现代农业生产离不开使用农药来防治作物的各类病虫草害,伴随而来的是农药残留可能导致的食品安全问题。高效快速的农药残留检测方法是农产品质量安全监管监测的重要基础。传统的检测方法如色谱法、色谱-串联质谱法需要大型的检测设备和特定的操作环境,不适宜实际生产中迫切的现场检测需求。近年来,随着纳米材料的制备及功能化技术日趋完善,其在农药残留快速检测领域的研究日益活跃。基于纳米材料的强荧光、大比表面积和尺寸依赖的光学特性等优势[1],金/银纳米材料[2-3]、碳纳米材料[4-6]、半导体量子点[7-8]和聚合物纳米粒子[9]等系列纳米材料通过与光学、电化学及生物学等技术的结合构建了各类纳米传感器,在分析检测的特异性和灵敏度上有较大提升,实现了快速检测技术的突破,极大地促进了农药残留检测技术的发展[10]。
根据分析物响应信号产生原理的不同,纳米传感器主要可分为荧光传感器、表面增强拉曼散射传感器、电化学传感器和比色传感器。本文对这4类纳米传感器近几年在农药残留检测中的应用进行了概括总结,分析讨论其主要的设计原理及应用效果,以期为更好地利用纳米材料的优势促进农药残留检测技术的发展提供参考。
1 荧光传感器荧光传感器具有操作简单、响应快、灵敏度高和重现性好等优点,在农药残留检测中具有极大优势。荧光传感器由2部分组成——荧光信号元件和识别元件。酶、抗体、适配体和分子印迹聚合物 (MIP) 等识别元件与纳米材料结合,进一步丰富了荧光传感器类型[11-15]。
有机磷和氨基甲酸酯类农药可抑制酶的活性及反应中间体的生成,基于此发展了多种酶传感器,其中胆碱酯酶应用较多[16-17]。硫代胆碱是乙酰胆碱酯酶 (AChE) 催化硫代乙酰胆碱 (ATCl) 生成的中间体,可直接或间接改变荧光信号元件的荧光强度,如硫代胆碱可与金纳米团簇形成Au-S键使荧光强度降低[18],还可催化MnO2纳米层降解,进而减弱MnO2纳米层对碳点的荧光猝灭[19]。
酪氨酸酶催化多巴胺氧化的产物也可使金纳米团簇发生荧光猝灭。Yan等[20]结合有机磷农药对酪氨酸酶活性的抑制,实现了有机磷农药的快速及可视化检测 (图1a),检出限为0.1 ng/mL。Hou等[21]利用酪氨酸酶催化L-酪氨酸甲酯氧化的产物可使碳点荧光猝灭,在1.0 × 10–10~1.0 × 10–4 mol/L范围内检测甲基对硫磷 (图1b)。与胆碱酯酶相比,酪氨酸酶和酸性磷酸酶(ACP)的催化活性受高温和有机溶剂的影响较小,但灵敏度较低[22]。此外,ACP也可用于甲基对硫磷的检测,向半胱胺修饰的CdTe量子点中加入三磷酸腺苷 (ATP) 后,CdTe量子点表面的氨基与ATP间的静电和氢键作用可使量子点荧光增强,在酸性环境下,ACP可催化ATP水解成腺苷和磷酸酯,导致量子点荧光强度降低 (图1c)[23]。
与酶相比,抗体不仅具有设计灵活、成本低以及稳定性好等优点,且由于其具有极高的平衡缔合常数而可以灵敏、选择性地识别抗原,这为农药残留的检测提供了新方向。Wang等[24]利用草甘膦抗体(lgG)和碳点 (CDs) 制备了lgG-CDs传感器,基于草甘膦 (glyphosate,GLY)、Fe3O4-GLY对lgG-CDs的竞争性免疫结合与磁分离检测草甘膦。GLY浓度的对数与溶液中lgG-CDs的荧光强度呈线性相关。Zhou等[25]结合聚合物量子点 (PDs) 和亚胺硫磷抗体设计了PDs-Ab探针,基于抗原-抗体间的特异性免疫反应,PDs-Ab与亚胺硫磷在聚二甲基硅氧烷 (PDMS) 上进行有序自组装,其乙醇洗脱液的荧光强度与亚胺硫磷的质量浓度呈线性相关,从而可实现苹果皮上亚胺硫磷的原位可视化半定量检测。
由于设计灵活多变、成本效益低以及稳定性好,核酸适配体在生物分析和生物医学应用领域引起极大关注。在农药残留检测中,将核酸适配体与纳米材料结合可以得到具有更高灵敏度的传感器[26]。Zhang等[27]将氮掺杂的石墨烯量子点 (N-GQDs) 与氧乐果适配体复合,构建了N-GQDs-aptamer荧光探针 (图1d)。N-GQDs表面适配体与氧化石墨烯(GO)间强烈的π-π相互作用使GO与N-GQDs间的荧光共振能量转移增强,有利于N-GQDs的荧光猝灭。氧乐果与适配体之间的特异性结合则弱化了适配体和GO间的π-π相互作用,最终使荧光复原。此外,基于GQDs的偏振信号采用荧光偏振分析方法,可使检出限由0.041 nmol/L进一步降至0.029 pmol/L。Lu等[28]以DNA作为配体合成了强荧光的金纳米团簇,毒死蜱在强碱性条件下的水解产物可取代金纳米团簇上的DNA配体,引起金纳米团簇逐步聚集,从而促使荧光强度发生变化。该方法简单易行,可用于含P=S键农药的检测。
分子印迹聚合物 (MIP) 是基于分子识别理论发展而来的一种人工抗体,与天然识别元件 (酶、抗体等) 相比,MIP表现出更高的稳定性和更长的使用寿命;此外MIP制备简单,可通过功能单体在模板分子周围的原位共聚合制备[6, 22, 29]。Liu等[30]利用多巴胺和噻虫啉在N-GQDs试纸条上发生自聚合反应,随后除去噻虫啉模板,建立的多巴胺 (PDA) MIP可以选择性地识别噻虫啉。类似地,MIP可被应用于氯氰菊酯[31-32]的检测。Wang等[33]结合了MIP和2种发光中心二氧化硅包覆量子点 (QD@SiO2) 及硝基苯并二唑 (NBD) 设计了比率型荧光探针检测2,4-D。由于光诱导电子转移 (PET) 效应,QD@SiO2表面氨基的孤对电子可转移给周围的NBD发光体使其荧光猝灭。QD@SiO2与2,4-D的特异性结合可弱化PET过程使NBD荧光复原。尽管MIP在农药残留检测中表现出极大优势,却也由于重复性差、模板去除复杂等问题限制了广泛应用[7, 22, 34]。
除通过识别元件外,农药可直接与纳米材料作用引起荧光信号变化。猝灭剂Cu2+与荧光碳点结合形成基态CDs-Cu2+复合物可使碳点荧光强度降低,草甘膦可破坏CDs-Cu2+使碳点荧光复原[35]。金纳米粒子与CdTe量子点具有很强的荧光内滤效应使CdTe量子点的荧光减弱,甚至猝灭[36]。杀螟丹会通过静电吸附作用与金纳米粒子相结合,使其团聚,此时荧光内滤效应明显减弱甚至消失,从而使CdTe量子点的荧光强度复原[36]。
荧光传感器具有可视、快速、灵敏度高的优势,且可检测的农药种类较多,大多为氨基甲酸酯类和有机磷农药。在荧光传感器的构建中,如何提高灵敏度仍为主要的发展方向,包括开发新型纳米材料以及改进纳米材料与识别元件的结合;此外,现有纳米荧光传感器在农药残留的检测应用研究仍处于实验室阶段,需加强多学科领域的协同研究,以促进纳米荧光传感器在实际样品检测中的应用。
2 表面增强拉曼散射传感器表面增强拉曼散射 (SERS) 是一种异常的表面光学现象,可实现单分子层面的超灵敏和无损表征。自从1974年首次被Fleishmann等发现以来,SERS研究取得了飞速进展,而纳米技术的快速发展进一步扩大了其应用范围[37]。SERS传感器灵敏度的优化方式大多为调控组成、形貌、壳厚度等[38-44],如花瓣状[38]、海绵状[39]等大表面积的材料有利于提供高效、丰富的SERS热点。Huang等[44]未使用有机添加物制备了表面充分洁净的三维Ag/WO2.72纳米复合物,可准确、可靠地用于水果中福美双的检测。Kubackova等[45]在AgC纳米粒子表面修饰烷基二硫酚,实现了对有机氯农药的高灵敏检测。SERS传感器灵敏度优化的另一种方式为SERS衬底的选择,可从基质表面更直接、有效地提取检测对象。如金纳米粒子与胶带结合可同时提供SERS活性和附着粘性,通过简单易行的“粘贴和剥离”法即可实现果蔬中农药残留的一步检测[46]。
SERS传感器的信号元件多为核壳结构的金、银纳米材料,与其他类型传感器相比,检测对象主要为福美双,应用范围较窄。
3 电化学传感器电化学传感器具有操作简单、选择性好、响应高、测定结果快速准确以及易微型化等优点,在环境、食品科学、生命分析等多个领域都受到了广泛的关注[47-49]。随着纳米科学技术的不断发展,纳米电化学传感器在农药残留检测中的应用研究也取得了突破性的进展[50]。纳米材料的大比表面积、易修饰特性为电极表面提供更多的活性位点,更有利于与反应物的充分接触,进而提供可检测的电信号。
电流传感器是农药残留检测中常用的电化学传感器,其中酶电流传感器在农药残留检测中,尤其是有机磷农药和氨基甲酸酯类农药残留检测中发挥着极其重要的作用[51]。Lang等[52]等结合金纳米棒 (AuNRs) 对硫代胆碱的催化氧化作用构建了AChE/AuNRs/GCE传感器,并用于检测对氧磷和乐果。类似地,Zheng等[53]结合离子液体功能化的石墨烯 (IL-GR)、乙酰胆碱酯酶 (AChE)、聚乙烯醇 (PVA) 设计了IL-GR-PVA传感器用于检测甲拌磷。Zhao等[54]利用石墨烯-金纳米粒子-β-环糊精 (β-CD)、普鲁士蓝-壳聚糖 (PB-CS) 和AChE构建了超灵敏的电流传感器,通过多组分的协同作用实现了马拉硫磷和甲萘威的高灵敏度检测,检出限分别低至4.14 pg/mL和1.15 pg/mL。酶的有效固定是影响传感器性能的一个重要因素。Zheng等[55]通过交叉链接的方式将乙酰胆碱酯酶固定到由离子液体修饰石墨烯 (IL-GR) 和Co3O4纳米粒子构建的IL-GR/Co3O4/CHI电极上,能够有效降低酶活性损失,提高检测灵敏度。Cancar等[56]首次将共轭聚合物poly(FBThF)与磁性纳米粒子f-MNPs相结合,设计了poly(FBThF)/f-MNPs/AChE传感器用于检测对氧磷和敌百虫,灵敏度为45.01 µA/(mmol/L· cm2),酶与聚合物之间形成的酰胺键可使酶更牢固地吸附在电极表面,保持催化活性的稳定。此外,适配体、MIP等在提高电流传感器的选择性中也有一定应用[57-58],如Jiao等[57]利用掺杂二茂铁的多壁碳纳米管复合物(Fc@MWCNTs-CS)对适配体的高效捕获设计了新型、超灵敏的电化学传感器,用于检测毒死蜱。
有机磷农药和氨基甲酸酯类农药都可抑制AChE的活性,基于酶活性抑制原理构建的电流型传感器很难区分这2类农药。因此无酶型传感器逐渐发展起来,如Prathap等[59]利用林丹的电化学还原反应设计了CuO-MnO2传感器,Zhang等[60]利用烯啶虫胺的电化学还原反应设计了β-CD-rGO/GCE传感器。甲萘威在碱性条件下水解可生成1-萘酚,Chen等[61]利用1-萘酚的电化学氧化反应产生电流信号首次报道了利用AuxRh1-x合金纳米材料检测甲萘威。
相比于其他类型传感器,电化学传感器的最大优势为检测限低,灵敏度高,且耗样量最少,是一类具有广阔发展前景的传感器。
4 比色传感器比色法是从19世纪30~40年代发展起来的一种定量分析方法,具有成本低、操作简单和使用方便等优点。与其他检测方法相比,比色传感器的颜色变化可用肉眼进行实时、直接的观测,这为比色法在农药残留领域中提供了更广阔的应用范围[62]。
比色传感器利用反应体系对光吸收程度的变化而引起颜色变化,最终确定待测物质的浓度。纳米材料具有尺寸依赖的光吸收性质,因此通过控制纳米材料的团聚和解聚程度可实现农药残留的快速检测[63]。酶、适配体等生物识别成分在比色传感器中也有应用,可与纳米材料结合作为信号源,如硫代胆碱可通过抑制银纳米粒子的生长影响其吸收峰强度。Shi等[63]指出,适配体可通过配位键与金纳米粒子形成稳定的复合物,而啶虫脒可通过竞争性反应与适配体结合,最终导致金纳米粒子聚合。冉旭东等[64]基于类似的原理建立了基于核酸适配体的百草枯检测方法,该方法快速、灵敏、成本低且易操作,可用于实际样品中百草枯的检测。适配体与金纳米粒子的结合还可影响其类氧化酶活性,该原理也可实现对啶虫脒的特异性检测[2-3]。
部分农药可直接使金、银纳米粒子聚合,在此基础上发展了一系列比色传感器[65-67]。Fahimi-Kashani等[68]进一步提出金纳米粒子在加入不同农药后表现出不同的聚合及显色行为。该现象不仅可检测单一农药,还可检测混合农药。
与其他传感器相比,比色传感器的一大优势在于检测结果可视化,有利于实现农药的原位、实时检测,但存在灵敏度较低的缺陷,检出限范围在1~100 μg/kg之间[65-68]。
5 前景与展望相比于传统的检测方法,纳米传感器具有更高的灵敏度,但也存在以下问题:1) 酶传感器的选择性差。由于有机磷农药与氨基甲酸酯类农药都可以抑制AChE酶的活性,所以不能将酶传感器用于多残留分析中单个农药的准确定量。此外,温度和pH值对酶的活性有很大影响,导致酶催化反应的不可控。2) 检测信号易受干扰,导致重复性和稳定性不能兼顾。3) 适配体和MIP可有效提高传感器的选择性,但适配体分离困难、稳定性差,而MIP制备复杂,且不规则聚合物会使得模板难以洗脱导致定量结果不准确。4) 检测范围有限。目前纳米传感器在农药残留检测中的应用主要集中于有机磷类、氨基甲酸酯类及少数其他种类农药,适用范围较窄。
鉴于上述问题,目前不同类型的纳米传感器仍主要集中于实验室研究阶段,构建选择性高、分析范围广、抗干扰、简单便携的纳米传感器仍将是农药残留检测领域主要的研究方向,需要进一步深入探索新型纳米材料的制备、性质优化方法以及改进MIP的制备和模板提取方法等。此外,可重复利用传感器的发展也有待进行深入研究开发。相信在未来的几年,随着相关技术的不断发展,纳米传感器将在农药残留检测方面实现更广泛的商业化应用。
[1] |
胡先运, 江家志, 王传明, 等. 氧化石墨烯/适配体-量子点荧光探针用于ATP检测[J]. 分析试验室, 2018, 37(9): 1003-1007. HU X Y, JIANG J Z, WANG C M, et al. GO/aptamer-QD fluorescent nanoprobe for ATP detection[J]. Chin J Anal Lab, 2018, 37(9): 1003-1007. |
[2] |
WEERATHUNGE P, RAMANATHAN R, SHUKLA R, et al. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing[J]. Anal Chem, 2014, 86(24): 11937-11941. DOI:10.1021/ac5028726 |
[3] |
YANG W P, WU Y G, TAO H, et al. Ultrasensitive and selective colorimetric detection of acetamiprid pesticide based on the enhanced peroxidase-like activity of gold nanoparticles[J]. Anal Methods, 2017, 9(37): 5484-5493. DOI:10.1039/C7AY01451A |
[4] |
王嫦嫦, 刘晓雯, 郭婷, 等. 基于还原氧化石墨烯修饰玻碳电极的残留氧化乐果和溴氰菊酯电化学快速检测[J]. 中国食品学报, 2018, 18(1): 233-242. WANG C C, LIU X W, GUO T, et al. Electrochemical rapid detection of residual omethoate and deltamethrin based on reduced graphene oxide modified glassy carbon electrode[J]. J Chin Inst Food Sci Technol, 2018, 18(1): 233-242. |
[5] |
陈卫丰, 吕果, 陶华超, 等. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162. CHEN W F, LYU G, TAO H C, et al. A survey on the synthesis and application in sensors of graphene quantum dots[J]. Mater Rev, 2019, 33(7): 1156-1162. |
[6] |
白秋月, 杨春亮, 叶剑芝, 等. 碳量子点荧光探针的设计及其在农残检测中的应用进展[J]. 分析测试学报, 2019, 38(4): 488-494. BAI Q Y, YANG C L, YE J Y, et al. Design of carbon quantum dots fluorescent probes and their application progress in detection of pesticide residues[J]. J Instrum Anal, 2019, 38(4): 488-494. DOI:10.3969/j.issn.1004-4957.2019.04.019 |
[7] |
张殿伟, 王金菊, 王艳萍. 量子点传感体系在有机磷农药残留检测中的应用[J]. 食品研究与开发, 2019, 40(1): 214-219. ZHANG D W, WANG J J, WANG Y P. Application of sensing system based on quantum dots on the detection of organophosphate pesticide residues[J]. Food Res Dev, 2019, 40(1): 214-219. DOI:10.3969/j.issn.1005-6521.2019.01.035 |
[8] |
YAN X, LI H X, YAN Y, et al. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots[J]. Food Chem, 2015, 173: 179-184. DOI:10.1016/j.foodchem.2014.09.152 |
[9] |
FENG L H, ZHU C L, YUAN H X, et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications[J]. Chem Soc Rev, 2013, 42(16): 6620-6633. DOI:10.1039/c3cs60036j |
[10] |
武晓丽. 几种纳米材料在农药残留和有机污染物分析方面的应用[D]. 北京: 中国农业大学, 2017. WU X L. Applications of several nanomaterials in pesticide residue and organic contaminant analysis[D]. Beijing:China Agricultural University, 2017. |
[11] |
周迎卓, 王欣, 刘宝林. 基于适配体的功能化纳米探针在食品安全检测中的应用进展[J]. 食品工业科技, 2018, 39(10): 335-341. ZHOU Y Z, WANG X, LIU B L. Progress of functionalized nano probe based on aptamer in food safety and detection[J]. Sci Technol Food Ind, 2018, 39(10): 335-341. |
[12] |
郭雪琰, 付大友, 袁东, 等. 西维因荧光分子印迹聚合物的制备及性能表征[J]. 分析试验室, 2017, 36(12): 1439-1443. GUO X Y, FU D Y, YUAN D, et al. Study on preparation and characterization of carbaryl fluorescent molecularly imprintied polymers[J]. Chin J Anal Lab, 2017, 36(12): 1439-1443. |
[13] |
张盼, 高牧丛, 周强, 等. 生物传感器在有机磷农药检测中的应用[J]. 分析试验室, 2019, 38(5): 622-626. ZHANG P, GAO M C, ZHOU Q, et al. Application of biosensors in the detection of organophosphorus pesticides[J]. Chin J Anal Lab, 2019, 38(5): 622-626. |
[14] |
耿军龙. 对农药2,4-D选择性识别的纳米尺度分子印迹材料的制备和荧光检测[D]. 合肥: 中国科学技术大学, 2009. GENG J L. Molecule imprinting recogition and fluorescence detection for 2,4-D based on nanoscales[D]. Hefei: University of Science and Technology of China, 2009. |
[15] |
李俊杰, 侯长军, 霍丹群, 等. 有机磷农药快速检测方法与技术进展[J]. 食品安全质量检测学报, 2013, 4(1): 19-26. LI J J, HOU C J, HUO D Q, et al. Recent advance on fast detection methods and techniques for organophosphorus pesticide residues[J]. J Food Saf Qual, 2013, 4(1): 19-26. |
[16] |
LI H T, SUN C H, VIJAYARAGHAVAN R, et al. Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides[J]. Carbon, 2016, 104: 33-39. DOI:10.1016/j.carbon.2016.03.040 |
[17] |
GAO X, ZHAO Y, ZHANG B, et al. Highly-sensitive organophosphorus pesticide biosensors based on CdTe quantum dots and bi-enzyme immobilized eggshell membranes[J]. Analyst, 2016, 141(3): 1105-1111. DOI:10.1039/C5AN02163D |
[18] |
罗庆娇. 基于金/银纳米材料的光谱法对有机农药残留的分析检测[D]. 南昌: 南昌大学, 2018. LUO Q J. Study of spectral analysis based on gold/silver nanomaterials to detect the residues of organic pesticide[D]. Nanchang:Nanchang University, 2018. |
[19] |
YAN X, SONG Y, ZHU C Z, et al. MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides
[J]. Anal Chem, 2018, 90(4): 2618-2624. DOI:10.1021/acs.analchem.7b04193 |
[20] |
YAN X, LI H X, HU T, et al. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters[J]. Biosens Bioelectron, 2017, 91: 232-237. DOI:10.1016/j.bios.2016.11.058 |
[21] |
HOU J Y, DONG J, ZHU H S, et al. A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots[J]. Biosens Bioelectron, 2015, 68: 20-26. DOI:10.1016/j.bios.2014.12.037 |
[22] |
YAN X, LI H X, SU X G. Review of optical sensors for pesticides[J]. Trac Trends Anal Chem, 2018, 103: 1-20. DOI:10.1016/j.trac.2018.03.004 |
[23] |
WANG J, YAN Y, YAN X, et al. Label-free fluorescent assay for high sensitivity and selectivity detection of acid phosphatase and inhibitor screening[J]. Sensor Actuat B: Chem, 2016, 234: 470-477. DOI:10.1016/j.snb.2016.05.024 |
[24] |
WANG D, LIN B X, CAO Y J, et al. A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads[J]. J Agric Food Chem, 2016, 64(30): 6042-6050. DOI:10.1021/acs.jafc.6b01088 |
[25] |
ZHOU L N, CAO Y J, LIN B X, et al. In-situ visual and ultrasensitive detection of phosmet using a fluorescent immunoassay probe
[J]. SensorActuat B: Chem, 2017, 241: 915-922. |
[26] |
ARVAND M, MIRROSHANDEL A A. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide[J]. Biosens Bioelectron, 2017, 96: 324-331. DOI:10.1016/j.bios.2017.05.028 |
[27] |
ZHANG C P, LIN B X, CAO Y J, et al. Fluorescence determination of omethoate based on a dual strategy for improving sensitivity[J]. J Agric Food Chem, 2017, 65(14): 3065-3073. DOI:10.1021/acs.jafc.7b00166 |
[28] |
LU Q, ZHOU T Y, WANG Y P, et al. Transformation from gold nanoclusters to plasmonic nanoparticles: A general strategy towards selective detection of organophosphorothioate pesticides[J]. Biosens Bioelectron, 2018, 99: 274-280. DOI:10.1016/j.bios.2017.07.066 |
[29] |
王慎苓, 朱化平, 王传刚, 等. 分子印迹技术及其在农药残留检测中的应用[J]. 食品安全质量检测学报, 2019, 10(7): 1955-1960. WANG S L, ZHU H P, WANG C G, et al. Molecular imprinting technology and its application for the detection of pesticide residue[J]. J Food Saf Qual, 2019, 10(7): 1955-1960. DOI:10.3969/j.issn.2095-0381.2019.07.034 |
[30] |
LIU Y, CAO N, GUI W Y, et al. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection[J]. Talanta, 2018, 183: 339-344. DOI:10.1016/j.talanta.2018.01.063 |
[31] |
XIAO T T, SHI X Z, JIAO H F, et al. Selective and sensitive determination of cypermethrin in fish via enzyme-linked immunosorbent assay-like method based on molecularly imprinted artificial antibody-quantum dot optosensing materials[J]. Biosens Bioelectron, 2016, 75: 34-40. DOI:10.1016/j.bios.2015.08.014 |
[32] |
WANG J X, QIU H, SHEN H Q, et al. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water[J]. Biosens Bioelectron, 2016, 85: 387-394. DOI:10.1016/j.bios.2016.05.041 |
[33] |
WANG X Y, YU J L, WU X Q, et al. A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2, 4-dichlorophenoxyacetic acid (2, 4-D)[J]. Biosens Bioelectron, 2016, 81: 438-444. DOI:10.1016/j.bios.2016.03.031 |
[34] |
吴茂, 范亚军, 郭亚平, 等. 有机磷农药残留分子印迹聚合物研究现状与展望[J]. 农药学学报, 2018, 20(6): 689-703. WU M, FAN Y J, GUO Y P, et al. Research, advancement and prospect of molecularly imprinted polymers for organophosphorus pesticide residues[J]. Chin J Pestic Sci, 2018, 20(6): 689-703. |
[35] |
WANG L, BI Y D, GAO J, et al. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples[J]. RSC Adv, 2016, 6(89): 85820-85828. DOI:10.1039/C6RA10115A |
[36] |
杜姗姗. 利用巯基乙酸修饰的水溶性CdTe量子点检测蔬菜中杀螟丹的残留[D]. 长春: 吉林大学, 2017. DU S S. Detection of cartap residues in vegetables by water-soluble CdTe QDs capped with thioglycolic acid[D]. Changchun: Jilin University, 2017. |
[37] |
邹婷婷, 徐振林, 杨金易, 等. 表面增强拉曼光谱技术在食品安全检测中的应用研究进展[J]. 分析测试学报, 2018, 37(10): 1174-1181. ZOU T T, XU Z L, YANG J Y, et al. Application advances of surface enhanced Raman spectroscopy in food safety detection[J]. J Instrum Anal, 2018, 37(10): 1174-1181. DOI:10.3969/j.issn.1004-4957.2018.10.008 |
[38] |
WANG C W, WANG J F, LI P, et al. Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates
[J]. Nanoscale, 2016, 8(47): 19816-19828. DOI:10.1039/C6NR07295J |
[39] |
ZHU C H, WANG X J, SHI X F, et al. Detection of dithiocarbamate pesticides with a spongelike surface-enhanced Raman scattering substrate made of reduced graphene oxide-wrapped silver nanocubes[J]. ACS Appl Mater Interfaces, 2017, 9(45): 39618-39625. DOI:10.1021/acsami.7b13479 |
[40] |
BEKANA D, LIU R, AMDE M, et al. Use of polycrystalline ice for assembly of large area Au nanoparticle superstructures as SERS substrates[J]. ACS Appl Mater Interfaces, 2017, 9(1): 513-520. DOI:10.1021/acsami.6b15378 |
[41] |
WEI W, DU Y X, ZHANG L M, et al. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires[J]. J Mater Chem C, 2018, 6(32): 8793-8803. DOI:10.1039/C8TC01741G |
[42] |
杨焕娣, 林翔, 刘远兰, 等. 银纳米立方三维 SERS 基底制备及用于多种溶剂中农药的快速检测[J]. 光谱学与光谱分析, 2018, 38(1): 99-103. YANG H D, LIN X, LIU Y L, et al. Preparation of three-dimensional hotpot SERS substrate with sliver nanocubes and its application in detection of pesticide[J]. SpectroscSpectr Anal, 2018, 38(1): 99-103. |
[43] |
周侠, 张莉, 王红艳, 等. Au@Ag 致密单层膜的组装及对农药残留的SERS检测[J]. 环境工程学报, 2018, 12(5): 1318-1325. ZHOU X, ZHANG L, WANG H Y, et al. Assembly of Au@Ag monolayer membrane and SERS detection of pesticide residues[J]. Chin J Environ Eng, 2018, 12(5): 1318-1325. DOI:10.12030/j.cjee.201709086 |
[44] |
HUANG J, MA D Y, CHEN F, et al. Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing
[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7436-7446. DOI:10.1021/acsami.6b14571 |
[45] |
KUBACKOVA J, FABRICIOVA G, MISKOVSKY P, et al. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots[J]. Anal Chem, 2015, 87(1): 663-669. DOI:10.1021/ac503672f |
[46] |
CHEN J M, HUANG Y J, KANNAN P, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables[J]. Anal Chem, 2016, 88(4): 2149-2155. DOI:10.1021/acs.analchem.5b03735 |
[47] |
惠媛媛, 王毕妮, 彭海霞. 电化学生物传感器在黄曲霉毒素检测中的应用研究进展[J]. 食品工业科技, 2019, 40(2): 300-305. HUI Y Y, WANG B N, PENG H X. Application research development of electrochemical biosensors in detection of aflatoxins[J]. Sci Technol Food Ind, 2019, 40(2): 300-305. |
[48] |
林少华, 谢银侠, 罗红霞, 等. 基于碳基电极的电化学传感器检测铅离子的研究进展[J]. 生物技术通报, 2019, 35(3): 183-193. LIN S H, XIE Y X, LUO H X, et al. A review of carbon-based electrochemical sensor for the detection of lead ion[J]. Biotechnol Bull, 2019, 35(3): 183-193. |
[49] |
彭钢, 俞亚东, 陈晓君, 等. 基于石墨烯复合材料的电化学传感器在基因检测中的研究进展[J]. 生物加工过程, 2018, 16(5): 11-19. PENG G, YU Y D, CHEN X J, et al. Research progress in electrochemical gene detection based on graphene composites[J]. Chin J Bioprocess Eng, 2018, 16(5): 11-19. |
[50] |
张敏. 功能化石墨烯电化学传感器检测烟碱类农药的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. ZHANG M. Research on novel electrochemical sensors for neonicotinoid insecticide detection based on functionalized graphene[D]. Harbin: Harbin Institute of Technology, 2017. |
[51] |
SONG Y H, CHEN J Y, SUN M, et al. A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples[J]. J Hazard Mater, 2016, 304: 103-109. DOI:10.1016/j.jhazmat.2015.10.058 |
[52] |
LANG Q L, HAN L, HOU C T, et al. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide[J]. Talanta, 2016, 156-157: 34-41. DOI:10.1016/j.talanta.2016.05.002 |
[53] |
ZHENG Y Y, LIU Z M, ZHAN H J, et al. Development of a sensitive acetylcholinesterase biosensor based on a functionalized graphene-polyvinyl alcohol nanocomposite for organophosphorous pesticide detection[J]. Anal Methods, 2015, 7(23): 9977-9983. DOI:10.1039/C5AY02666K |
[54] |
ZHAO H Y, JI X P, WANG B B, et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection
[J]. Biosens Bioelectron, 2015, 65: 23-30. DOI:10.1016/j.bios.2014.10.007 |
[55] |
ZHENG Y Y, LIU Z M, ZHAN H J, et al. Studies on electrochemical organophosphate pesticide (OP) biosensor design based on ionic liquid functionalized graphene and a Co3O4 nanoparticle modified electrode
[J]. Anal Methods, 2016, 8(26): 5288-5295. DOI:10.1039/C6AY01346E |
[56] |
DZUDZEVIC CANCAR H, SOYLEMEZ S, AKPINAR Y, et al. A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides[J]. ACS Appl Mater Interfaces, 2016, 8(12): 8058-8067. DOI:10.1021/acsami.5b12383 |
[57] |
JIAO Y C, JIA H Y, GUO Y M, et al. An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes[J]. RSC Adv, 2016, 6(63): 58541-58548. DOI:10.1039/C6RA07735H |
[58] |
XIE T J, ZHANG M, CHEN P, et al. A facile molecularly imprinted electrochemical sensor based on graphene: application to the selective determination of thiamethoxam in grain[J]. RSC Adv, 2017, 7(62): 38884-38894. DOI:10.1039/C7RA05167K |
[59] |
ANU PRATHAP M U, SUN S N, WEI C, et al. A novel non-enzymatic lindane sensor based on CuO-MnO2 hierarchical nano-microstructures for enhanced sensitivity
[J]. Chem Commun, 2015, 51(21): 4376-4379. DOI:10.1039/C5CC00024F |
[60] |
ZHANG M, ZHANG H, ZHAI X C, et al. Application of β-cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemical sensing of the nitenpyram residue in real samples
[J]. New J Chem, 2017, 41(5): 2169-2177. DOI:10.1039/C6NJ02891H |
[61] |
CHEN W, LIU Y Y, ZHANG Y, et al. Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au42Rh58 alloy nanocrystals
[J]. J Mater Chem A, 2017, 5(15): 7064-7071. DOI:10.1039/C7TA01197K |
[62] |
SUN J F, WANG C, SHAO B, et al. Fast on-site visual detection of active ricin using a combination of highly efficient dual-recognition affinity magnetic enrichment and a specific gold nanoparticle probe[J]. Anal Chem, 2017, 89(22): 12209-12216. DOI:10.1021/acs.analchem.7b02944 |
[63] |
SHI H J, ZHAO G H, LIU M C, et al. Aptamer-based colorimetric sensing of acetamiprid in soil samples: Sensitivity, selectivity and mechanism[J]. J Hazard Mater, 2013, 260: 754-761. DOI:10.1016/j.jhazmat.2013.06.031 |
[64] |
冉旭东, 吴远根. 百草枯核酸适配体的筛选及其比色检测研究[J]. 分析化学, 2019, 47(4): 567-575. RAN X D, WU Y G. Screening aptamers and development of colorimetric detection method of paraquat pesticide[J]. Chin J Anal Chem, 2019, 47(4): 567-575. |
[65] |
BAI W H, ZHU C, ZHANG G L, et al. Visual colorimetric detection of cyromazine in river water using citrate-stabilized gold nanoparticles[J]. Anal Methods, 2016, 8(29): 5869-5873. DOI:10.1039/C6AY01845A |
[66] |
SHRIVAS K, NIRMALKAR N, GHOSALE A, et al. Enhancement of plasmonic resonance through an exchange reaction on the surface of silver nanoparticles: application to the highly selective detection of triazophos pesticide in food and vegetable samples[J]. RSC Adv, 2016, 6(84): 80739-80747. DOI:10.1039/C6RA16097B |
[67] |
RAWAT K A, MAJITHIYA R P, ROHIT J V, et al. Mg2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles
[J]. RSC Adv, 2016, 6(53): 47741-47752. DOI:10.1039/C6RA06450G |
[68] |
FAHIMI-KASHANI N, HORMOZI-NEZHAD M R. Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides[J]. Anal Chem, 2016, 88(16): 8099-8106. DOI:10.1021/acs.analchem.6b01616 |