,2006),为之后开展中国暴雨观测试验与研究奠定了坚实的基础。21世纪前20年,多个国家级重点研发项目的实施进一步推动了江淮流域暴雨和强对流天气的研究(倪允琪等,2006谈哲敏等,2013Xue,2016),深化了对产生江淮地区暴雨的多尺度系统作用机理的认识。

中国学者较早认识到高空急流对梅雨锋暴雨的重要性,指出副热带西风急流在梅雨期北移到40°N附近,位于梅雨锋的北侧,高空急流入口区右侧的辐散有助于形成低层西南风急流,从而促进梅雨锋暴雨发展(斯公望,1989)。后续研究进一步揭示了多种天气系统共同作用造成江淮流域大范围、长时间暴雨的物理图像(Sampe,et al,2010图6):对流层中层西风急流沿青藏高原东侧向中国中东部和日本输送暖空气,沿西风急流产生绝热上升运动;位于北太平洋高压和大陆热低压之间的低层偏南风向上升运动区输送水汽,维持对流不稳定;西风急流还激发出向东移动的中纬度天气尺度扰动,增强上升运动和不稳定。近几年,还利用时间分离的能量收支方程从能量输送、转换和变尺度级串角度研究江淮持续性暴雨,结果表明:天气尺度扰动动能在对流层低层和高层主要靠背景场动能的降尺度级串维持,对流层中层则主要是扰动流的强反馈导致的动能升尺度级串,而大尺度背景场的动能主要靠斜压能量转换与动能水平输送维持(Fu,et al,2016a2018);当中尺度涡旋从背景场中获得动能时,涡旋发展或维持,暴雨维持,当此能量供给被切断后,涡旋迅速消亡,暴雨随之结束(Fu,et al,20152016bZhang,et al,2017)。

图 6  造成东亚梅雨的主要因子 (对流层中层风 (绿色箭头) 将青藏高原南侧与高原表面加热和季风对流有关的暖区暖空气 (红色椭圆形;黑色细线为3000 m地形高度线) 向南输送,在中国中部和日本 (橙色) 上空暖平流引起沿急流的上升运动,在大陆热低压和北太平洋高空 (浅蓝色椭圆形,“ H”) 之间低空偏南气流输送水汽 (黑色箭头) 维持了对流不稳定性,在此情况下,上升运动有利于发生对流 (橙色区域的云);急流 (绿色粗箭头)将天气扰动从中纬度向东引导 (带有“H”和“L”的蓝色和红色虚线圆圈),从而增加了剧烈上升和不稳定的可能性。此图中大气组成部分的位置会有变化)(Sampe,et al,2010 Fig. 6  Schematic diagram describing factors that bring Meiyu-Baiu in early summer East Asia (Midtropospheric winds (green arrows) advect warm air from the warm region over the south flank of the Tibetan Plateau (red oval;thin black line is the 3000 m contour of topography) associated with the heated surface of the Plateau and monsoon convection to the south. The warm advection over central China and Japan (orange) induces ascending motion along the jet stream. The ascent favors convection (drawing of clouds in orange figure) in the presence of convective instability sustained by low-level southerly moisture transport (black arrows) between a heat low over the continent and an oceanic high over the North Pacific (light blue oval with "H"). The jet stream (thick green arrows) steers transient weather disturbances from midlatitudes (blue and red dotted circles with "H" and "L") eastward,increasing probability of intense ascent and instability. The location of atmospheric components in this diagram varies)(Sampe,et al,2010

进入21世纪以后,学者们加强了对江淮流域暴雨与涡旋关系的研究。发现上游的低涡在高空引导槽作用下沿梅雨锋东移,加强低涡东南侧的西南风以及向梅雨锋输送的动能和水汽,也加大梅雨锋的风垂直切变,有利于梅雨锋上发生对流活动和强降水(赵思雄等,2007Fu,et al,2011傅慎明等,2011);长江下游包括大别山区一带的涡旋,尤其是长生命史的涡旋(Fu,et al,20132016c),以及中尺度对流涡旋(MCV)也是产生江淮暴雨的重要贡献者(石定朴等,1996高坤等,2001张小玲等,2004孙建华等,2004张元春等,2012)。

近十几年,对江淮地区降水日变化,尤其是夜间至清晨的强降水成因研究取得了重要进展。研究(Yu,et al,2007Zhou,et al,2008Chen H M,et al,2010Yuan W H,et al,2010Luo,et al,2013)表明,江淮地区梅雨期降水的日变化具有双峰结构,峰值分别出现在夜间至清晨和下午。明确指出中国阶梯地形热力环流对产生江淮地区夜间强降水有贡献。即夜间青藏高原东部与四川盆地间的山地-平原热力环流的上升支加强西南低涡,向东北方向伸展的西南涡扰动与二级地形东部形成的热力环流上升支叠加,触发了二级地形背风坡的局地涡旋和对流(Zhang,et al,2014a2014b),局地涡旋和对流在梅雨锋上东移的过程中,经历了分离、再耦合和锢囚阶段(Zhang Y C,et al,2018图7):白天对流和低层涡旋都有所减弱,并受到热力环流下沉支的抑制作用,对流和低层涡旋分离;夜间,由于低层水汽相变产生的非绝热加热和低空急流的共同影响,对流和涡旋再次耦合,中尺度涡旋发展为次天气尺度涡旋,在江淮地区产生强降水(Sun,et al,2012Zhang Y C,et al,2018)。除此之外,前一天下午至傍晚的对流活动在梅雨锋前形成的地面中尺度冷池和夜间增强的边界层气流协同作用,也可以触发夜间对流(Luo,et al,2015),夜间边界层急流加强的主要原因是边界层内非地转风的惯性振荡(Xue,et al,2018)。江淮地区夜间对流触发还可能与稳定边界层以上的中尺度辐合线有关,辐合线的形成可能是中尺度涡旋东移与西太副高增强共同造成水平气压梯度变大、南风增强的结果(He,et al,2018)。最近观测分析还发现,较强的城市效应跟长三角快速城市化以来城市群下午短时强降水发生频次升高有关,在台风和非台风系统影响下都是如此(Jiang,et al,2020)。

图 7  低涡和对流沿梅雨锋东移过程中的演变发展 (左侧:第一天凌晨的形成阶段;中间:对流和涡旋的解耦阶段,午后对流与涡旋中心分离,涡旋随高度向东倾斜;右侧:夜间涡旋中心附近的对流再次增强,发展为锢囚阶段 (夜间低空急流增强,涡旋发展)。红色箭头代表低空急流,蓝色箭头为山地平原热力环流,紫色箭头是中尺度上升气流,黑色箭头为涡旋水平环流,黑色实线代表地面,灰色阴影为对流区域,绿色实线和箭头分别代表梅雨锋和地面风场)(Zhang Y C,et al,2018 Fig. 7  Schematic of convection and MCV eastward progression and diurnal evolution (left:The formation stage in the early morning of day 1 (Stage 1);iddle:The afternoon decoupling stage as deep convection is displaced from the vortex center and the vortex tilts eastward with height (Stage 2);right:Convection re-intensifies near the vortex center during the following evening,the low-level jet intensifies and the vortex strengthens,ultimately reaching an occluded configuration (Stages 3 and 4). Features include low-level jet (red arrows),mountain–plains solenoid (blue arrows),mesoscale updraft (purple arrows),vortex horizontal circulation (black arrows),ground (black line),convective region (gray shading),mei-yu boundary (green line),and surface winds (green arrows))(Zhang Y C,et al,2018

利用2008年前后形成的中国江淮地区分钟和千米级的高时、空分辨率业务雷达组网观测,发现梅雨锋前产生极端强降水的一类中尺度对流系统具有“对流单体排列-对流带排列”的结构特征(Luo,et al,2014),对流单体由于后部增生形成西—东或西南—东北走向的对流带,多条这样的对流带准平行地排列在一起,整体向东南方向移动,两种不同尺度和移向的单体与雨带的列车效应叠加,导致极端暴雨的发生;通过数值模拟揭示了此类中尺度对流系统内部云微物理过程与动力过程的耦合细节,及其影响降水强度和精细化分布的机理(Luo,et al,20102015)。对华南海岸带暖区极端降水过程的研究也发现了类似的中尺度对流系统结构特征(Wang H,et al,2014Wu,et al,2016Liu,et al,2018)。近几年,随着雨滴谱仪和双偏振雷达的逐渐推广应用,开展了江淮地区降水云微物理特征分析,发现中国东部夏季对流性降水的雨滴谱分布主要特征与海洋性对流类似(Wen,et al,2016),而飑线演变过程中雨滴谱分布可以从接近海洋性对流演变为大陆性对流,且暖云过程对产生地面降水起主导作用(Wen,et al,2017)。

2.2.3 华北地区暴雨

每年汛期,继华南前汛期、江淮梅雨期之后,华北进入雨季。20世纪60、70年代,学者们就注意到华北暴雨的演变特征和物理过程有别于中国南方暴雨。近十多年,利用高时、空分辨率的地面和雷达观测资料,更清楚、定量地揭示了华北暴雨的地域特征。华北暴雨年均发生频次比南方地区低(图1),但是华北暴雨往往伴随强烈的对流现象,短历时降水强度大(Zhang H,et al,2011陈炯等,2013Luo,et al,2016);南北走向的太行山影响东南或偏东低空急流,东西走向的燕山影响西南低空急流,有利于强降水出现在山脉附近靠近华北平原一侧(孙继松,2005Xia,et al,2019图8);海陆环流、山谷风环流、城市环流增加了北京—天津及其附近局地大气环流的复杂性,容易形成尺度小、强度大的局地暴雨中心(孙继松等,20062008Jiang,et al,2007Yin,et al,2011Li Z,et al,2015)。

图 8  温带气旋影响下一次太行山东侧极端暴雨过程成因 (桔色带箭头线表示暖湿低空气流,绿色和红色阴影分别表示3 km高度上30和45 dBz雷达回波区;黑色箭头表示极端降水对流核的移动方向,紫色曲线表示200 和600 m地形高度,黄色曲线表示1000 和1400 m地形高度。紫色、蓝色和绿色方框分别表示研究关键区域的南部、北部和中部)(Xia,et al,2019 Fig. 8  Schematic diagram depicting the factors responsible for an extreme rainfall event along the eastern foothills of Mt. Taihang associated with an extratropical cyclone (Orange lines with arrows indicate the low-level flows with the warm and moist tongues indicated. Green and red shadings represent roughly the radar reflectivity values of 30 and 45 dBz at 3 km altitude,respectively. Black arrows indicate the moving direction of extreme rain-producing convective cores. Purple curved lines represent the terrain elevations of 200 and 600 m,respectively. Light and dark yellow curved lines represent terrain elevation of 1000 and 1400 m,respectively. Magenta dashed lines denote a convergence line of low-level flows. Purple,blue,and green rectangles denote the southern,northern and middle portion of the studied region,respectively)(Xia,et al,2019

从20世纪70年代至今,大量研究表明中、低纬度天气系统相互作用是华北暴雨的重要特色。青藏高原南支槽的向南发展往往造成其东侧的西南低空急流更为强盛,形成一支大尺度暖湿空气输送带,把孟加拉湾的水汽和热量输送到华北暴雨区(刘盎然等,1979孙淑清等,1980b陶祖钰,1980)。西太副高西侧的西南急流是从中国南海向华北输送水汽的主要载体,并且西太副高还可能影响西风槽或低涡的移动速度,从而影响华北地区暴雨过程的维持时间(刘还珠等,2007杨波等,2016)。登陆台风与西风带系统直接相互作用更容易发生极端华北暴雨过程(孙建华等,2005徐洪雄等,2014),如灾难性的“75.8”、“96.8”特大暴雨(北京大学地球物理系气象专业,1977蒋尚城等,1981江吉喜等,1998孙建华等,2006)。

中尺度天气系统在华北暴雨过程中的重要作用在20世纪60年代已经得到揭示(游景炎,1965蔡则怡等,1981)。近10多年来,中尺度天气系统成为华北暴雨研究的热点之一,这与20世纪90年代初期以来京津冀地区城市化快速发展有关。向西部山区扩展的北京城区、向东部海岸扩展的天津城区,使得不同天气尺度系统控制下的地形环流、城市热岛环流、海风锋的相互作用更加复杂,有利于形成中尺度涡旋、切变线、辐合线(孙继松等,2006Zhong,et al,2015Li H Q,et al,2017a2017b)。当北京城市热岛效应较强时,城区上空大气垂直混合增强、边界层增厚(Miao,et al,2011),环境风很弱的情况下,水平位温梯度会造成边界层内风垂直切变加强,城区上空形成较为深厚的边界层内水平风速辐合(孙继松等,2006),激发或加强对流系统,因此降水最大值落于城市化最明显的地区(Dou,et al,2015)。孙继松等(2008)从中尺度Boussinesq 近似扰动方程组入手,获得了城市热岛强度、地形坡度和对流冷池效应相互作用影响β中尺度暴雨系统发展的机理认识:在低空偏东气流背景下,北京西部山前容易出现水平风速辐合,而强城市热岛能够使山前的低空风垂直切变增强,从而增强边界层东风急流;当山脉迎风坡出现强降水,地面冷出流增强山前的辐合抬升,并且冷池与城市热带效应将进一步增大水平温度梯度,增强边界层东风急流,这种正反馈过程可能对北京西部山前β中尺度暴雨系统的形成起到重要作用。另外,京津城市群的热岛效应加大了海陆温差,可能使得海风锋增强(张亦洲等,2013),午后海风锋与迎面移来的雷暴相遇,可能对雷暴发展起到显著的加强作用(东高红等,20112013何群英等,2011),进而出现局地暴雨过程。

除了复杂下垫面强迫产生的中尺度天气系统之外,学者们也揭示了天气尺度系统相互作用衍生的,以及强降水反馈形成的中尺度系统在华北暴雨中的重要作用。如高空槽斜压发展阶段,槽前若存在位势不稳定和切变动力不稳定,则可能在地面冷锋前形成中尺度低压,触发暴雨(田春生等,1982Yang,et al,20062007);高空正位涡异常区叠加在对流层中低层锋区上空时,可能造成对流层中层气旋快速发展并向下伸展,诱发锋区前侧的新生气旋(雷蕾等,2017);对流性强降水过程产生大量的潜热释放和近地面冷池效应,往往诱发新的中尺度涡旋、中尺度低空急流(赵宇等,2011雷蕾等,2017)。

2012年7月21日华北地区发生灾难性极端暴雨,其主要降水发生在天气尺度系统弱强迫背景下暖湿环境中(孙继松等,2012)。随后几年,开展了大量的针对华北暖区暴雨的触发和发展机制的研究(Zhang,et al,2013Zhong,et al,2015李俊等,2015),研究结果证实了地形抬升(孙建华等,2013陈明轩等,2013雷蕾等,2020)、中尺度辐合线或涡旋等(Zhong,et al,2015孟智勇等,2019)对触发对流的重要作用,以及条件性对称不稳定发展机制(Wang,et al,1990刘璐等,2015)、惯性重力不稳定机制(孙继松等,2012)、对流风暴与低空急流相互作用(陈明轩等,2013雷蕾等,2020)等动力过程在华北暖区暴雨维持和发展中的作用。

2.2.4 东北地区暴雨

中国东北地区包括黑龙江、吉林、辽宁三省,西邻大兴安岭,东靠长白山,北面为小兴安岭,中间为东北平原。东北地区暴雨年均发生频次远低于南方和华北地区(每10 a一般不到20次,东北地区北部少于10次;图1)。东北暴雨主要集中在7—8月,即东亚夏季风最强盛阶段,在东亚大槽引导下低纬度的暖湿空气能够向北深入挺进,为东北暴雨提供必要的水汽条件。20世纪,中国学者编写了《东北暴雨》(郑秀雅等,1992)、《黑龙江省暴雨之研究》(白人海等,1992)等丛书,归纳总结了东北暴雨的气候学特点、大尺度环流背景和天气系统、产生暴雨的宏观物理条件等。

东北冷涡指的是暖季常常影响东北地区的一种大尺度涡旋,中国学者将其定义为:在500 hPa天气图中(35°—60°N,115°—145°E)范围内出现闭合等高线,并配合有冷中心或明显冷槽,生命史至少为3 d的低压环流系统(孙力等,1994)。东北冷涡在5—8月盛行(孙力等,1994谢作威等,2012)。大多数东北冷涡生命史不到1周,水平尺度在500—1000 km(Hu,et al,2010Fu,et al,2012)。大部分东北冷涡形成于贝加尔湖东部,并在北太平洋西海岸消散,在中国东北平原北部发生频率较高,最高频率中心夏季向大陆扩展,冬季向北太平洋西海岸转移(Hu,et al,2010)。夏季中纬度锋区急流的北侧常常产生较大的正涡度,东北平原东西两侧的地形动力作用、热成风涡度平流等也是东北冷涡形成的主要原因(郑秀雅等,1992)。

当东北冷涡与北上的热带系统结合时,可能激发出极强的暴雨过程(赵思雄等,1980)。1998年夏季东北暴雨频发,造成松花江、嫩江流域特大洪水,主要原因是索马里越赤道气流异常强劲,中国东部强南风急流向东北地区输送水汽,低纬度丰富的水汽进入东北冷涡环流中(孙继昌等,1998李曾中等,2000Zhao,et al,2007)。东北冷涡与东亚阻塞高压、西太副高在强度和位置上的最佳配置为松嫩流域持续性暴雨提供有利的大尺度环流背景(孙力等,2002)。在东北冷涡的天气背景下,干冷空气的入侵可以加强不稳定,促使垂直运动发展,是形成东北暴雨的一个特点(王东海等,2007Wang D H,et al,2010钟水新等,2011高守亭等,2018)。此外,东北地区暴雨也可能在气旋和切变线的影响下发生。

2.2.5 西南地区暴雨

西南地区包括云南、贵州、四川、重庆和西藏。区域内高原、山地、平原、盆地等地貌种类繁多,暴雨、大暴雨的分布极不均匀(陶诗言,1980Yang,et al,2020):暴雨尤其是大暴雨的发生频次在四川盆地相对较高,盆地西部的频次高于东部;其次是云南西南部和贵州南部;而青藏高原上大多数台站10 a平均暴雨日数不到1 d,高原东南部频次相对最高,但是各站10 a平均也不超过10 d(图1)。西南地区暴雨主要集中在夏季。中国学者从多尺度天气系统作用和复杂地形影响入手分析西南暴雨的成因,揭示了南亚季风和东亚季风、西太副高和南亚高压、东亚中高纬度阻塞高压和大槽对西南暴雨的大尺度环流背景的影响(叶瑶等,2016),重点研究了造成西南地区暴雨的最重要的天气系统—西南低涡,获得了其形成和移动机理的认识,还发现热带气旋可以通过增强低层辐合和水汽输送而加强西南涡和西南地区降水(陈忠明等,2004)。

早在20世纪50年代,中国学者就指出西南低涡是产生中国西南地区暴雨的重要天气系统(叶笃正等,1955谢义炳,1956)。早期研究揭示了西南低涡的结构特征:其最主要的特征是在700或750 hPa等压面上有气旋性环流或闭合等高线,水平尺度300—500 km;低涡形成初期一般在700 hPa出现暖性气旋环流,而500—300 hPa常为高压区或高压脊(陶诗言,1980),强烈发展的西南低涡在成熟阶段是一个深厚的暖湿低压系统,正涡度可伸展到100 hPa以上,涡区内动量、层结、垂直运动等呈非对称分布,而减弱阶段的西南低涡是一个斜压浅薄系统,对流层低层低涡为冷性结构(中国科学院兰州高原大气物理研究所,1977罗四维,1992叶笃正等,1992)。

研究发现西南低涡的3个主要源区是川西高原的九龙和小金以及川渝盆地。关于西南低涡的形成,经典理论认为,青藏高原东南侧的偏南气流输送暖空气造成升温降压,同时在高原的摩擦作用下产生气旋性切变,与高原东北缘反气旋切变的偏北气流形成辐合,生成西南低涡(叶笃正等,1992罗四维,1992何光碧,2012Wang Q W,et al,2014)。新世纪以来的研究丰富了对西南涡发生、发展的物理机制的认识,指出高层位涡扰动、倾斜涡度发展、大气非平衡强迫、高原对流造成的降压和增强气旋性扰动等也可能促进西南低涡的发生、发展(陈忠明等,2004黄福钧等,1989李跃清等,2010刘红武等,2008Fu,et al,2019)。西南涡的移动路径很大程度上取决于中高层环境气流的作用。西南涡向东移动过程中,在低空急流等其他天气系统的共同作用下,可能在长江中下游和华南地区,甚至东北地区产生暴雨。

特殊的地理环境使得四川盆地暴雨的日变化具有显著的单峰结构,峰值出现在午夜至清晨,这与中国大多数地区具有下午降水峰值截然不同(Yin,et al,2009Yuan,et al,2012Luo,et al,2016)。四川盆地夜雨的产生曾经被归因于围绕盆地的高原和盆地的热力差造成的环流日变化(Bao,et al,2011Jin,et al,2013),以及青藏高原东部和云贵高原的对流系统分别向东和东北移动,夜间进入四川盆地(Wang,et al,2004),最新研究(Zhang Y H,et al,2019图9)则强调来自盆地东南侧的边界层内气流的非地转风惯性振荡起关键作用。

图 9  四川盆地降水日变化 (包括夜间降水峰值)( 午夜稍后降水峰值时刻(a)和白天降水最小值时刻(b)的云贵高原东部的风,包括日平均准地转风 ${\mathop {V_g}\limits^ \rightharpoonup} $ (深蓝色箭头),全风矢 ${\mathop {V}\limits^ \rightharpoonup} $ (天蓝色箭头),扰动非地转风 ${\mathop {V_a}\limits^ \rightharpoonup} $ (浅蓝色箭头)。浅灰色宽箭头表示输入四川盆地的水汽通量。上升气流和下沉气流,以及上坡流和下坡流分别用红色和蓝色弧形箭头表示。夜间四川盆地低层的强净辐合作用导致降水发生,而白天低层的辐散作用则抑制降水)(Zhang Y H,et al,2019 Fig. 9  Schematic diagram depicting the diurnal variations of precipitation (including peak nighttime precipitation) over Sichuan Basin (The wind over eastern Yunnan-Guizhou Plateau,including the daily mean quasi-geostrophic wind ${\mathop {V_g}\limits^ \rightharpoonup} $ (navy blue vector),the total wind ${\mathop {V}\limits^ \rightharpoonup} $ (the sky-blue vector),and the perturbation ageostrophic wind $ {\mathop {V_a}\limits^ \rightharpoonup} $ (light blue vector) at the time of precipitation peak shortly after midnight (a),and during daytime precipitation minimum (b). The wide light gray arrow indicates the moisture flux into Sichuan Basin. Updrafts and downdrafts as well as upslope and downslope flows are represented by the red and blue curved arrows. Strong net low-level convergence within Sichuan Basin forces precipitation at night while low-level divergence dissipates and suppress daytime precipitation)(Zhang Y H,et al,2019
2.3 热带气旋暴雨

中国沿海地区的暴雨受到热带气旋(为方便统称“台风”)的显著影响,台风引起的极端暴雨灾害事件通常发生在其登陆阶段。中国记录到的24 h降水量超过1000 mm的前6强暴雨均与登陆台风影响有关。前5强都发生在台湾岛上,第6强的暴雨发生在内陆,即1975年8月河南林庄观测到的1063 mm/(24 h)降水量记录,成为迄今中国大陆上最强台风降水记录,这就是台风“妮娜”引起的“75.8”河南特大暴雨事件,造成了超过2.6万人死亡(陶诗言,1980Chen L S,et al,2010)。台风暴雨按照其落区可分为内核区暴雨、螺旋雨带暴雨、中小尺度系统暴雨、不稳定性暴雨、台前飑线暴雨以及台风远距离暴雨(图10aChen L S,et al,2010)。台风内核区降水具有明显的对流特征,降水强度常常与台风强度成正相关(冯锡斌,2019);而螺旋雨带则是零散的对流性降水镶嵌在广阔的层状降水区域中,降水强度与台风强度无统计显著关系(Hence,et al,2012Yu,et al,2017)。台风暴雨也常出现在台风周围的系统中:约40%的登陆台风可伴随台前飑线,平均生成于距离台风中心约600 km、台风路径前进方向右侧约36° 的位置(Meng,et al,2012);另外,约14.7%的台风还可在千千米之外的地区产生远距离降水。中国台风远距离暴雨主要发生在环渤海地区和川陕交界处(丛春华等,2012)。

图 10  (a) 登陆台风降水类型 (Chen L S,et al,2010) 与 (b)“75.8”暴雨发生发展的三维天气学模型 (丁一汇等,1978 Fig. 10  (a) Schematic diagram depicting the classification of landfalling typhoon rainfall (Chen L S,et al,2010),(b) Schematic diagram depicting the three-dimensional structure of airflow associated with the generation and development of the "75.8" extreme rainfall (Ding,et al,1978)

多年来中国学者对台风暴雨产生机制给予了极大关注。对登陆台风引发的“75.8”河南特大暴雨进行了大量研究,较大地推动了中国暴雨及其水文气象研究和业务的发展(丁一汇,2015)。研究结果表明,“75.8”河南特大暴雨的气流三维结构基本上符合热带气旋中的垂直环流型分布,低空急流输送了大量水汽,并形成了位势不稳定层结,且释放后不断重建,中尺度切变线和地形是强对流的触发条件(图10b丁一汇等,1978)。近年来台风暴雨研究主要集中在大尺度环流影响、海陆下垫面强迫、台风结构变化及其相互作用等方面(陈联寿等,2017b)。研究发现,台风与西风带系统相互作用会影响台风降水的强度和分布(陶祖钰等,1994雷小途等,2001),当中纬度冷槽遇上台风携带的暖湿空气,可使大气不稳定度增大从而导致台风降水增加(丁治英等,2001何立富等,2009),但若冷空气势力过强,则很快破坏台风结构而减弱降水(边清河等,2005姚晨等,2019),而在此过程中台风通常经历变性,动力、热力结构发生显著变化(钟颖旻等,2008),从而影响其暴雨落区(Zhu,et al,2005)。陈联寿等(2017a)的研究还表明,台风与西风槽系统相互作用是台风远距离暴雨产生的一个重要原因。台风在远距离暴雨中的作用不仅仅是向暴雨区输送能量和水汽(Wang Y Q,et al,2009丛春华等,2016),而且还可以作为强扰动源向中纬度频散能量进而触发对流(徐祥德等,2004陆汉城等,2007),在一定条件下,台风激发重力-惯性波的远距离传播也可触发台风远距离暴雨(Li,et al,2007b)。另外,台风与季风相互作用也是登陆台风降水维持和增幅的一个重要原因。如强热带风暴“碧利斯”登陆后与季风强水汽输送通道相联结,使其减弱后的低压在陆面上持久不衰,造成华南和华东地区大范围、持续性暴雨(Wang L J,et al,2010程正泉等,2012)。此外,研究还发现,双台风相互作用不仅会出现涡旋互旋、吸引与合并现象(王玉清等,1992Wu,et al,2011),也会出现双台风之间的水汽和能量输送,从而可能导致其中一个台风的降水加强(Xu,et al,2011徐洪雄等,2013)。

中国学者早就注意到下垫面状况对台风降水的影响。下垫面动力和热力非均匀性常常使登陆台风降水呈现明显非对称结构(Yu,et al,2010Wei,et al,2013),台风登陆时与沿海地形相互作用,可增强位势不稳定,产生沿海地区暴雨(梁旭东等,2002),海岸地形的迎风坡和背风坡效应能造成台风南北部的雨量差异(冀春晓等,2007),内陆山脉地形也对台风暴雨的增幅具有显著影响(Dong,et al,2010)。而台湾岛地形效应对台风降水的影响最为显著,岛上的山脉常引起台风对流活动加剧(陈俊等,2017),台湾岛上极端小时降水的落区大致由台风中心相对于中央山脉的位置决定(Wu,et al,2017),迄今中国最强暴雨即是由台风“贺伯”在台湾阿里山引发的,其24 h降水量竟达1748.5 mm(Chen L S,et al,2010)。另外,如果台风登陆后停滞在湖泊、大型水库、江河水面,或近似饱和湿地上,也可能加剧该地暴雨(Li,et al,2007aZhang,et al,2012麦子等,2017)。数值试验(Li,et al,2007a)表明,台风“妮娜”深入内陆后停滞于其暴雨浇出的饱和或近似饱和的湿地上,下垫面较强的潜热通量对其降水维持和加强有正反馈作用。最近研究还揭示了中国城市下垫面对台风降水的影响(殷健等,2010岳彩军等,2019),发现珠三角地区城市粗糙下垫面造成登陆热带气旋“妮妲”地面风速减小,并加强垂直对流运动和增加不稳定能量,导致城区降水增多(杨挺等,2018)。

近几年研究进一步揭示了台风环流内中小尺度对流系统活动对台风暴雨的影响。台风内核的对流爆发会引起台风突然增强和眼壁降水增多(Chen,et al,2013Yang,et al,2019),台风登陆时外包区强对流亦可产生强降水(陈联寿等,2017a),登陆后台风残涡内的中尺度切变线或小涡会增强局部降水(Li,et al,2010),而台风中的超级单体可能在台风的东北象限或前进方向的右象限造成龙卷,并产生局地强降水(李彩玲等,2016Bai,et al,2017)。近年来台风暴雨的微物理过程也备受关注,不少研究(Wang D H,et al,2009花丛等,2011任晨平等,2014)强调冰相过程在台风暴雨中的重要性,但也有数值研究(Tao,et al,2011)发现冰相微物理过程对台风“莫拉克”降水的影响并不重要;双偏振雷达雨滴谱观测发现,台风“玛特莫”在中国东部的雨带具有典型的海洋性对流性质,对流区域以暖雨微物理过程为主(Wang,et al,2016)。

3 暴雨预报技术研发成果

暴雨预报一直是中外天气预报业务中最大的挑战之一(Ebert,et al,2003)。近10年,中国国家气象中心24 h时效暴雨预报TS评分的增长率为2.9%左右(毕宝贵等,2016图11),这很大程度上得益于数值天气预报的发展。

图 11  2007—2019年国家气象中心24 h时效暴雨 (≥50 mm/d) 预报的TS评分 (其中2019年评分为1—9月 ;中国国家气象中心提供) Fig. 11  The Threat Score (TS) of 24 h forecast of heavy rainfall (≥50 mm/d) at the National Meteorological Center of China from 2007 to 2019 (The TS of the 2019 year is from January to September 2019;From the National Meteorological Center of China)
3.1 中国数值天气预报发展

中国数值天气预报研究始于20世纪中期,是国际上开展数值天气预报比较早的国家之一。随后30年,中国科学家在大气运动的适应理论等方面的理论研究成果(叶笃正等,1952,1964Yeh,1957)指导并推动了中国数值天气预报的发展,提出了半隐式差分格式(曾庆存,1963a),首次用描述大气运动的原始方程组做出了实际天气预报(曾庆存,1963b),在数值天气预报模式发展的数学物理基础问题方面做出了重要贡献(曾庆存,1979a1979b)。改革开放之后,数值预报的研究和业务应用取得新进展,如提出了计算稳定的总能量守恒隐式平流项的差分格式(曾庆存等,1981)和便于实际求解的显式完全平方守恒格式(王斌等,1990)。进入21世纪后,中国自主研发了新一代多尺度通用资料同化与数值天气预报系统—GRAPES(薛纪善等,2008Chen,et al,2008)。之后,经过十多年努力实现了深化改进和技术升级,以自主技术建成了从区域3—10 km到全球25—50 km分辨率的确定性与集合预报的完整业务体系,在非静力全可压格点动力框架、四维变分同化、云降水物理方案、高精度大气模式数值算法以及卫星和雷达资料同化技术等方面取得了创新性的成果(沈学顺等,2020)。这些成果使得中国数值预报研究水平和业务能力得到持续稳定的提升,为逐日天气预报、暴雨等灾害天气的准确预报、预警提供了重要科技支撑。瞄准未来无缝隙数值预报需求,中国气象科学研究院正在研发可同时满足天气预报、气候预测和气候研究需要的全球高分辨率多尺度天气-气候一体化模式系统,目前已完成了基于非结构二十面体网格的动力框架研发,该框架可实现静力与非静力切换和水平分辨率的区域拉伸(Zhang Y,et al,2019)。

随着数值预报模式分辨率的不断提高,近10年国际上针对高分辨率数值预报产品发展了降水预报的空间检验方法(Ebert,et al,2009Gilleland,et al,2010Dorninger,et al,2018),并在全球主要业务中心得到了较广泛的应用。针对日内尺度降水演变(Yu,et al,2014)、复杂地形区强降水演变等预报难点,中国正在开展系统性的高分辨率数值预报产品评估工作(Yu,et al,2019),中国气象局于2019年首次建立了基于降水小时特征的数值预报模式业务评估指标体系。数值预报技术研发开始与暴雨机理分析结合起来,努力加深对资料同化等技术更新如何提高对流和暴雨预报的理解(Zhang,et al,2016Bao,et al,2017)。

大气的内在随机性(Lorenz,19631969丑纪范,2002)决定了大气的预报时效是有上限的,超出这个上限,预报将完全失去技巧,这是大气系统本身固有的属性,被称为大气的“本性可预报性”。Bei等(2007)通过不断减小初始条件误差的模拟试验,揭示了梅雨锋暴雨存在可预报上限;Sun等(2016)进一步指出,由于湿对流过程迅速导致误差升尺度增长,中尺度对流系统的本性可预报性受到限制。实际上,预报模式和初边值都存在不可忽略的误差,对大气的实际预报能力不可能达到其本身的可预报上限,这被称为大气的“实际可预报性”。Zhang F Q等(2019)研究表明,中纬度天气的当前实际可预报上限为10 d左右,如果把初始条件误差再减小一个量级,可以使中纬度天气的预报时效再延长最多5 d。中国学者开展了可预报性研究(Mu,et al,2004),揭示了初始场误差(罗雨等,2010Zhou,et al,2015)和陆面、云微物理、积云对流等物理过程参数化方案不确定性对中国各地区暴雨预报和模拟的影响(陈静等,20032006Luo,et al,2015),讨论了其敏感程度与产生暴雨的动力过程的关联(李昀英等,2010Luo,et al,2015Huang,et al,2017)。

集合预报是为了定量估计大气预报不确定性而采用的一种新型的暴雨数值预报方法(陈静等,2002),集合成员的生成主要通过初值扰动和模式扰动实现(Chen,et al,2009杜钧等,2014)。进入21世纪以来,中国学者先后发展了异物理模态初值扰动法(陈静等,2005)、多尺度混合初值扰动法(Zhang,et al,2015)、混合初始扰动法(庄潇然等,2017)、正交条件非线性最优扰动(段晚锁等,2019)等代表初值不确定性的集合预报方法,也采用多物理过程参数化方案组合的集合预报方法(Chen,et al,2005),或者在初值扰动基础上进一步叠加随机物理扰动(李俊等,2015徐致真等,2019),还将多初值、多物理过程、多模式组合相结合开展超级集合预报,较显著地提高了一些暴雨事件的预报时效(Duan,et al,2012吴政谦等,2012)。对流可分辨(水平网格距1—4 km)集合预报是当前数值天气预报的国际主流发展方向(Clark,et al,2018),中国学者研发建立了试验性的华南区域对流可分辨集合预报系统(Zhang X B,2018),并初步揭示了不同扰动来源相互作用特征及其对华南前汛期暴雨预报的影响(Zhang X B,2019)。

3.2 暴雨预报客观方法研发进展

集合预报系统(邓国等,2010王婧卓等,2018)和对流可分辨模式(许晨璐等,2017)提供了海量的输出和预报信息,为了满足业务预报的需求,需要发展暴雨预报客观方法,快速、高效地处理海量的模式预报结果(唐健等,2018),因此,中外主要业务中心持续发展多种暴雨预报客观方法,可归纳为以下5个方面:

(1)发展聚类分析、反演和可视化技术,用于快速提取可以被有效利用的预报信息。如发展客观、定量的天气环流分型和预报工具,对几十个集合预报成员的天气环流进行分型,获得不同天气流型的概率预报,再通过历史相似样本分析获得暴雨过程特征(Neal,et al,2016);开展数值模式输出反演,获得卫星合成图像(Bikos,et al,2012),再使用常规云图解读技术快速获取与暴雨过程对流演变有关的大尺度环境特征;通过数据可视化技术来辅助暴雨预报的检验及订正流程(Liao,et al,2015),从而更清晰、有效地传递和沟通预报结果(Rautenhaus,et al,2018)。

(2)发展天气学诊断分析技术用于理解暴雨过程的动力特征(陶祖钰等,2012周小刚等,20132014)。如发展准地转运动诊断分析工具(Thaler,et al,2009),帮助预报员理解不同尺度天气系统的动力特征;基于位涡理论(Hoskins,et al,1985Mansfield,2007)分析锋面等天气尺度系统(Chen,et al,2003Wernli,et al,2007Zadra,et al,2002),以及不同尺度系统的相互作用(Joos,et al,2012Brennan,et al,2008);基于集合预报的组间差异对比和敏感性分析,诊断极端强降水的预报误差来源和演变(代刊等,2018a)。

(3)发展客观订正集成技术以获得最有可能或最优的预报结果(代刊等,2018b)。如改善模式降水频率分布误差的频率拟合订正技术(Zhu,et al,2015),基于贝叶斯方法的极端降水概率预报技术(陈朝平等,2010韩焱红等,2013张宇彤等,2016),基于模式再预报资料的两步相似统计订正技术(Hamill,et al,2006),以及多模式预报信息的融合技术(Novak,et al,2014Gilbert,et al,2015Hamill,et al,2017)。

(4)发展极端天气预报技术。这是中外最新发展趋势之一(Lalaurette,2003Lamberson,et al,2016),中国气象局数值预报中心基于中国全球集合预报系统发展了极端降水预报技术(刘琳等,20132018),中国国家气象中心已经在业务中通过集合预报工具箱引入极端天气指数综合产品,有效帮助预报员进行暴雨等灾害性天气的早期预警。

(5)发展概率预报技术向用户传递预报的不确定性信息。集合预报输出统计方法(Bentzien,et al,2012)和贝叶斯模型平均方法(Sloughter,et al,2007)已经成为降水概率预报的基准方法,基于“面对面”的概率预报方法也得到了快速发展(Schwartz,et al,2017Johnson,et al,2012)。

此外,中外业务中心积极发展主观和客观融合的预报技术与平台,帮助预报员在理解天气过程、评估分析模式误差的基础上,综合利用海量的预报数据。如美国天气预报中心发展了“WPC MASTER BLENDER”系统(Petersen,et al,2014),预报员可以利用该系统快速选择模式预报,并依据检验评估结果给出相应的权重,以获得降水预报;中国国家气象中心设计和开发了主、客观融合定量降水预报平台,预报员可以进行多源降水预报集成、降水预报调整和订正、格点化处理和服务产品制作等(唐健等,2018)。

4 结 语

改革开放40年来,得益于中国气象探测技术迅速发展和业务观测系统明显改善,以及计算能力的显著提升,中国气象学者在暴雨的多尺度作用机理和预报方法与技术方面取得了循序渐进的研究进展,对中国几个主要区域的暴雨和台风暴雨机理研究推进到了直接产生暴雨的对流演变过程,已经揭示了一些重要的中尺度现象和过程,开始分析中国东部城市群效应对降水的影响及其机理,并开始了暴雨微物理特性的观测分析,对产生暴雨的重要天气系统的认识也更深入和全面。并且,随着对暴雨机理和可预报性认识的提升,数值天气预报技术也得到了持续发展,中国暴雨预报业务从“主观天气过程预报”发展到“主、客观融合的定量降水预报”,并向包含预报不确定性信息的定量降水概率预报发展。

未来需要进一步加强关于暴雨科学和预报的以下几方面研究:

(1)研究中国不同气候区和地理位置极端强降水的演变特征及其发生机理,进一步提高对天气尺度强迫、中尺度过程、云微物理过程、气溶胶影响、城市和地形等复杂下垫面的独立影响和相互作用的认识。

(2)研究过去、当前和未来气候背景下,不同时间尺度(日内、日、月、季)极端降水的变化趋势及其原因,尤其是气候变化、大尺度环流演变、城市下垫面的动热力效应、人为气溶胶排放的单独作用和耦合影响。

(3)研究强降水造成的灾害特征和致灾因子,包括强降水与大风、高温等其他灾害天气同时发生或相继发生所形成的复合型灾害事件,研究其对人类社会和自然系统的影响。

(4)以建立千米乃至次千米分辨率集合预报系统为目标,研发能够有效同化相控阵雷达等新资料的方法和技术,利用高分辨率实测和遥感观测资料,进一步改进数值天气预报模式物理过程参数化方案,并完善集合预报成员的生成方法。

(5)综合利用高分辨率实测和遥感观测资料、高分辨率集合数值天气预报、人工智能技术,发展先进的强降水预警和短期概率预报方法,针对人口密集的大城市研发精确到街区尺度的强降水预警和预报方法。

参考文献
白人海, 金瑜. 1992. 黑龙江省暴雨之研究. 北京: 气象出版社, 1-217. Bai R H, Jin Y. 1992. Study on Rainstorm in Heilongjiang Province. Beijing: China Meteorological Press, 1-217 (in Chinese)
北京大学地球物理系气象专业. 1977. 初论西风带和热带辐合带环流系统的相互作用. 大气科学, 1(2): 132-137. DOI:10.3878/j.issn.1006-9895.1977.02.07
毕宝贵, 代刊, 王毅等. 2016. 定量降水预报技术进展. 应用气象学报, 27(5): 534-549. DOI:10.11898/1001-7313.20160503
边清河, 丁治英, 吴明月等. 2005. 华北地区台风暴雨的统计特征分析. 气象, 31(3): 61-65. DOI:10.3969/j.issn.1000-0526.2005.03.014
蔡则怡, 周晓平. 1981. 关于暴雨预报的若干问题. 广西气象, (2): 1-7.
陈朝平, 冯汉中, 陈静. 2010. 基于贝叶斯方法的四川暴雨集合概率预报产品释用. 气象, 36(5): 32-39. DOI:10.7519/j.issn.1000-0526.2010.05.004
陈贵川, 沈桐立, 何迪. 2006. 江南丘陵和云贵高原地形对一次西南涡暴雨影响的数值试验. 高原气象, 25(2): 277-284. DOI:10.3321/j.issn:1000-0534.2006.02.014
陈静, 陈德辉, 颜宏. 2002. 集合数值预报发展与研究进展. 应用气象学报, 13(4): 497-507. DOI:10.3969/j.issn.1001-7313.2002.04.013
陈静, 薛纪善, 颜宏. 2003. 物理过程参数化方案对中尺度暴雨数值模拟影响的研究. 气象学报, 61(2): 203-218.
陈静, 薛纪善, 颜宏. 2005. 一种新型的中尺度暴雨集合预报初值扰动方法研究. 大气科学, 29(5): 717-726. DOI:10.3878/j.issn.1006-9895.2005.05.05
陈静, 矫梅燕, 龚建东等. 2006. 非绝热物理过程对北京暴雨数值预报不确定性影响. 应用气象学报, 17(S1): 18-27.
陈炯, 郑永光, 张小玲等. 2013. 中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析. 气象学报, 71(3): 367-382.
陈俊, 平凡, 王秀春等. 2017. 台湾岛地形对“麦德姆”台风的影响. 大气科学, 41(5): 1037-1058.
陈联寿, 孟智勇, 丛春华. 2017a. 台风暴雨落区研究综述. 海洋气象学报, 37(4): 1-7.
陈联寿, 许映龙. 2017b. 中国台风特大暴雨综述. 气象与环境科学, 40(1): 3-10.
陈敏, 陶祖钰, 郑永光等. 2007. 华南前汛期锋面垂直环流及其与中尺度对流系统的相互作用. 气象学报, 65(5): 785-791. DOI:10.3321/j.issn:0577-6619.2007.05.014
陈明轩, 王迎春, 肖现等. 2013. 北京“7.21”暴雨雨团的发生和传播机理. 气象学报, 71(4): 569-592.
陈忠明, 闵文彬, 崔春光. 2004. 西南低涡研究的一些新进展. 高原气象, 23(S1): 1-5.
程正泉, 陈联寿, 李英. 2012. 登陆热带气旋与夏季风相互作用对暴雨的影响. 应用气象学报, 23(6): 660-671. DOI:10.3969/j.issn.1001-7313.2012.06.003
丑纪范. 2002. 大气科学中的非线性与复杂性. 北京: 气象出版社, 149pp. Chou J F. 2002. The Nonlinearity and Complexity in Atmospheric Sciences. Beijing: China Meteorological Press, 149pp (in Chinese)
丛春华, 陈联寿, 雷小途等. 2012. 热带气旋远距离暴雨的研究. 气象学报, 70(4): 717-727.
丛春华, 雷小途, 陈佩燕. 2016. 山东两次台风远距离暴雨对比分析. 中国海洋大学学报, 46(12): 21-31.
代刊, 毕宝贵, 朱跃建. 2018a. 2016年7月华北极端降水的中期预报误差分析. 科学通报, 63(3): 340-355. DOI:10.1360/N972017-00889
代刊, 朱跃建, 毕宝贵. 2018b. 集合模式定量降水预报的统计后处理技术研究综述. 气象学报, 76(4): 493-510.
邓国, 龚建东, 邓莲堂等. 2010. 国家级区域集合预报系统研发和性能检验. 应用气象学报, 21(5): 513-523. DOI:10.3969/j.issn.1001-7313.2010.05.001
丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南特大暴雨的研究. 大气科学, 2(4): 276-289. DOI:10.3878/j.issn.1006-9895.1978.04.02
丁一汇. 1993. 1991年江淮流域持续性特大暴雨研究. 北京: 气象出版社, 1-253. Ding Y H. 1993. A Study of Sustained Heavy Rainfall in the Yangtze-Huai River Valleys in 1991. Beijing: China Meteorological Press, 1-253 (in Chinese)
丁一汇. 2005. 高等天气学. 2版. 北京: 气象出版社, 585pp. Ding Y H. 2005. Advanced Synoptic Meteorology. 2nd ed. Beijing: China Meteorological Press, 585pp (in Chinese)
丁一汇. 2015. 论河南“75.8”特大暴雨的研究: 回顾与评述. 气象学报, 73(3): 411-424.
丁一汇. 2019. 中国暴雨理论的发展历程与重要进展. 暴雨灾害, 38(5): 395-406.
丁治英, 张兴强, 何金海等. 2001. 非纬向高空急流与远距离台风中尺度暴雨的研究. 热带气象学报, 17(2): 144-154. DOI:10.3969/j.issn.1004-4965.2001.02.006
东高红, 何群英, 刘一玮等. 2011. 海风锋在渤海西岸局地暴雨过程中的作用. 气象, 37(9): 1100-1107. DOI:10.7519/j.issn.1000-0526.2011.09.006
东高红, 刘一玮, 孙蜜娜等. 2013. 城市热岛与海风锋叠加作用对一次局地强降水的影响. 气象, 39(11): 1422-1430. DOI:10.7519/j.issn.1000-0526.2013.11.005
杜钧, 李俊. 2014. 集合预报方法在暴雨研究和预报中的应用. 气象科技进展, (5): 6-20.
段晚锁, 汪叶, 霍振华等. 2019. 数值天气预报和气候预测的集合预报方法: 思考与展望. 气候与环境研究, 24(3): 396-406.
冯锡斌. 2019. 登陆我国热带气旋降水分布的演变及其环境场影响的机理分析[D]. 南京: 南京大学. Feng X B. 2019. The evolution of rainfall distribution and environmental impact on landfalling tropical cyclones over China [D]. Nanjing: Nanjing University (in Chinese)
傅慎明, 孙建华, 赵思雄等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究. 气象学报, 69(4): 581-600.
高坤, 徐亚梅. 2001. 1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究. 大气科学, 25(6): 740-756. DOI:10.3878/j.issn.1006-9895.2001.06.02
高守亭, 孙淑清. 1984. 次天气尺度低空急流的形成. 大气科学, 8(2): 178-188. DOI:10.3878/j.issn.1006-9895.1984.02.08
高守亭, 周玉淑, 冉令坤. 2018. 我国暴雨形成机理及预报方法研究进展. 大气科学, 42(4): 833-846.
韩焱红, 矫梅燕, 陈静等. 2013. 基于贝叶斯理论的集合降水概率预报方法研究. 气象, 39(1): 1-10. DOI:10.7519/j.issn.1000-0526.2013.01.001
何光碧. 2012. 西南低涡研究综述. 气象, 38(2): 155-163.
何建中, 伍荣生. 1989. 边界层低空急流的数值研究. 气象学报, 47(4): 443-449.
何立富, 许爱华, 陈涛. 2009. “泰利”台风低压大暴雨过程冷空气与地形的作用. 气象科技, 37(4): 385-391. DOI:10.3969/j.issn.1671-6345.2009.04.001
何群英, 解以扬, 东高红等. 2011. 海陆风环流在天津2009年9月26日局地暴雨过程中的作用. 气象, 37(3): 291-297. DOI:10.7519/j.issn.1000-0526.2011.03.006
花丛, 刘奇俊. 2011. 登陆台风“罗莎”中云物理特征的数值模拟研究. 热带气象学报, 27(5): 626-638. DOI:10.3969/j.issn.1004-4965.2011.05.003
黄福钧, 肖洪郁. 1989. 西南低涡暴雨的中尺度特征. 气象, 15(8): 3-9. DOI:10.7519/j.issn.1000-0526.1989.08.001
黄士松. 1978. 有关付热带高压活动及其预报问题的研究. 大气科学, 2(2): 159-168. DOI:10.3878/j.issn.1006-9895.1978.02.09
黄士松. 1981. 暴雨过程中低空急流形成的诊断分析. 大气科学, 5(2): 123-135. DOI:10.3878/j.issn.1006-9895.1981.02.02
黄士松. 1986. 华南前汛期暴雨. 广州: 广东科技出版社, 244pp. Huang S. 1986. Heavy Rainfall over Southern China in the Pre-Summer Rainy Season. Guangzhou: Guangdong Science and Technology Press, 244pp (in Chinese)
黄忠, 张东, 林良勋. 2005. 广东后汛期季风槽暴雨天气形势特征分析. 气象, 31(9): 19-24. DOI:10.3969/j.issn.1000-0526.2005.09.004
冀春晓, 薛根元, 赵放等. 2007. 台风Rananim登陆期间地形对其降水和结构影响的数值模拟试验. 大气科学, 31(2): 233-244. DOI:10.3878/j.issn.1006-9895.2007.02.05
江吉喜, 项续康. 1998. “96.8”河北特大暴雨成因的中尺度分析. 应用气象学报, 9(3): 304-313.
蒋建莹, 江吉喜, 布亚林等. 2007. 华南季风低压暴雨及其结构分析. 气象学报, 65(4): 537-549. DOI:10.3321/j.issn:0577-6619.2007.04.007
蒋尚城, 张镡, 周鸣盛等. 1981. 登陆北上减弱的台风所导致的暴雨:半热带系统暴雨. 气象学报, 39(1): 18-27.
雷蕾, 孙继松, 何娜等. 2017. “7.20”华北特大暴雨过程中低涡发展演变机制研究. 气象学报, 75(5): 685-699.
雷蕾, 邢楠, 周璇等. 2020. 2018年北京“7.16”暖区特大暴雨特征及形成机制研究. 气象学报, 78(1): 1-17.
雷小途, 陈联寿. 2001. 热带气旋的登陆及其与中纬度环流系统相互作用的研究. 气象学报, 59(5): 602-615. DOI:10.3321/j.issn:0577-6619.2001.05.010
李彩玲, 炎利军, 李兆慧等. 2016. 1522号台风“彩虹”外围佛山强龙卷特征分析. 热带气象学报, 32(3): 416-424.
李春晖, 吴志伟, 蒙伟光等. 2017. 影响华南后汛期季风持续性暴雨和热带气旋持续性暴雨的大尺度环流背景分析. 热带气象学报, 33(1): 11-20.
李俊, 杜钧, 刘羽. 2015. 北京“7.21”特大暴雨不同集合预报方案的对比试验. 气象学报, 73(1): 50-71.
李跃清, 赵兴炳, 邓波. 2010. 2010年夏季西南涡加密观测科学试验. 高原山地气象研究, 30(4): 80-84. DOI:10.3969/j.issn.1674-2184.2010.04.014
李昀英, 叶成志, 钟中. 2010. 陆面参数化方案对两例不同类型暴雨可预报性的影响. 大气科学, 34(2): 407-417. DOI:10.3878/j.issn.1006-9895.2010.02.14
李曾中, 曾小苹, 程明虎等. 2000. 1998年中国洪灾成因初探. 气象, 26(1): 14-18. DOI:10.3969/j.issn.1000-0526.2000.01.003
李争辉. 2019. 华南前汛期降水及其天气背景的统计特征[D]. 北京: 中国气象科学研究院. Li Z H. 2019. Statistical characteristics of presummer rainfall over South China and associated synoptic conditions [D]. Beijing: Chinese Academy of Meteorological Science (in Chinese)
梁旭东, 端义宏, 陈仲良. 2002. 登陆台风对流和非对称结构. 气象学报, 60(S1): 26-35.
林宗桂, 李耀先, 林开平等. 2009. 一个长生命期中尺度对流系统维持机制的研究. 气象学报, 67(4): 640-651.
刘盎然, 郭大敏, 辛宝恒等. 1979. 关于“75.7”华北暴雨的水汽问题. 气象学报, 37(2): 79-82.
刘红武, 李国平. 2008. 近三十年西南低涡研究的回顾与展望. 高原山地气象研究, 28(2): 68-73. DOI:10.3969/j.issn.1674-2184.2008.02.012
刘还珠, 王维国, 邵明轩等. 2007. 西太平洋副热带高压影响下北京区域性暴雨的个例分析. 大气科学, 31(4): 727-734. DOI:10.3878/j.issn.1006-9895.2007.04.17
刘琳, 陈静, 程龙等. 2013. 基于集合预报的中国极端强降水预报方法研究. 气象学报, 71(5): 853-866.
刘琳, 陈静, 汪娇阳. 2018. 基于T639集合预报的持续性强降水中期客观预报技术研究. 气象学报, 76(2): 228-240.
刘璐, 冉令坤, 周玉淑等. 2015. 北京“7.21”暴雨的不稳定性及其触发机制分析. 大气科学, 39(3): 583-595. DOI:10.3878/j.issn.1006-9895.1407.14144
刘屹岷, 吴国雄, 刘辉等. 1999a. 空间非均匀加热对副热带高压形成和变异的影响Ⅱ: 陆面感热与东太平洋副高. 气象学报, 57(4): 385-396.
刘屹岷, 吴国雄, 刘辉等. 1999b. 空间非均匀加热对副热带高压形成和变异的影响Ⅲ: 凝结潜热加热与南亚高压及西太平洋副高. 气象学报, 57(5): 525-538.
陆尔, 丁一汇, 李月洪. 1994. 1991年江淮特大暴雨的位涡分析与冷空气活动. 应用气象学报, 5(3): 266-274.
陆尔, 丁一汇. 1997. 1991年江淮持续性特大暴雨的夏季风活动分析. 应用气象学报, 8(3): 316-323.
陆汉城, 钟玮, 张大林. 2007. 热带风暴中波动特征的研究进展和问题. 大气科学, 31(6): 1140-1150. DOI:10.3878/j.issn.1006-9895.2007.06.10
罗四维. 1992. 青藏高原及其邻近地区几类天气系统的研究. 北京: 气象出版社, 56-96. Luo S W. 1992. Study on Some Kinds of Weather Systems over and Around the Qinghai-Xizang Plateau. Beijing: China Meteo-rological Press, 56-96 (in Chinese)
罗雨, 张立凤. 2010. 一次梅雨暴雨预报中的误差演变及可预报性分析. 气象学报, 68(3): 411-420.
马婷, 刘屹岷, 吴国雄等. 2020. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析. 大气科学, 44(3): 472-486.
麦子, 李英, 魏娜. 2017. 登陆热带气旋在鄱阳湖区的活动特征及原因分析. 大气科学, 41(2): 385-394.
蒙伟光, 张艳霞, 袁金南等. 2014. 华南沿海2011年7月15—18日持续暴雨过程中的季风槽与中尺度对流系统相互作用. 气象学报, 72(3): 508-525.
孟智勇, 唐晓静, 岳健等. 2019. 地面和探空资料的EnKF同化对北京7·21极端暴雨模拟的影响. 北京大学学报(自然科学版), 55(2): 237-245.
倪允琪, 周秀骥. 2006. “我国重大天气灾害形成机理与预测理论研究”取得的主要研究成果. 地球科学进展, 21(9): 881-894. DOI:10.3321/j.issn:1001-8166.2006.09.001
倪允琪, 张人禾, 刘黎平等. 2013. 中国南方暴雨野外科学试验(SCHeREX). 北京: 气象出版社, 283pp. Ni Y Q, Zhang R H, Liu L P, et al. 2013. South China Heavy Rainfall Field Experiment (SCHeREX). Beijing: China Meteorological Press, 283pp (in Chinese)
秦大河. 2015. 中国极端天气气候事件和灾害风险管理与适应国家评估报告. 北京: 科学出版社. 120pp. Qin D H. 2015. National Assessment Report on Extreme Weather and Climate Events and Disaster Risk Management and Adaptation in China. Beijing: Science Press, 120pp (in Chinese)
任晨平, 崔晓鹏. 2014. 碧利斯(0604)暴雨增幅的云微物理成因. 中国科学: 地球科学, 44(9): 2077-2088. Ren C P, Cui X P. 2014. The cloud-microphysical cause of torrential rainfall amplification associated with Bilis(0604). Sci China Earth Sci, 57(9): 2100-2111
沈学顺, 王建捷, 李泽椿等. 2020. 中国数值天气预报的自主创新发展. 气象学报, 78(3): 451-476.
石定朴, 朱文琴, 王洪庆等. 1996. 中尺度对流系统红外云图云顶黑体温度的分析. 气象学报, 54(5): 600-611. DOI:10.3321/j.issn:0577-6619.1996.05.009
施晓晖, 温敏. 2015. 中国持续性暴雨特征及青藏高原热源的影响. 高原气象, 34(3): 611-620. DOI:10.7522/j.issn.1000-0534.2014.00039
斯公望. 1989. 论东亚梅雨锋的大尺度环流及其次天气尺度扰动. 气象学报, 47(3): 312-323. DOI:10.3321/j.issn:0577-6619.1989.03.002
孙继昌, 刘金平, 周国良. 1998. 1998年暴雨洪水. 水文, (S1): 97-103.
孙继松. 2005. 北京地区夏季边界层急流的基本特征及形成机理研究. 大气科学, 29(3): 445-452. DOI:10.3878/j.issn.1006-9895.2005.03.12
孙继松, 王华, 王令等. 2006. 城市边界层过程在北京2004年7月10日局地暴雨过程中的作用. 大气科学, 30(2): 221-234. DOI:10.3878/j.issn.1006-9895.2006.02.05
孙继松, 杨波. 2008. 地形与城市环流共同作用下的β中尺度暴雨. 大气科学, 32(6): 1352-1364. DOI:10.3878/j.issn.1006-9895.2008.06.10
孙继松, 何娜, 王国荣等. 2012. “7.21”北京大暴雨系统的结构演变特征及成因初探. 暴雨灾害, 31(3): 218-225.
孙建华, 赵思雄. 2000. 一次罕见的华南大暴雨过程的诊断与数值模拟研究. 大气科学, 24(3): 381-392. DOI:10.3878/j.issn.1006-9895.2000.03.10
孙建华, 张小玲, 齐琳琳等. 2004. 2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究. 大气科学, 28(5): 675-691. DOI:10.3878/j.issn.1006-9895.2004.05.03
孙建华, 张小玲, 卫捷等. 2005. 20世纪90年代华北大暴雨过程特征的分析研究. 气候与环境研究, 10(3): 492-506. DOI:10.3878/j.issn.1006-9585.2005.03.20
孙建华, 齐琳琳, 赵思雄. 2006. “9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究. 气象学报, 64(1): 57-71. DOI:10.3321/j.issn:0577-6619.2006.01.006
孙建华, 赵思雄, 傅慎明等. 2013. 2012年7月21日北京特大暴雨的多尺度特征. 大气科学, 37(3): 705-718. DOI:10.3878/j.issn.1006-9895.2013.12202
孙力, 郑秀雅, 王琪. 1994. 东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系. 应用气象学报, 5(3): 297-303.
孙力, 安刚, 高枞亭等. 2002. 1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析. 应用气象学报, 13(2): 156-162. DOI:10.3969/j.issn.1001-7313.2002.02.003
孙淑清, 翟国庆. 1980a. 低空急流的不稳定性及其对暴雨的触发作用. 大气科学, 4(4): 327-337.
孙淑清, 赵思雄. 1980b. 盛夏大尺度低空急流及其与华北暴雨的关系∥中国科学院大气物理研究所集刊(第9号): 暴雨及强对流天气的研究. 北京: 科学出版社, 117-124. Sun S Q, Zhao S X. 1980b. The relationship between the Large scale low jet and heavy rainfalls during mid-summer in North China∥Institute of Atmospheric Physics, Chinese Academy of Sciences. Collected Papers of Institute of Atmospheric Physics, No. 9. Beijing: Science Press, 117-124 (in Chinese)
谈哲敏, 赵思雄, 孙建华等. 2013. 中国南方β中尺度强对流系统结构与机理. 北京: 气象出版社, 327pp. Tan Z M, Zhao S X, Sun J H, et al. 2013. Structure and Evolution Mechanism of Meso-β-Scale Strong Convective Systems in Southern China. Beijing: China Meteorological Press, 327pp (in Chinese)
唐健, 代刊, 宗志平等. 2018. 主客观融合定量降水预报方法及平台实现. 气象, 44(8): 1020-1032. DOI:10.7519/j.issn.1000-0526.2018.08.004
陶诗言. 1963. 中国夏季副热带天气系统若干问题的研究. 北京: 科学出版社, 145pp. Tao S Y. 1963. Study on Some Issues of Summer Subtropical Weather System in China. Beijing: Science Press, 145pp (in Chinese)
陶诗言, 朱福康. 1964. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系. 气象学报, 34(4): 385-396.
陶诗言, 丁一汇, 周晓平. 1979. 暴雨和强对流天气的研究. 大气科学, 3(3): 227-238. DOI:10.3878/j.issn.1006-9895.1979.03.05
陶诗言. 1980. 中国之暴雨. 北京: 科学出版社, 225pp. Tao S Y. 1980. Rainstorms in China. Beijing: Science Press, 225pp (in Chinese)
陶诗言, 倪允琪, 赵思雄等. 2001. 1998夏季中国暴雨的形成机理与预报研究. 北京: 气象出版社, 184pp. Tao S Y, Ni Y Q, Zhao S X, et al. 2001. Study on the Formation Mechanism and Forecast of Chinese Summer Rainfall in 1998. Beijing: China Meteorological Press, 184pp (in Chinese)
陶祖钰. 1980. 湿急流的结构及形成过程. 气象学报, 38(4): 331-340.
陶祖钰, 田佰军, 黄伟. 1994. 9216号台风登陆后的不对称结构和暴雨. 热带气象学报, 10(1): 69-77.
陶祖钰, 郑永光. 2012. 位温、等熵位涡与锋和对流层顶的分析方法. 气象, 38(1): 17-27. DOI:10.7519/j.issn.1000-0526.2012.01.002
田春生, 曾昭美. 1982. 夏季华北地区高空槽前有无暴雨的对比分析. 大气科学, 6(2): 179-186. DOI:10.3878/j.issn.1006-9895.1982.02.09
王斌, 季仲贞. 1990. 显式完全平方守恒差分格式的构造及其初步检验. 科学通报, (10): 766-768. Wang B, Ji Z Z. 1990. The construction and preliminary test of the explicit complete square conservative difference schemes. Chinese Sci Bull, 35(20): 1724-1728
王东海, 钟水新, 刘英等. 2007. 东北暴雨的研究. 地球科学进展, 22(6): 549-560. DOI:10.3321/j.issn:1001-8166.2007.06.001
王婧卓, 陈静, 庄照荣等. 2018. GRAPES区域集合预报模式的初值扰动增长特征. 大气科学, 42(2): 367-382.
王玉清, 朱永禔. 1992. 双热带气旋相互作用的机制分析及数值研究(一): 物理机制的分析. 大气科学, 16(5): 573-582. DOI:10.3878/j.issn.1006-9895.1992.05.08
吴国雄, 刘屹岷, 刘平. 1999. 空间非均匀加热对副热带高压带形成和变异的影响Ⅰ: 尺度分析. 气象学报, 57(3): 257-263. DOI:10.3969/j.issn.1001-7313.1999.03.001
吴国雄. 2002. 副热带高压形成和变异的动力学问题. 北京: 科学出版社, 294pp. Wu G X. 2002. Dynamics of the Formation and Variation of Snbtropical Anticyclones. Beijing: Science Press, 294pp (in Chinese)
吴国雄, 刘屹岷, 宇婧婧等. 2008. 海陆分布对海气相互作用的调控和副热带高压的形成. 大气科学, 32(4): 720-740. DOI:10.3878/j.issn.1006-9895.2008.04.03
吴尚森, 梁建茵, 李春晖. 2003. 南海夏季风强度与我国汛期降水的关系. 热带气象学报, 19(S1): 25-36.
吴政谦, 徐海明, 王东海等. 2012. 中尺度多模式超级集合预报对2010年6月19—20日中国南方大暴雨过程的分析. 热带气象学报, 28(5): 653-663.
谢义炳. 1956. 中国夏半年几种降水天气系统的分析研究. 气象学报, 27(1): 1-23.
谢作威, 布和朝鲁. 2012. 东北冷涡低频活动特征及背景环流. 气象学报, 70(4): 704-716.
许晨璐, 王建捷, 黄丽萍. 2017. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估. 气象学报, 75(6): 851-876.
徐洪雄, 徐祥德, 陈斌等. 2013. 双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像. 气象学报, 71(5): 825-838.
徐洪雄, 徐祥德, 张胜军等. 2014. 台风韦森特对季风水汽流的“转运”效应及其对北京“7∙21”暴雨的影响. 大气科学, 38(3): 537-550. DOI:10.3878/j.issn.1006-9895.2013.13173
徐祥德, 张胜军, 陈联寿等. 2004. 台风涡旋螺旋波及其波列传播动力学特征: 诊断分析. 地球物理学报, 47(1): 33-41. DOI:10.3321/j.issn:0001-5733.2004.01.006
徐致真, 陈静, 王勇等. 2019. 中尺度降水集合预报随机参数扰动方法敏感性试验. 气象学报, 77(5): 849-868.
薛纪善. 1999. 1994年华南夏季特大暴雨研究. 北京: 气象出版社, 185pp. Xue J S. 1999. The Great Rainstorm over South China during Summer in 1994. Beijing: China Meteorological Press, 185pp (in Chinese)
薛纪善, 陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 383pp. Xue J S, Chen D H. 2008. Scientific Design and Application of GRAPES Numerical Prediction System. Beijing: Science Press, 383pp (in Chinese)
杨波, 孙继松, 毛旭等. 2016. 北京地区短时强降水过程的多尺度环流特征. 气象学报, 74(6): 919-934.
杨挺, 端义宏, 徐晶等. 2018. 城市效应对登陆热带气旋妮妲降水影响的模拟. 应用气象学报, 29(4): 410-422. DOI:10.11898/1001-7313.20180403
姚晨, 娄珊珊, 叶金印. 2019. 冷空气影响台风暴雨的中尺度分析及数值模拟. 暴雨灾害, 38(3): 204-211. DOI:10.3969/j.issn.1004-9045.2019.03.002
叶笃正, 高由禧, 刘匡南. 1952. 1945—46年亚洲南部与美洲西南部急流进退之探讨. 气象学报, 23(1-2): 1-32.
叶笃正, 顾震潮. 1955. 西藏高原对于东亚大气环流及中国天气的影响. 科学通报, (6): 29-33.
叶笃正, 陶诗言, 李麦村. 1958a. 在六月和十月大气环流的突变现象. 气象学报, 29(4): 249-263.
叶笃正, 朱抱真. 1958b. 大气环流的若干基本问题. 北京: 科学出版社, 159pp. Ye D Z, Zhu B Z. 1958b. Some Basic Problems of Atmospheric Circulation. Beijing: Science Press, 159pp (in Chinese)
叶笃正, 李麦村. 1964. 中小尺度运动中风场和气压场的适应. 气象学报, 34(4): 409-423.
叶笃正, 高由禧, 陈乾. 1977. 青藏高原及其紧邻地区夏季环流的若干特征. 大气科学, 1(4): 289-299. DOI:10.3878/j.issn.1006-9895.1977.04.06
叶笃正, 高由禧. 1992. 青藏高原气象学. 北京: 科学出版社, 115-121. Ye D Z, Gao Y X. 1992. Meteorology of the Tibetan Plateau. Beijing: Science Press, 115-121 (in Chinese)
叶瑶, 李国平. 2016. 近61年夏半年西南低涡的统计特征与异常发生的流型分析. 高原气象, 35(4): 946-954.
殷健, 梁珊珊. 2010. 城市化对上海市区域降水的影响. 水文, 30(2): 66-72,58. DOI:10.3969/j.issn.1000-0852.2010.02.015
游景炎. 1965. 暴雨带内的中尺度系统. 气象学报, 35(3): 293-304.
袁信轩. 1981. 我国江南西南风低空急流形成的天气学分析. 气象学报, 39(2): 245-251.
岳彩军, 唐玉琪, 顾问等. 2019. 城市阻碍效应对局地台风降水的影响. 气象, 45(11): 1611-1620. DOI:10.7519/j.issn.1000-0526.2019.11.011
曾庆存. 1963a. 大气中的适应过程和发展过程(一): 物理分析和线性理论. 气象学报, 33(2): 163-174.
曾庆存. 1963b. 大气运动的特征参数和动力学方程. 气象学报, 33(4): 472-483.
曾庆存. 1979a. 我国大气动力学和数值天气预报研究工作的进展. 大气科学, 3(3): 256-269.
曾庆存. 1979b. 数值天气预报的数学物理基础, 第一卷. 北京: 科学出版社, 543pp. Zeng Q C. 1979b. Mathematical and Physical Basis of Numerical Weather Prediction, Volume Ⅰ. Beijing: Science Press, 543pp (in Chinese)
曾庆存, 季仲贞. 1981. 发展方程的计算稳定性问题. 计算数学, 3(1): 79-86.
翟国庆, 丁华君, 孙淑清等. 1999. 与低空急流相伴的暴雨天气诊断研究. 大气科学, 23(1): 113-119.
张小玲, 陶诗言, 张顺利. 2004. 梅雨锋上的三类暴雨. 大气科学, 28(2): 187-205. DOI:10.3878/j.issn.1006-9895.2004.02.03
张亦洲, 苗世光, 戴永久等. 2013. 北京夏季晴天边界层特征及城市下垫面对海风影响的数值模拟. 地球物理学报, 56(8): 2558-2573. DOI:10.6038/cjg20130806
张宇彤, 矫海燕, 陈静等. 2016. 基于贝叶斯方法的极端降水概率预报试验. 气象, 42(7): 799-808. DOI:10.7519/j.issn.1000-0526.2016.07.003
张元春, 孙建华, 徐广阔等. 2012. 江淮流域两次中尺度对流涡旋的结构特征研究. 气候与环境研究, 18(3): 271-287.
赵平, 孙健, 周秀骥. 2003. 1998年春夏南海低空急流形成机制研究. 科学通报, 48(6): 623-627. Zhao P, Sun J, Zhou X J. 2003. Mechanism of formation of low level jets in the South China Sea during spring and summer of 1998. Chinese Sci Bull, 48(12): 1265-1270
赵思雄, 刘苏红, 刘名扬. 1980. 夏季北京冷涡强对流天气的中尺度分析∥ 中国科学院大气物理所集刊(第9号): 暴雨及强对流天气的研究. 北京: 科学出版社, 151-160. Zhao S X, Liu S H, Liu M Y. 1980. The meso-scale analysis of cold vortex in Beijing in summer∥Study on Torrential Rain and Heavy Convective Weather. Beijing: Science Press, 151-160 (in Chinese)
赵思雄, 陶祖钰, 孙建华等. 2004. 长江流域梅雨锋暴雨机理的分析研究. 北京: 气象出版社, 281-282. Zhao S X, Tao Z Y, Sun J H, et al. 2004. Analysis and Research on the Rainstorm Mechanism of Meiyu Front in the Yangtze River Valleys. Beijing: China Meteorological Press, 281-282 (in Chinese)
赵思雄, 傅慎明. 2007. 2004年9月川渝大暴雨期间西南低涡结构及其环境场的分析. 大气科学, 31(6): 1059-1075. DOI:10.3878/j.issn.1006-9895.2007.06.03
赵宇, 崔晓鹏, 高守亭. 2011. 引发华北特大暴雨过程的中尺度对流系统结构特征研究. 大气科学, 35(5): 945-962. DOI:10.3878/j.issn.1006-9895.2011.05.14
赵玉春, 王叶红. 2009. 近30年华南前汛期暴雨研究概述. 暴雨灾害, 28(3): 193-202,228. DOI:10.3969/j.issn.1004-9045.2009.03.001
郑秀雅, 张廷治, 白人海. 1992. 东北暴雨. 北京: 气象出版社, 299pp. Zheng X Y, Zhang T Z, Bai R H. 1992. Heavy Rainfall in Northeast China. Beijing: China Meteorological Press, 299pp (in Chinese)
郑永光, 陈炯, 葛国庆等. 2007. 梅雨锋的典型结构、多样性和多尺度特征. 气象学报, 65(5): 760-772. DOI:10.3321/j.issn:0577-6619.2007.05.012
中国科学院兰州高原大气物理研究所. 1977. 青藏高原东侧动力性低涡形成机制的分析. 气象科技, (S1): 54-65.
钟水新, 王东海, 张人禾. 2011. 一次东北冷涡降水过程的结构特征与影响因子分析. 高原气象, 30(4): 951-960.
钟颖旻, 徐明, 王元. 2008. Chaba(0417)台风变性前后热力结构特征. 应用气象学报, 19(5): 588-594. DOI:10.3969/j.issn.1001-7313.2008.05.010
周小刚, 王秀明, 陶祖钰. 2013. 准地转理论基本问题回顾与讨论. 气象, 39(4): 401-409. DOI:10.7519/j.issn.1000-0526.2013.04.001
周小刚, 王秀明, 陶祖钰. 2014. “等熵思维”到“等熵位涡思维”回顾与讨论. 气象, 40(5): 521-529. DOI:10.7519/j.issn.1000-0526.2014.05.001
周秀骥, 薛纪善, 陶祖钰等. 2003. '98华南暴雨科学试验研究HUAMEX. 北京: 气象出版社, 220pp. Zhou X J, Xue J S, Tao Z Y, et al. 2003. Heavy Rainfall Experiment in South China during Pre-summer Rainy Season (HUAMEX), 1998. Beijing: China Meteorological Press, 220pp (in Chinese)
朱乾根. 1975. 低空急流与暴雨. 气象科技资料, (8): 12-18.
庄潇然, 闵锦忠, 武天杰等. 2017. 风暴尺度集合预报中不同初始扰动的多尺度发展特征研究. 高原气象, 36(3): 811-825. DOI:10.7522/j.issn.1000-0534.2016.00049
Bai L Q, Meng Z Y, Huang L, et al. 2017. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull Amer Meteor Soc, 98(12): 2619-2640. DOI:10.1175/BAMS-D-16-0015.1
Bao X H, Zhang F Q, Sun J H. 2011. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon Wea Rev, 139(9): 2790-2810. DOI:10.1175/MWR-D-11-00006.1
Bao X H, Luo Y L, Sun J X, et al. 2017. Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of South China. Sci China Earth Sci, 60(10): 1866-1885. DOI:10.1007/s11430-017-9076-9
Bei N F, Zhang F Q. 2007. Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart J Roy Meteor Soc, 133(622): 83-99. DOI:10.1002/qj.20
Bentzien S, Friederichs P. 2012. Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea Forecasting, 27(4): 988-1002. DOI:10.1175/WAF-D-11-00101.1
Bikos D, Lindsey D T, Otkin J, et al. 2012. Synthetic satellite imagery for real-time high-resolution model evaluation. Wea Forecasting, 27(3): 784-795. DOI:10.1175/WAF-D-11-00130.1
Blackadar A K. 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Amer Meteor Soc, 38(5): 283-290. DOI:10.1175/1520-0477-38.5.283
Brennan M J, Lackmann G M, Mahoney K M. 2008. Potential vorticity(PV)thinking in operations: The utility of nonconservation. Wea Forecasting, 23(1): 168-182. DOI:10.1175/2007WAF2006044.1
Chang C P, Hou S C, Kuo H C, et al. 1998. The development of an intense East Asian summer monsoon disturbance with strong vertical coupling. Mon Wea Rev, 126(10): 2692-2712. DOI:10.1175/1520-0493(1998)126<2692:TDOAIE>2.0.CO;2
Chen D H, Xue J S, Yang X S, et al. 2008. New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci Bull, 53(22): 3433-3445.
Chen G J, Wei F Y, Zhou X J. 2014. Intraseasonal oscillation of the South China Sea summer monsoon and its influence on regionally persistent heavy rain over southern China. J Meteor Res, 28(2): 213-229. DOI:10.1007/s13351-014-3063-1
Chen G T J, Yu C C. 1988. Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon Wea Rev, 116(4): 884-891. DOI:10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2
Chen G X, Lan R Y, Zeng W X, et al. 2018. Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J Climate, 31(5): 1703-1724. DOI:10.1175/JCLI-D-17-0373.1
Chen H, Zhang D L. 2013. On the rapid intensification of hurricane Wilma (2005). Part Ⅱ: Convective bursts and the upper-level warm core. J Atmos Sci, 70(1): 146-162. DOI:10.1175/JAS-D-12-062.1
Chen H M, Yu R C, Li J, et al. 2010. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J Climate, 23(4): 905-917. DOI:10.1175/2009JCLI3187.1
Chen J, Xue J S, Yan H. 2005. The uncertainty of mesoscale numerical prediction of heavy rain in South China and the ensemble simulations. Acta Meteor Sinica, 19(1): 1-18.
Chen J, Xue J S. 2009. Heavy rainfall ensemble prediction: Initial condition perturbation vs multi-physics perturbation. Acta Meteor Sinica, 23(1): 53-67.
Chen L S, Li Y, Cheng Z Q. 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv Atmos Sci, 27(5): 967-976. DOI:10.1007/s00376-010-8171-y
Chen S J, Kuo Y H, Wang W, et al. 1998. A modeling case study of heavy rainstorms along the Mei-Yu front. Mon Wea Rev, 126(9): 2330-2351. DOI:10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2
Chen X C, Zhao K, Xue M. 2014. Spatial and temporal characteristics of warm season convection over pearl river delta region, China, based on 3 years of operational radar data. J Geophys Res Atmos, 119(22): 12447-412465. DOI:10.1002/2014JD021965
Chen X C, Zhang F Q, Zhao K. 2016. Diurnal variations of the land-sea breeze and its related precipitation over South China. J Atmos Sci, 73(12): 4793-4815. DOI:10.1175/JAS-D-16-0106.1
Chen X C, Zhang F Q, Zhao K. 2017. Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the mei-yu season coastal rainfall over South China. J Atmos Sci, 74(9): 2835-2856. DOI:10.1175/JAS-D-17-0081.1
Chen Y, Zhai P M. 2015. Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart J Roy Meteor Soc, 141(689): 1389-1403. DOI:10.1002/qj.2448
Chen Y L, Chen X A, Zhang Y X. 1994. A diagnostic study of the low-level jet during TAMEX IOP 5. Mon Wea Rev, 122(10): 2257-2284. DOI:10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2
Chen Y R X, Luo Y L. 2018. Analysis of paths and sources of moisture for the south China rainfall during the presummer rainy season of 1979-2014. J Meteor Res, 32(5): 744-757. DOI:10.1007/s13351-018-8069-7
Chen Y S, Brunet G, Yau M K. 2003. Spiral bands in a simulated hurricane. Part Ⅱ: Wave activity diagnostics. J Atmos Sci, 60(10): 1239-1256. DOI:10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2
Chou L C, Chang C P, Williams R T. 1990. A numerical simulation of the Mei-Yu front and the associated low level jet. Mon Wea Rev, 118(7): 1408-1428. DOI:10.1175/1520-0493(1990)118<1408:ANSOTM>2.0.CO;2
Clark A J, Jirak I L, Dembek S R, et al. 2018. The Community Leveraged Unified Ensemble(CLUE)in the 2016 NOAA/hazardous weather testbed spring forecasting experiment. Bull Amer Meteor Soc, 99(7): 1433-1448. DOI:10.1175/BAMS-D-16-0309.1
Cui X P, Gao S T, Zong Z P, et al. 2005. Physical mechanism of formation of the bimodal structure in the Meiyu front system. Chinese Phys Lett, 22(12): 3218-3220. DOI:10.1088/0256-307X/22/12/066
Ding Y H. 1994. Monsoons Over China. Dordrecht: Springer, 419pp
Ding Y H, Chan J C L. 2005. The East Asian summer monsoon: An overview. Meteor Atmos Phys, 89(1-4): 117-142. DOI:10.1007/s00703-005-0125-z
Dong M Y, Chen L S, Li Y, et al. 2010. Rainfall reinforcement associated with landfalling Tropical Cyclones. J Atmos Sci, 67(11): 3541-3558. DOI:10.1175/2010JAS3268.1
Dorninger M, Gilleland E, Casati B, et al. 2018. The setup of the MesoVICT Project. Bull Amer Meteor Soc, 99(9): 1887-1906. DOI:10.1175/BAMS-D-17-0164.1
Dou J J, Wang Y C, Bornstein R, et al. 2015. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J Appl Meteor Climatol, 54(1): 94-105. DOI:10.1175/JAMC-D-13-0355.1
Du Y, Zhang Q H, Yue Y, et al. 2012. Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J Meteor Soc Japan, 90(6): 891-903. DOI:10.2151/jmsj.2012-603
Du Y, Rotunno R. 2014a. A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J Atmos Sci, 71(10): 3674-3683. DOI:10.1175/JAS-D-14-0060.1
Du Y, Zhang Q H, Chen Y L, et al. 2014b. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J Climate, 27(15): 5747-5767. DOI:10.1175/JCLI-D-13-00571.1
Du Y, Rotunno R, Zhang Q H. 2015. Analysis of WRF-simulated diurnal boundary layer winds in eastern China using a simple 1D model. J Atmos Sci, 72(2): 714-727. DOI:10.1175/JAS-D-14-0186.1
Du Y, Chen G X. 2018a. Heavy rainfall associated with double low-level jets over Southern China. Part Ⅰ: Ensemble-based analysis. Mon Wea Rev, 146(11): 3827-3844. DOI:10.1175/MWR-D-18-0101.1
Du Y, Rotunno R. 2018b. Diurnal cycle of rainfall and winds near the south coast of China. J Atmos Sci, 75(6): 2065-2082. DOI:10.1175/JAS-D-17-0397.1
Du Y, Chen G X. 2019a. Heavy rainfall associated with double low-level jets over Southern China. Part Ⅱ: Convection initiation. Mon Wea Rev, 147(2): 543-565. DOI:10.1175/MWR-D-18-0102.1
Du Y, Chen G X. 2019b. Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J Climate, 32(24): 8813-8833. DOI:10.1175/JCLI-D-19-0306.1
Duan Y H, Gong J D, Du J, et al. 2012. An overview of the Beijing 2008 Olympics Research and Development Project (B08RDP). Bull Amer Meteor Soc, 93(3): 381-403. DOI:10.1175/BAMS-D-11-00115.1
Ebert E E, Damrath U, Wergen W, et al. 2003. The WGNE assessment of short-term quantitative precipitation forecasts. Bull Amer Meteor Soc, 84(4): 481-492. DOI:10.1175/BAMS-84-4-Ebert
Ebert E E, Gallus Jr W A. 2009. Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea Forecasting, 24(5): 1401-1415. DOI:10.1175/2009WAF2222252.1
Fu S M, Sun J H, Zhao S X, et al. 2011. The energy budget of a southwest vortex with heavy rainfall over South China. Adv Atmos Sci, 28(3): 709-724. DOI:10.1007/s00376-010-0026-z
Fu S M, Sun J H. 2012. Circulation and eddy kinetic energy budget analyses on the evolution of a Northeast China cold vortex (NCCV) in May 2010. J Meteor Soc Japan, 90(4): 553-573. DOI:10.2151/jmsj.2012-408
Fu S M, Yu F, Wang D H, et al. 2013. A comparison of two kinds of eastward-moving mesoscale vortices during the mei-yu period of 2010. Sci China Earth Sci, 56(2): 282-300. DOI:10.1007/s11430-012-4420-5
Fu S M, Li W L, Ling J. 2015. On the evolution of a long-lived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J Geophys Res Atmos, 120(23): 11889-11917.
Fu S M, Sun J H, Ling J, et al. 2016a. Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season. J Geophys Res Atmos, 121(21): 12856-12876. DOI:10.1002/2016JD025446
Fu S M, Wang H J, Sun J H, et al. 2016b. Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010. J Meteor Res, 30(4): 513-527. DOI:10.1007/s13351-016-5121-3
Fu S M, Zhang J P, Sun J H, et al. 2016c. Composite analysis of long-lived mesoscale vortices over the middle reaches of the Yangtze River valley: Octant features and evolution mechanisms. J Climate, 29(2): 761-781. DOI:10.1175/JCLI-D-15-0175.1
Fu S M, Liu R X, Sun J H. 2018. On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J Atmos Sci, 75(3): 907-925. DOI:10.1175/JAS-D-17-0294.1
Fu S M, Mai Z, Sun J H, et al. 2019. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J Atmos Sci, 76(12): 3803-3830. DOI:10.1175/JAS-D-18-0331.1
Fujiyoshi Y, Ding Y H, Zhang Y. 2006. Outline of GAME/HUBEX∥ Fujiyoshi Y, Ding Y H. Final Report of GAME/HUBEX. GAME Publication No. 43, 1-6
Gilbert K K, Craven J P, Novak D R, et al. 2015. An introduction to the national blend of global models project∥Proceedings of the 95th American Meteorological Society Annual Meeting. Special Symposium on Model Postprocessing and Downscaling. Phoenix, AZ: American Meteorological Society
Gilleland E, Ahijevych D A, Brown B G, et al. 2010. Verifying forecasts spatially. Bull Amer Meteor Soc, 91(10): 1365-1373. DOI:10.1175/2010BAMS2819.1
Gu W, Wang L, Hu Z Z, et al. 2018. Interannual variations of the first rainy season precipitation over South China. J Climate, 31(2): 623-640. DOI:10.1175/JCLI-D-17-0284.1
Guan W N, Hu H B, Ren X J, et al. 2019. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Climate Dyn, 53(5): 3325-3344.
Hamill T M, Whitaker J S, Mullen S L. 2006. Reforecasts: An important dataset for improving weather predictions. Bull Amer Meteor Soc, 87(1): 33-46. DOI:10.1175/BAMS-87-1-33
Hamill T M, Engle E, Myrick D, et al. 2017. The U.S. national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Mon Wea Rev, 145(9): 3441-3463. DOI:10.1175/MWR-D-16-0331.1
He Z W, Zhang Q H, Zhao K, et al. 2018. Initiation and evolution of elevated convection in a nocturnal squall line along the Meiyu front. J Geophys Res Atmos, 123(14): 7292-7310H.
Hence D A, Houze Jr R A. 2012. Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J Atmos Sci, 69(9): 2644-2661. DOI:10.1175/JAS-D-11-0323.1
Holton J R. 1967. The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19(2): 199-205. DOI:10.1111/j.2153-3490.1967.tb01473.x
Hong W, Ren X J. 2013. Persistent heavy rainfall over South China during May-August: Subseasonal anomalies of circulation and sea surface temperature. Acta Meteor Sinica, 27(6): 769-787. DOI:10.1007/s13351-013-0607-8
Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc, 111(470): 877-946. DOI:10.1002/qj.49711147002
Hoskins B J. 1996. On the existence and strength of the summer subtropical anticyclones. Bull Amer Meteor Soc, 77(6): 1287-1292.
Hu K X, Lu R Y, Wang D H. 2010. Seasonal climatology of cut-off lows and associated precipitation patterns over northeast China. Meteor Atmos Phys, 106(1-2): 37-48. DOI:10.1007/s00703-009-0049-0
Huang L, Luo Y L. 2017. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season. J Geophys Res Atmos, 122(16): 8494-8516. DOI:10.1002/2017JD026512
Huang L, Luo Y L, Zhang D L. 2018. The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances. J Geophys Res Atmos, 123(7): 3395-3413. DOI:10.1002/2017JD028106
Huang Y J, Liu Y B, Liu Y W, et al. 2019. Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Obser-vation analysis and nested very large eddy simulation with the WRF model. J Geophys Res Atmos, 124(3): 1370-1391. DOI:10.1029/2018JD029668
IPCC. 2014. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergo-vernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535pp
Jiang X L, Luo Y L, Zhang D L, et al. 2020. Urbanization enhanced summertime extreme hourly precipitation over the yangtze river delta. J Climate, 33,5809-5826
Jiang X Y, Liu W D. 2007. Numerical simulations of impacts of urbanization on heavy rainfall in Beijing using different land-use data. Acta Meteor Sinica, 21(2): 245-255.
Jiang Z N, Zhang D L, Xia R D, et al. 2017. Diurnal variations of presummer rainfall over southern China. J Climate, 30(2): 755-773. DOI:10.1175/JCLI-D-15-0666.1
Jin X, Wu T W, Li L. 2013. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dyn, 41(3-4): 977-994. DOI:10.1007/s00382-012-1521-y
Johnson A, Wang X G. 2012. Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon Wea Rev, 140(9): 3054-3077. DOI:10.1175/MWR-D-11-00356.1
Joos H, Wernli H. 2012. Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case study with the limited-area model COSMO. Quart J Roy Meteor Soc, 138(663): 407-418. DOI:10.1002/qj.934
Kuo Y H, Cheng L S, Anthes R A. 1986. Mesoscale analyses of the Sichuan flood catastrophe, 11-15 July 1981. Mon Wea Rev, 114(11): 1984-2003. DOI:10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2
Lalaurette F. 2003. Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quart J Roy Meteor Soc, 129(594): 3037-3057. DOI:10.1256/qj.02.152
Lamberson W S, Alcott T I, Kahler C. 2016. The ensemble situational awareness table: A tool to improve forecasts for extreme weather events∥Proceedings of the Sixth Conference on Transition of Research to Operations. New Orleans, LA: American Meteorological Society
Li H Q, Cui X P, Zhang D L. 2017a. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon Wea Rev, 145(1): 181-197. DOI:10.1175/MWR-D-16-0115.1
Li H Q, Cui X P, Zhang D L. 2017b. Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows. Quart J Roy Meteor Soc, 143(709): 3153-3164. DOI:10.1002/qj.3169
Li M C, Luo Z X. 1988. Effects of moist process on subtropical flow patterns and multiple equilibrium states. Sci China Ser B, 31(11): 1352-1361.
Li R C Y, Zhou W. 2015. Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background. Climate Dyn, 45(3-4): 1043-1057. DOI:10.1007/s00382-014-2347-6
Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J Meteor Res, 31(6): 987-1006. DOI:10.1007/s13351-017-7147-6
Li X S, Luo Y L, Guan Z Y. 2014. The persistent heavy rainfall over southern China in June 2010: Evolution of synoptic systems and the effects of the Tibetan Plateau heating. J Meteor Res, 28(4): 540-560. DOI:10.1007/s13351-014-3284-3
Li Y, Chen L S. 2007a. Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones. Acta Meteor Sinica, 21(1): 34-46.
Li Y, Wang J Z, Chen L S, et al. 2007b. Study on wavy distribution of rainfall associated with typhoon Matsa (2005). Chinese Sci Bull, 52(7): 972-983. DOI:10.1007/s11434-007-0129-9
Li Y, Chen L S, Qian C H, et al. 2010. Study on formation and development of a mesoscale convergence line in typhoon Rananim. Acta Meteor Sinica, 24(4): 413-425.
Li Z, Yan Z W, Tu K, et al. 2015. Changes of precipitation and extremes and the possible effect of urbanization in the Beijing Metropolitan Region during 1960-2012 based on homogenized observations. Adv Atmos Sci, 32(9): 1173-1185. DOI:10.1007/s00376-015-4257-x
Li Z H, Luo Y L, Du Y, et al. 2020. Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J Meteor Soc Japan, 98(1): 213-233. DOI:10.2151/jmsj.2020-012
Liao H S, Wu Y C, Chen L, et al. 2015. A visual voting framework for weather forecast calibration∥Proceedings of 2015 IEEE Scientific Visualization Conference. Chicago, IL, USA: IEEE, 25-32
Lin R P, Zhu J, Zheng F. 2016. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci Rep, 6: 38546. DOI:10.1038/srep38546
Liu H B, He M Y, Wang B, et al. 2014. Advances in low-level jet research and future prospects. J Meteor Res, 28(1): 57-75.
Liu X, Luo Y L, Guan Z Y, et al. 2018. An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J Geophy Res Atmos, 123(17): 9256-9278. DOI:10.1029/2018JD028418
Liu Y M, Hoskins B, Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia. J Meteor Soc Japan, 85B: 1-19. DOI:10.2151/jmsj.85B.1
Lorenz E N. 1963. Deterministic nonperiodic flow. J Atmos Sci, 20(2): 130-141. DOI:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion. Tellus, 21(3): 289-307. DOI:10.3402/tellusa.v21i3.10086
Lu R Y. 2001. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J Meteor Soc Japan, 79(3): 771-783. DOI:10.2151/jmsj.79.771
Lu R Y, Dong B W. 2001. Westward extension of North Pacific subtropical high in summer. J Meteor Soc Japan, 79(6): 1229-1241. DOI:10.2151/jmsj.79.1229
Luo Y L, Wang Y J, Wang H Y, et al. 2010. Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting Model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J Geophys Res Atmos, 115(D18): D18117. DOI:10.1029/2010JD013873
Luo Y L, Wang H, Zhang R H, et al. 2013. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai river basin. J Climate, 26(1): 110-132. DOI:10.1175/JCLI-D-12-00100.1
Luo Y L, Gong Y, Zhang D L. 2014. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon Wea Rev, 142(1): 203-221. DOI:10.1175/MWR-D-13-00111.1
Luo Y L, Chen Y R X. 2015. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J Geophys Res Atmos, 120(20): 10593-10618. DOI:10.1002/2015JD023584
Luo Y L, Wu M W, Ren F M, et al. 2016. Synoptic situations of extreme hourly precipitation over China. J Climate, 29(24): 8703-8719. DOI:10.1175/JCLI-D-16-0057.1
Luo Y L. 2017. Advances in understanding the early-summer heavy rainfall over South China∥Chang C P, Kuo H C, Lau N C, et al. The Global Monsoon System. 3rd ed. Singapore: World Scientific, 215-226
Luo Y L, Zhang R H, Wan Q L, et al. 2017. The southern China monsoon rainfall experiment(SCMREX). Bull Amer Meteor Soc, 98(5): 999-1013. DOI:10.1175/BAMS-D-15-00235.1
Luo Y L, Xia R D, Chan J C L. 2020. Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019. J Meteor Soc Japan, 98(1): 19-42. DOI:10.2151/jmsj.2020-002
Mansfield D A. 2007. The use of potential vorticity as an operational forecast tool. Meteor Appl, 3(3): 195-210. DOI:10.1002/met.5060030301
Meng W G, Wang Y Q. 2016a. A diagnostic study on heavy rainfall induced by Typhoon Utor (2013)in South China: 1. Rainfall asymmetry at landfall. J Geophys Res Atmos, 121(21): 12781-12802. DOI:10.1002/2015JD024646
Meng W G, Wang Y Q. 2016b. A diagnostic study on heavy rainfall induced by landfalling Typhoon Utor (2013)in South China: 2. Postlandfall rainfall. J Geophys Res Atmos, 121(21): 12803-12819. DOI:10.1002/2015JD024647
Meng Z Y, Zhang Y J. 2012. On the squall lines preceding landfalling tropical cyclones in China. Mon Wea Rev, 140(2): 445-470. DOI:10.1175/MWR-D-10-05080.1
Miao S G, Chen F, Li Q C, et al. 2011. Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J Appl Meteor Climatol, 50(4): 806-825. DOI:10.1175/2010JAMC2513.1
Mu M, Duan W S, Chou J F. 2004. Recent advances in predictability studies in China (1999-2002). Adv Atmos Sci, 21(3): 437-443. DOI:10.1007/BF02915570
Neal R, Fereday D, Crocker R, et al. 2016. A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteor Appl, 23(3): 389-400. DOI:10.1002/met.1563
Ninomiya K. 1984. Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J Meteor Soc Japan, 62(6): 880-894. DOI:10.2151/jmsj1965.62.6_880
Novak D R, Bailey C, Brill K F, et al. 2014. Precipitation and temperature forecast performance at the Weather Prediction Center. Wea Forecasting, 29(3): 489-504. DOI:10.1175/WAF-D-13-00066.1
Pan H, Chen G X. 2019. Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation. Adv Atmos Sci, 36(8): 863-884. DOI:10.1007/s00376-019-8238-3
Peixoto J P, Oort A H. 1992. Physics of Climate. New York: American Institute of Physics Press, 520pp
Petersen D, Brill K F, Bailey C, et al. 2014. The evolving role of the forecaster at the weather predication center∥Proceedings of World Weather Open Science Conference
Qian J H, Tao W K, Lau K M. 2004. Mechanisms for torrential rain associated with the Mei-yu development during SCSMEX 1998. Mon Wea Rev, 132(1): 3-27. DOI:10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2
Qian W H, Shi J. 2017. Tripole precipitation pattern and SST variations linked with extreme zonal activities of the western Pacific subtropical high. Int J Climatol, 37(6): 3018-3035. DOI:10.1002/joc.4897
Ramage C S. 1952. Variation of rainfall over South China through the wet season. Bull Amer Meteor Soc, 33(7): 308-311. DOI:10.1175/1520-0477-33.7.308
Rautenhaus M, Böttinger M, Siemen S, et al. 2018. Visualization in meteorology: A survey of techniques and tools for data analysis tasks. IEEE Trans Vis Comput Graph, 24(12): 3268-3296. DOI:10.1109/TVCG.2017.2779501
Ren X J, Yang X Q, Sun X G. 2013. Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J Climate, 26(22): 8929-8946. DOI:10.1175/JCLI-D-12-00861.1
Sampe T, Xie S P. 2010. Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J Climate, 23(1): 113-134. DOI:10.1175/2009JCLI3128.1
Schwartz C S, Sobash R A. 2017. Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon Wea Rev, 145(9): 3397-3418. DOI:10.1175/MWR-D-16-0400.1
Shapiro A, Fedorovich E, Rahimi S. 2016. A unified theory for the Great Plains nocturnal low-level jet. J Atmos Sci, 73(8): 3037-3057. DOI:10.1175/JAS-D-15-0307.1
Shen Y A, Du Y, Chen G X. 2020. Ensemble sensitivity analysis of heavy rainfall associated with three MCSs coexisting over southern China. J Geophys Res Atmos, 125(2): e2019JD031266.
Sloughter J M, Raftery A E, Gneiting T, et al. 2007. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon Wea Rev, 135(9): 3209-3220. DOI:10.1175/MWR3441.1
Stensrud D J. 1996. Importance of low-level jets to climate: A review. J Climate, 9(8): 1698-1711. DOI:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2
Sun J H, Zhang F Q. 2012. Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Mei-yu front over the East China plains. Mon Wea Rev, 140(2): 379-397. DOI:10.1175/MWR-D-11-00041.1
Sun Y Q, Zhang F Q. 2016. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J Atmos Sci, 73(3): 1419-1438. DOI:10.1175/JAS-D-15-0142.1
Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet)Plateau on the occurrence of heavy rain and severe convective storms in China. Bull Amer Meteor Soc, 62(1): 23-30. DOI:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2
Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China∥Chang C P, Krishnamurti T N. Monsoon Meteorology. London: Oxford University, 60-92
Tao W K, Shi J J, Lin P L, et al. 2011. High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part Ⅰ: Comparing the impact of microphysics and PBL parameterizations with observations. Terr Atmos Oceanic Sci, 22(6): 673-696. DOI:10.3319/TAO.2011.08.26.01(TM)
Thaler E R, Nutter P. 2009. Moving quasigeostrophic theory into the 21st century∥Proceedings of the 23rd Conference on Weather Analysis and Forecasting. Omaha, NE: American Meteorological Society
Uccellini L W, Johnson D R. 1979. The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon Wea Rev, 107(6): 682-703. DOI:10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2
Uccellini L W. 1980. On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon Wea Rev, 108(10): 1689-1696. DOI:10.1175/1520-0493(1980)108<1689:OTROUT>2.0.CO;2
Uccellini L W, Petersen R A, Kocin P J, et al. 1987. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon Wea Rev, 115(10): 2227-2261. DOI:10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2
Wan B C, Gao Z Q, Chen F, et al. 2017. Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon Wea Rev, 145(9): 3485-3505. DOI:10.1175/MWR-D-17-0061.1
Wang C C, Chen G T J, Carbone R E. 2004. A climatology of warm-season cloud patterns over east Asia based on GMS infrared brightness temperature observations. Mon Wea Rev, 132(7): 1606-1629. DOI:10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2
Wang D H, Li X F, Tao W K, et al. 2009. Torrential rainfall processes associated with a landfall of severe tropical storm Bilis(2006): A two-dimensional cloud-resolving modeling study. Atmos Res, 91(1): 94-104. DOI:10.1016/j.atmosres.2008.07.005
Wang D H, Yang S. 2010. An atmospheric dry intrusion parameter and its application. Acta Meteor Sinica, 24(4): 492-500.
Wang H, Luo Y L, Jou B J D. 2014. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J Geophys Res Atmos, 119(23): 13206-13232. DOI:10.1002/2014JD022339
Wang H, Kong F Y, Wu N G, et al. 2019. An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmos Res, 226: 171-180. DOI:10.1016/j.atmosres.2019.04.009
Wang L J, Lu S, Guan Z Y, et al. 2010. Effects of low-latitude monsoon surge on the increase in downpour from tropical storm Bilis. J Trop Meteor, 16(2): 101-108.
Wang M J, Zhao K, Xue M, et al. 2016. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res Atmos, 121(20): 12415-12433. DOI:10.1002/2016JD025307
Wang P Y, Xu Z X, Pan Z T. 1990. A case study of warm sector rainbands in North China. Adv Atmos Sci, 7(3): 354-365. DOI:10.1007/BF03179767
Wang Q W, Tan Z M. 2014. Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J Geophys Res Atmos, 119(20): 11543-11561. DOI:10.1002/2014JD021898
Wang Y Q, Wang Y Q, Fudeyasu H. 2009. The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon Wea Rev, 137(11): 3699-3716. DOI:10.1175/2009MWR2933.1
Wei N, Li Y. 2013. A modeling study of land surface process impacts on inland behavior of Typhoon Rananim (2004). Adv Atmos Sci, 30(2): 367-381. DOI:10.1007/s00376-012-1242-5
Wen J, Zhao K, Huang H, et al. 2017. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J Geophys Res Atmos, 122(15): 8033-8050. DOI:10.1002/2016JD026346
Wen L, Zhao K, Zhang G F, et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 121(5): 2265-2282. DOI:10.1002/2015JD024160
Wernli H, Sprenger M. 2007. Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J Atmos Sci, 64(5): 1569-1586. DOI:10.1175/JAS3912.1
Wu C, Liu L P, Wei M, et al. 2018. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 35(3): 296-316. DOI:10.1007/s00376-017-6241-0
Wu G X. 1984. The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J Atmos Sci, 41(16): 2456-2476. DOI:10.1175/1520-0469(1984)041<2456:TNROTA>2.0.CO;2
Wu G X, Chen S J. 1985. The effect of mechanical forcing on the formation of a mesoscale vortex. Quart J Roy Meteor Soc, 111(470): 1049-1070. DOI:10.1002/qj.49711147009
Wu G X, Zheng Y J, Liu Y M. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅱ: Generalized slantwise vorticity development. Acta Meteor Sinica, 27(1): 15-25. DOI:10.1007/s13351-013-0102-2
Wu L G, Wang C. 2015. Has the western Pacific subtropical high extended westward since the late 1970s?. J Climate, 28(13): 5406-5413. DOI:10.1175/JCLI-D-14-00618.1
Wu M W, Luo Y L. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in china mainland during pre-summer rainy season of 2015. J Meteor Res, 30(5): 719-736. DOI:10.1007/s13351-016-6089-8
Wu M W, Wu C C, Yen T H, et al. 2017. Synoptic analysis of extreme hourly precipitation in taiwan during 2003-12. Mon Wea Rev, 145(12): 5123-5140. DOI:10.1175/MWR-D-17-0230.1
Wu M W, Luo Y L, Chen F, et al. 2019. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteor Climatol, 58(8): 1799-1819. DOI:10.1175/JAMC-D-18-0284.1
Wu X, Fei J F, Huang X G, et al. 2011. Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J Trop Meteor, 17(4): 335-344.
Xia R D, Zhang D L. 2019. An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang Mountains in North China. Mon Wea Rev, 147(11): 4199-4220. DOI:10.1175/MWR-D-18-0402.1
Xu W X, Zipser E J, Liu C T. 2009. Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part Ⅰ: TRMM observations. Mon Wea Rev, 137(12): 4261-4275. DOI:10.1175/2009MWR2982.1
Xu X D, Lu C, Xu H X, et al. 2011. A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot. Atmos Sci Lett, 12(3): 294-299. DOI:10.1002/asl.338
Xue M. 2016. Preface to the special issue on the "Observation, prediction and analysis of severe convection of China"(OPACC)national "973" project. Adv Atmos Sci, 33(10): 1099-1101. DOI:10.1007/s00376-016-0002-3
Xue M, Luo X, Zhu K F, et al. 2018. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J Geophys Res Atmos, 123(10): 5090-5115. DOI:10.1029/2018JD028368
Yang J, Bao Q, Wang B, et al. 2014. Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn, 42(5-6): 1469-1486. DOI:10.1007/s00382-013-1728-6
Yang S, Gao S T. 2006. Modified Richardson number in non-uniform saturated moist flow. Chin Phys Lett, 23(11): 3003-3006. DOI:10.1088/0256-307X/23/11/033
Yang S, Gao S T, Wang D H. 2007. Diagnostic analyses of the ageostrophic vector in the non-uniformly saturated, frictionless, and moist adiabatic flow. J Geophys Res Atmos, 112(D9): D09114.
Yang S, Gao S T, Lu C G. 2014. A generalized frontogenesis function and its application. Adv Atmos Sci, 31(5): 1065-1078. DOI:10.1007/s00376-014-3228-y
Yang S, Gao S T, Lu C G. 2015. Investigation of the Mei-yu front using a new deformation frontogenesis function. Adv Atmos Sci, 32(5): 635-647. DOI:10.1007/s00376-014-4147-7
Yang S, Tang X B, Zhong S X, et al. 2019. Convective bursts episode of the rapidly intensified Typhoon Mujigae (2015). Adv Atmos Sci, 36(5): 541-556. DOI:10.1007/s00376-019-8142-x
Yang S, Zhang W, Chen B, et al. 2020. Remote moisture sources for 6-hour summer precipitation over the southeastern Tibetan Plateau and its effects on precipitation intensity. Atmos Res, 236: 104803. DOI:10.1016/j.atmosres.2019.104803
Ye T S, Zhi R, Zhao J H, et al. 2014. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming. Chinese Phys B, 23(6): 069203. DOI:10.1088/1674-1056/23/6/069203
Yeh T C. 1957. On the formation of quasi-geostrophic motion in the atmosphere. J Meteor Soc Japan, 35A: 130-134. DOI:10.2151/jmsj1923.35A.0_130
Yin J F, Zhang D L, Luo Y L, et al. 2020. On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part Ⅰ: Impacts of urbanization and orography. Mon Wea Rev, 148(3): 955-979. DOI:10.1175/MWR-D-19-0212.1
Yin S Q, Chen D L, Xie Y. 2009. Diurnal variations of precipitation during the warm season over China. Int J Climatol, 29(8): 1154-1170. DOI:10.1002/joc.1758
Yin S Q, Li W J, Chen D L, et al. 2011. Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv Atmos Sci, 28(4): 725-734. DOI:10.1007/s00376-010-9240-y
Yu R C, Zhou T J, Xiong A Y, et al. 2007. Diurnal variations of summer precipitation over contiguous China. Geophys Res Lett, 34(1): L01704.
Yu R C, Li J, Chen H M, et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China. J Meteor Res, 28(5): 877-902. DOI:10.1007/s13351-014-3272-7
Yu R C, Zhang Y, Wang J J, et al. 2019. Recent progress in numerical atmospheric modeling in China. Adv Atmos Sci, 36(9): 938-960. DOI:10.1007/s00376-019-8203-1
Yu Z F, Yu H, Gao S T. 2010. Terrain impact on the precipitation of landfalling Typhoon Talim. J Trop Meteor, 16(2): 115-124.
Yu Z F, Wang Y Q, Xu H M, et al. 2017. On the relationship between intensity and rainfall distribution in Tropical Cyclones making landfall over China. J Appl Meteor Climatol, 56(10): 2883-2901. DOI:10.1175/JAMC-D-16-0334.1
Yuan C X, Liu J Q, Luo J J, et al. 2019. Influences of tropical Indian and Pacific oceans on the interannual variations of precipitation in the early and late rainy seasons in South China. J Climate, 32(12): 3681-3694. DOI:10.1175/JCLI-D-18-0588.1
Yuan F, Wei K, Chen W, et al. 2010. Temporal variations of the frontal and monsoon storm rainfall during the first rainy season in South China. Atmos Oceanic Sci Lett, 3(5): 243-247. DOI:10.1080/16742834.2010.11446876
Yuan W H, Yu R C, Chen H M, et al. 2010. Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J Climate, 23(24): 6684-6695. DOI:10.1175/2010JCLI3805.1
Yuan W H, Yu R C, Zhang M H, et al. 2012. Regimes of diurnal variation of summer rainfall over subtropical East Asia. J Climate, 25(9): 3307-3320. DOI:10.1175/JCLI-D-11-00288.1
Zadra A, Brunet G, Derome J. 2002. An empirical normal mode diagnostic algorithm applied to NCEP reanalyses. J Atmos Sci, 59(19): 2811-2829. DOI:10.1175/1520-0469(2002)059<2811:AENMDA>2.0.CO;2
Zeng W X, Chen G X, Du Y, et al. 2019. Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon Wea Rev, 147(11): 3981-4004. DOI:10.1175/MWR-D-19-0131.1
Zhang D L, Lin Y H, Zhao P, et al. 2013. The Beijing extreme rainfall of 21 July 2012: "Right results" but for wrong reasons. Geophys Res Lett, 40(7): 1426-1431. DOI:10.1002/grl.50304
Zhang F Q, Sun Y Q, Magnusson L, et al. 2019. What is the predictability limit of midlatitude weather?. J Atmos Sci, 76(4): 1077-1091. DOI:10.1175/JAS-D-18-0269.1
Zhang H, Zhai P M. 2011. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv Atmos Sci, 28(5): 1177-1183. DOI:10.1007/s00376-011-0020-0
Zhang H B, Chen J, Zhi X F, et al. 2015. Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv Atmos Sci, 32(8): 1143-1155. DOI:10.1007/s00376-015-4232-6
Zhang M R, Meng Z Y. 2019. Warm-Sector heavy rainfall in southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon Wea Rev, 147(12): 4461-4480. DOI:10.1175/MWR-D-19-0110.1
Zhang R H, Ni Y Q, Liu L P, et al. 2011. South China heavy rainfall experiments (SCHeREX). J Meteor Soc Japan, 89A: 153-166. DOI:10.2151/jmsj.2011-A10
Zhang S J, Chen L S, Li Y. 2012. Statistical analysis and numerical simulation of Poyang Lake's influence on tropical cyclones. J Trop Meteor, 18(2): 249-262.
Zhang X B, Luo Y L, Wan Q L, et al. 2016. Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea Forecasting, 31(4): 1271-1292. DOI:10.1175/WAF-D-15-0156.1
Zhang X B. 2018. Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX. Quart J Roy Meteor Soc, 144(717): 2842-2862. DOI:10.1002/qj.3411
Zhang X B. 2019. Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon Wea Rev, 147(1): 291-310. DOI:10.1175/MWR-D-18-0218.1
Zhang Y, Li J, Yu R C, et al. 2019. A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J Adv Model Earth Syst, 11(6): 1685-1714. DOI:10.1029/2018MS001539
Zhang Y C, Zhang F Q, Sun J H. 2014a. Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains. Atmos Chem Phys, 14(19): 10741-10759. DOI:10.5194/acp-14-10741-2014
Zhang Y C, Sun J H, Fu S M. 2014b. Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices East of the Tibetan Plateau during the Mei-yu season. Adv Atmos Sci, 31(1): 139-153. DOI:10.1007/s00376-013-2052-0
Zhang Y C, Sun J H, Fu S M. 2017. Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River-Huaihe River Basin. Adv Atmos Sci, 34(2): 129-143. DOI:10.1007/s00376-016-6117-8
Zhang Y C, Zhang F Q, Davis C A, et al. 2018. Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-yu front over the East China Plains. J Atmos Sci, 75(3): 1005-1025. DOI:10.1175/JAS-D-17-0197.1
Zhang Y H, Xue M, Zhu K F, et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer Low-Level Jet inertial oscillations. J Geophys Res Atmos, 124(5): 2643-2664. DOI:10.1029/2018JD029834
Zhao S X, Sun J H. 2007. Study on cut-off low-pressure systems with floods over northeast Asia. Meteor Atmos Phys, 96(1-2): 159-180. DOI:10.1007/s00703-006-0226-3
Zhao Y C. 2012. Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer. Atmos Res, 113: 22-39. DOI:10.1016/j.atmosres.2012.04.018
Zheng Y G, Xue M, Li B, et al. 2016. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv Atmos Sci, 33(11): 1218-1232. DOI:10.1007/s00376-016-6128-5
Zheng Y J, Wu G X, Liu Y M. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅰ: A PV-Q view. Acta Meteor Sinica, 27(1): 1-14. DOI:10.1007/s13351-013-0101-3
Zhong L Z, Mu R, Zhang D L, et al. 2015. An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J Geophys Res Atmos, 120(8): 3274-3291. DOI:10.1002/2014JD022686
Zhou F F, Cui X P. 2015. The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China. Atmos Sci Let, 16(4): 485-491. DOI:10.1002/asl.586
Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J Climate, 21(16): 3997-4010. DOI:10.1175/2008JCLI2028.1
Zhou T J, Yu R C, Zhang J, et al. 2009. Why the western Pacific subtropical high has extended westward since the late 1970s. J Climate, 22(8): 2199-2215. DOI:10.1175/2008JCLI2527.1
Zhu P J, Zheng Y G, Zhang C X, et al. 2005. A study of the extratropical transformation of typhoon Winnie (1997). Adv Atmos Sci, 22(5): 730-740. DOI:10.1007/BF02918716
Zhu Y J, Luo Y. 2015. Precipitation calibration based on the Frequency-Matching method. Wea Forecasting, 30(5): 1109-1124. DOI:10.1175/WAF-D-13-00049.1