南京农业大学学报  2019, Vol. 42 Issue (6): 1022-1029   PDF    
http://dx.doi.org/10.7685/jnau.201901033
0

文章信息

于昕, 赵玉花, 相广庆, 杜远鹏, 姚玉新
YU Xin, ZHAO Yuhua, XIANG Guangqing, DU Yuanpeng, YAO Yuxin
盐碱处理下砧木SA15和SA17对‘美乐’葡萄生长和果实品质的影响
Effects of SA15 and SA17 rootstocks on growth and berry quality of 'Merlot' grape under salt and alkali treatment
南京农业大学学报, 2019, 42(6): 1022-1029
Journal of Nanjing Agricultural University, 2019, 42(6): 1022-1029.
http://dx.doi.org/10.7685/jnau.201901033

文章历史

收稿日期: 2019-01-18
盐碱处理下砧木SA15和SA17对‘美乐’葡萄生长和果实品质的影响
于昕1 , 赵玉花2 , 相广庆1 , 杜远鹏1 , 姚玉新1     
1. 山东农业大学园艺科学与工程学院, 山东 泰安 271018;
2. 山东省商河县殷巷镇农业办, 山东 济南 251600
摘要[目的]本文旨在评价耐盐碱砧木SA15和SA17对‘美乐’葡萄生长和果实品质的影响。[方法]以‘美乐’自根树和嫁接树为试材,于葡萄果实转色期开始进行复合盐碱灌溉处理,以正常生长条件为对照,测定其生长参数,Na+、K+、果实可溶性糖、有机酸、多酚及香气物质含量等品质指标,并对果实香气成分进行主成分分析。[结果]在盐碱处理下,‘美乐’自根树叶面积和节间直径较对照显著下降,砧木SA15和SA17嫁接树生长参数与对照无显著差异;SA15和SA17对叶片Na+含量无显著影响,但显著提高了叶片K+/Na+比值。在正常生长条件下,SA15显著降低了果实可滴定酸含量,SA17提高了果糖含量;在盐碱处理下,SA15提高了果实可溶性固形物、葡萄糖和果糖含量,降低了滴定酸和酒石酸含量,而SA17则降低了可溶性固形物、葡萄糖、果糖和酒石酸含量。砧木SA15显著提高了盐碱处理下果实花色苷、总酚和黄烷醇含量,SA17提高了正常和盐碱处理下总酚含量。葡萄果实香气成分的主成分分析表明,在正常生长条件下,砧木SA17能显著影响‘美乐’葡萄香气;在盐碱处理下,砧木SA15和SA17对葡萄香气有不同的影响。[结论]砧木SA15和SA17缓解了盐碱处理对生长的抑制,砧木SA15嫁接有助于提高葡萄在盐碱处理下的果实品质。
关键词葡萄   砧木   盐碱处理   生长   果实品质   
Effects of SA15 and SA17 rootstocks on growth and berry quality of 'Merlot' grape under salt and alkali treatment
YU Xin1, ZHAO Yuhua2, XIANG Guangqing1, DU Yuanpeng1, YAO Yuxin1    
1. College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China;
2. Agricultural Office of Yinxiang Town, Shanghe County, Shandong Province, Jinan 251600, China
Abstract: [Objectives] This paper was aimed to evaluate the effects of the SA15 and SA17 rootstocks on 'Merlot' grapevine growth and berry quality. [Methods] The 'Merlot' self-rooted and their grafted vines on SA15 and SA17 were used to be subjected to salt and alkali treatments, normal growth conditions as control, and the treatments began from veraison. The growth parameters, contents of K+, Na+, and the quality parameters including soluble sugars, organic acids, polyphenols and aroma volatiles were determined, and the aroma components of fruits were analyzed by principal component analysis. [Results] The leaf area and internodes diameter of 'Merlot' self-rooted vines were significantly decreased by salt and alkali treatments; in contrast, all of the detected growth parameters of grafted vines on SA15 and SA17 did not show significant difference under control and stress conditions. The content of Na+ was not significantly affected by salt and alkali treatments but the ratio of K+/Na+ was significantly enhanced. SA15 significantly reduced the titratable acidity of grape berries and SA17 enhanced fructose content under the normal conditions. In contrast, SA15 enhanced the content of soluble solids, glucose and fructose and decreased the titratable acidity and tartaric acid under the treatments of salt and alkali; however, SA17 decreased the content of soluble solids, glucose, fructose and tartaric acid. The total anthocyanins, total phenols and flavanols were significantly increased by SA15 under salt and alkali treatments; in contrast, total phenols alone was increased by SA17 under the normal and stress conditions. The principal component analysis indicated that SA17 largely increased aroma of 'Merlot' berries under the normal conditions; SA15 and SA17 imparted different effects on aroma under the treatments of salt and alkali. [Conclusions] Rootstocks SA15 and SA17 alleviated the growth inhibition caused by salt and alkali treatments and especially SA15 positively has contributed to the berry quality of grape.
Keywords: grapevine    rootstock    salt and alkali treatment    growth    berry quality   

土壤盐碱化为全球性环境问题, 严重影响了作物产量和品质[1]。全球盐碱地面积约为9.54亿hm2, 其中我国盐碱地面积超过0.99亿hm2[2]。盐碱地中含有大量的NaCl、NaHCO3和Na2CO3, 易造成植物复合盐碱胁迫[3]

我国葡萄产区包含大面积土壤盐渍化严重地区[4], 基于耐盐碱砧木的嫁接栽培是实现盐碱地葡萄种植的有效途径。嫁接栽培始于抵抗葡萄根瘤蚜危害[5], 嫁接苗在生产性能方面与自根苗相比具有明显优势[6]。目前葡萄砧木耐盐碱胁迫主要集中在耐盐评价及机制研究等方面[7-9], 并鉴定出1103P等具有相对较高的耐盐能力的砧木[10], 而有关碱性盐胁迫和复合盐碱胁迫的研究比较缺乏。在盐碱条件下, 耐盐碱葡萄砧木能显著提高接穗的营养生长[11]; 在盐胁迫下砧木可以提高葡萄果实可溶性固形物含量, 降低可滴定酸含量[12]; 在盐碱胁迫下, 果树自身的防御机制可以积累防御性次生代谢物质和渗透调节物质, 并且这些物质本身也是果实品质的重要组成部分[13-15]

本课题组前期以‘左山1号’为母本和‘SO4’为父本杂交选育出抗根瘤蚜优系砧木SA15和SA17, 二者均具有较强的耐盐碱能力[16-17]。因此, 本文在正常和盐碱处理下, 选择砧木SA15和SA17嫁接‘美乐’葡萄, 研究其对葡萄生长和果实品质的影响, 以期为2种砧木的全面评价及推广应用提供理论支持。

1 材料与方法 1.1 供试试材

试验于2018年在山东农业大学南校区葡萄试验基地进行。供试葡萄品种为‘美乐’(Vitis vinifera‘Merlot’), 砧木为SA15和SA17, 是由‘左山1号’(山葡萄, Vitis amurensis Rupr.)与‘SO4’(冬葡萄×河岸葡萄, V.berlandieri Planch× V.riparia Michx)杂交的后代优系。‘美乐’自根树以及砧木SA15、SA17嫁接树树龄均为4年, 露天栽培。

1.2 试验处理

将中性盐NaCl、Na2SO4和碱性盐NaHCO3按摩尔比4 : 5 : 5混合, 并添加少量Na2CO3调整pH值, 复合盐碱质量浓度为10.8 g·L-1, pH8.0。于7月26日(转色期, 成熟前1个月左右)开始进行盐碱处理, 每株浇灌20 L, 每3 d处理1次, 共处理6次, 处理后及时覆盖地膜。以正常生长条件为对照, 即浇灌自来水。每个处理10株。

于果实成熟前8月11日、8月16日和成熟期8月26日取样, 测定果实可溶性固形物(TSS)和可滴定酸(TA)含量。成熟期果实还用于测定酚类物质、可溶性糖、有机酸含量及果实香气物质。果实采样后取结果枝测定生长指标。

1.3 试验方法 1.3.1 枝条生长势及叶片Na+、K+离子含量测定

采用游标卡尺测定结果枝第5节位节间直径和节间长度。采用电子天平称量结果枝5~8节位枝条质量。采用硝酸-高氯酸消煮法[18]测定叶片Na+、K+含量。

1.3.2 果实可溶性固形物和可滴定酸含量测定

取10 g新鲜果实充分混合研磨, 10 000 r·min-1离心30 min, 收集上清液。利用数显糖度计(PAL-1, ATAGO, Japan)测定果实可溶性固形物含量。采用酸碱滴定法测定可滴定酸(TA)含量[19]

1.3.3 果实可溶性糖和有机酸含量测定

取1 g研磨好的果肉组织加入5 mL水中, 60 ℃水浴30 min, 10 000 r·min-1离心30 min, 0.22 μm滤头过滤至5 mL离心管中。利用毛细管电泳仪(PA 800 plus, SCIEX, USA)测定可溶性糖和有机酸含量。毛细管电泳条件:石英毛细管80 cm(有效长度70 cm)× 75 μm; 分离电压9 kV; 进样波长:可溶性糖为214 nm, 有机酸为200 nm; 进样压力0.5 psi; 进样时间18 s; 操作温度25 ℃; 工作电流:可溶性糖50 μA, 有机酸70 μA。

1.3.4 果实酚类物质测定

取0.2 g果皮研磨后, 与10 mL 1%(体积分数)的盐酸-甲醇充分混合, 黑暗提取24 h, 13 000 r·min-1离心5 min后取上清液测定花色苷、总酚、黄烷醇和类黄酮含量。采用盐酸-甲醇法[20]测定果皮中花色苷。采用Folin-Cioealetu法[21]测定总酚含量。采用香草醛-盐酸法[22]测定果实中黄烷醇含量。采用亚硝酸钠-氯化铝比色法[23]测定类黄酮含量。

1.3.5 果实香气物质含量测定

挥发性香气物质采用顶空固相微萃取-气质连用(HS-SPME-GC-MS)方法[24]测定, 方法略有改动。新鲜果实去梗、去籽、切碎, 准确称取10 g放到20 mL进样瓶中, 加入3 μL 2-辛醇(0.822 g·L-1)、1 g NaCl和磁转子, 迅速拧好瓶塞。将活化好的DVB-CAR-PDMS(50/30 μm)固相微萃取SPME纤维(Supelco, Bellafonte, PA, USA)插入样品瓶中萃取45 min。萃取结束后, 将SPME纤维头安装在GC检测器上, 进样口温度250 ℃, 解析5 min后取下。气质联用仪为GC/MS QP2010 Plus(Shimadzu, Kyoto, Japan), 所用色谱柱为Rtx-5MS(60 mm×0.25 mm×0.25 μm)毛细管柱, 载气为高纯氦气, 流速为1.27 mL·min-1。柱温升温程序:初始40 ℃, 保持2 min, 以5 ℃·min-1的速度升温到230 ℃, 保持5 min。质谱接口温度250 ℃, 离子源温度230 ℃, 电离方式EI, 电子能量70 eV, 全扫描方式, 扫描范围30~450 U。

1.4 数据处理

利用Digmizer软件计算叶面积。采用Microsoft Excel 2016软件处理数据和制图, 采用DPS软件的LSD法进行差异显著性检验。采用SPSS 25.0软件进行主成分分析。

2 结果与分析 2.1 盐碱处理下砧木SA15和SA17对‘美乐’葡萄生长的影响

表 1可见:在正常生长条件(对照)下, SA15和SA17两种砧木均提高了接穗的生长参数。砧木SA15嫁接树叶面积和枝条质量比自根树增加了15.19%和48.93%, SA17则增加了29.25%和66.69%。在盐碱处理下, ‘美乐’自根树叶面积和节间直径较对照显著下降, 而嫁接树的4个指标均与对照无显著差异, 但显著高于盐碱处理下的‘美乐’自根树。

表 1 砧木SA15和SA17对‘美乐’葡萄生长参数的影响 Table 1 Effects of rootstocks SA15 and SA17 on growth parameters of 'Merlot' grape
指标
Index
对照Control 盐碱处理Salt and alkali treatment
自根树
Self-rooted vine
SA15 SA17 自根树
Self-rooted vine
SA15 SA17
叶面积/cm2 Leaf area 180.49±27.45c 207.90±34.23abc 233.29±13.14a 146.23±30.60d 192.77±16.21bc 213.71±27.46ab
节间直径/mmInternodes diameter 7.46±0.97a 8.46±0.26a 8.57±1.46a 6.11±0.75b 8.16±0.56a 8.11±0.88a
节间长度/cmInternodes length 6.68±1.04ab 7.30±0.67a 7.88±0.63a 5.68±1.58b 7.15±0.79ab 7.50±1.12a
枝条质量/gBranches weight 14.53±3.80bc 21.64±3.67a 24.22±3.18a 11.44±6.06c 19.74±1.56ab 23.42±4.81a
注:同行不同小写字母表示差异显著(P < 0.05)。下同。
Note:Different lowercase letters in the same row indicate significant difference at 0.05 level. The same as follows.
2.2 盐碱处理下砧木SA15和SA17对‘美乐’葡萄叶片Na+、K+含量的影响

表 2可知:与对照相比, 盐碱处理提高了‘美乐’自根树和嫁接树叶片Na+含量, 而降低了K+含量, 导致K+/Na+比值下降。在盐碱处理下, SA15和SA17嫁接提高了‘美乐’叶片Na+含量; SA15和SA17显著提高了‘美乐’叶片K+含量; 最终SA15和SA17均显著提高了‘美乐’叶片K+/Na+比值。

表 2 砧木SA15和SA17对‘美乐’葡萄叶片Na+、K+含量的影响 Table 2 Effects of rootstocks SA15 and SA17 on Na+and K+contents of 'Merlot' leaves
指标
Index
对照Control 盐碱处理Salt and alkali treatment
自根树
Self-rooted vine
SA15 SA17 自根树
Self-rooted vine
SA15 SA17
Na+含量/(mg·g-1)Na+ content 33.65±2.09cd 33.05±1.70d 34.44±1.06bcd 36.17±1.19bc 37.10±1.68ab 39.35±0.97ab
K+含量/(mg·g-1)K+ content 55.85±1.60c 56.78±1.39bc 63.24±0.80a 51.70±0.80d 55.19±2.75c 59.09±2.11b
K+/Na+ 1.67±0.14b 1.72±0.05ab 1.84±0.03a 1.43±0.05d 1.52±0.03c 1.53±0.04c
2.3 盐碱处理下砧木SA15和SA17对‘美乐’葡萄果实品质的影响 2.3.1 果实糖、酸含量

表 3可见:在正常生长条件下, SA15和SA17两种砧木对不同发育阶段果实的可溶性固形物含量未产生显著性影响。砧木SA15嫁接显著降低成熟果实可滴定酸含量, 比自根树下降了9.31%;SA17对果实可滴定酸未产生显著影响。在盐碱处理下, 与其自根树对照相比, SA15显著提高了成熟及成熟前10 d果实的可溶性固形物含量, 在成熟前增幅达1.16 °Brix; 同时降低了果实可滴定酸含量; SA17显著降低了发育后期果实的可溶性固形物含量, 而对果实可滴定酸未产生显著影响。

表 3 砧木SA15和SA17对‘美乐’葡萄果实糖酸含量的影响 Table 3 Effects of rootstocks SA15 and SA17 on sugars and acids of 'Merlot' grape berries
指标
Index
取样日期
Sampling date
对照Control 盐碱处理Salt and alkali treatment
自根树
Self-rooted vine
SA15 SA17 自根树
Self-rooted vine
SA15 SA17
可溶性固形物/(°Brix) 08-11 21.50±0.70b 21.40±1.39b 21.60±0.10ab 21.77±0.45ab 22.83±0.35a 20.73±0.45b
Soluble solid 08-16 21.47±0.25b 21.60±0.10b 21.80±0.26b 21.80±0.36b 22.57±0.40a 20.87±0.25c
08-26 22.00±0.20b 21.97±0.47b 22.27±0.42b 21.97±0.64b 23.13±0.64a 21.03±0.25c
可滴定酸/(g·L-1) 08-11 21.60±0.98ab 20.93±1.12ab 20.90±1.23ab 22.13±1.25a 19.18±1.69b 22.15±2.12a
Titratable acid 08-16 14.50±0.85ab 13.65±1.15b 14.95±0.88ab 15.10±0.71a 13.93±0.31ab 15.23±0.64a
08-26 13.43±0.34ab 12.18±1.07c 13.75±0.78a 14.18±0.26a 12.53±0.88bc 14.10±0.23a

正常生长条件下, 砧木SA15嫁接对葡萄果实葡萄糖和果糖含量均未产生显著影响, 而SA17嫁接则显著提高了果糖含量。SA15和SA17嫁接对葡萄果实中柠檬酸和苹果酸无显著影响, 显著降低了酒石酸含量。在盐碱处理下, 砧木SA15显著提高了果实中果糖和葡萄糖含量, 降低了酒石酸含量; 而砧木SA17显著降低了葡萄糖、果糖和酒石酸含量(图 1)。

图 1 砧木SA15和SA17对‘美乐’葡萄果实糖、酸组分含量的影响 Fig. 1 Effects of rootstocks SA15 and SA17 on contents of sugar and acid conponents of 'Merlot' berries
2.3.2 果实酚类物质

表 4可见:在正常生长条件下, 砧木SA15对4种酚类物质均未产生显著影响, 砧木SA17则显著提高了果实的总酚含量, 增幅达41.4%。在盐碱处理下, 砧木SA15显著提高了果实花色苷、总酚和黄烷醇含量, 尤其是总酚含量提高37.5%;相比之下, SA17仅显著提高了总酚含量, 增幅为20.26%。

表 4 砧木SA15和SA17对‘美乐’葡萄果实酚类物质的影响 Table 4 Effects of rootstocks SA15和SA17 on polyphenols of 'Merlot' berries mg·g-1
指标
Index
对照Control 盐碱处理Salt and alkali treatment
自根树
Self-rooted vine
SA15 SA17 自根树
Self-rooted vine
SA15 SA17
花色苷Anthocyanins 2.07±0.11abc 2.09±0.15ab 2.01±0.07abc 1.75±0.23c 2.32±0.27a 1.93±0.20bc
总酚Total phenol 26.81±4.65c 25.42±1.48cd 37.91±3.04a 19.87±2.08d 34.95±2.18ab 30.23±4.89bc
黄烷醇Flavanols 38.30±2.08abc 40.15±2.05abc 41.19±4.01ab 34.98±4.93c 42.78±3.35a 35.65±4.03bc
类黄酮Total flavonoids 0.14±0.02a 0.15±0.02a 0.13±0.02a 0.16±0.02a 0.14±0.01a 0.16±0.02a
2.3.3 果实香气物质

图 2表 5可知:从‘美乐’葡萄果实中共检测到30种香气物质, 按照官能团不同分为5大类, 其中醛类11种, 醇类7种, 酯类4种, 酮类3种, 其他香气物质5种。正常生长条件下, SA15和SA17增加了果实香气物质种类和含量; SA15主要增加了醛类物质含量, 而SA17增加了醇类物质含量。在盐碱处理下, 2种砧木较自根树也提高了果实香气物质种类和含量; SA15和SA17提高了香气物质总含量, 主要归功于醛类和醇类物质的增加。

图 2 砧木SA15和SA17对‘美乐’葡萄香气物质类型数量及含量的影响 Fig. 2 Effects of rootstocks SA15 and SA17 on the number of aroma types and contents of 'Merlot' berries
表 5 砧木SA15和SA17对‘美乐’葡萄果实香气组分及含量的影响 Table 5 Effects of rootstocks SA15 and SA17 on aroma components and contents of 'Merlot' berries ng·g-1
化合物
Compound
对照Control 盐碱处理Salt and alkali treatment
自根树
Self-rooted vine
SA15 SA17 自根树
Self-rooted vine
SA15 SA17
醛类Aldehydes
  反式-2-己烯醛(E)-2-hexenal 69.47±5.91d 84.67±1.67c 46.64±9.04e 91.12±1.99c 104.63±10.96b 121.79±9.26a
  己醛Hexanal 44.23±3.64d 75.10±5.74b 59.14±7.38c 83.00±7.87b 98.16±6.17a 101.03±7.56a
  壬醛Nonanal 2.09±0.40bc 1.88±0.04c 3.66±0.37a 2.37±0.25b 3.71±0.40a 3.73±0.62a
  癸醛Decanal 0.83±0.07d 0.96±0.07d 1.53±0.50b 0.82±0.10d 1.43±0.20c 2.17±0.34a
  3-甲基丁醛3-methyl butanal 0.40±0.07d 0.28±0.02d 0.54±0.08c 0.69±0.06b 0.88±0.09a 0.54±0.11c
  2-甲基丁醛2-methyl butanal 0.13±0.01c 0.30±0.05b 0.33±0.09b 0.58±0.07a
  反式-2-壬烯醛(E)-2-nonenal 0.61±0.11c 1.28±0.17b 0.53±0.13c 2.32±0.67a
  苯乙醛Benzeneacetaldehyde 0.27±0.07a 0.54±0.04a 0.63±0.51a
  戊醛Pentanal 0.02±0.01b 0.31±0.00a 0.24±0.08a 0.04±0.01b 0.09±0.00b
  反, 顺-2, 6-壬二烯醛(E, Z)-2, 6-nonadienal 0.16±0.00a 0.15±0.00a 0.86±0.58a
  辛醛Octanal 0.04±0.00a 0.06±0.01a 0.17±0.13a
醇类Alcohols
  乙醇Ethanol 36.56±6.70d 35.60±2.71cd 47.41±1.71b 40.25±5.27cd 55.36±2.74a 41.58±6.33bc
  1-己醇1-hexanol 6.18±1.04d 2.56±0.35d 61.30±6.15a 3.53±0.31d 43.03±3.14b 35.16±6.34c
  1-辛醇1-octanol 0.25±0.08c 0.22±0.03c 0.57±0.13a 0.22±0.04c 0.49±0.08b 0.51±0.10b
  反式-2-己烯醇(E)-2-hexenol 0.81±0.12c 0.44±0.17c 6.56±1.29a 0.74±0.11c 4.63±0.56b 0.68±0.05c
  1-辛烯-3-醇1-octen-3-ol 0.14±0.08a 0.18±0.01a
  1-庚醇1-heptanol 0.28±0.04a 0.20±0.01b 0.27±0.05a
  二氢香芹醇2-methyl-5-(1-methylethe-nyl)-cyclohexanol 0.49±0.10b 0.87±0.22a 0.88±0.39ab
酯类Esters
  2, 2, 4-三甲基戊二醇异丁酯2, 2, 4-trimethyl-1, 3-pentanediol diisobutyrate 0.48±0.07c 1.13±0.16a 0.69±0.12b 0.32±0.03d 1.21±0.08a 0.69±0.15bc
  2, 2, 4-三甲基-1, 3-戊二醇单异丁酸酯2, 2, 4-trimethyl-1, 3-pentanediolmono 0.44±0.08c 0.91±0.11a 0.69±0.17b 0.64±0.03b 0.70±0.08b 0.46±0.12c
  乙酸乙酯Ethyl acetate 5.29±1.14a 2.09±0.45b 3.52±1.50b
  香叶酸甲酯Methyl geranate 0.28±0.13
酮类Ketones
  甲基庚烯酮Methyl heptenone 0.21±0.06b 0.15±0.03b 0.26±0.06b 0.23±0.03b 0.54±0.06a 0.54±0.26a
  香叶基丙酮Geranylacetone 0.25±0.04a 0.26±0.10a 0.33±0.07a
   β-紫罗兰酮β-ionone 0.34±0.08a 0.30±0.06ab 0.23±0.02b 0.26±0.07b
其他Others
  泪柏醚(+)-manoyl oxide 0.20±0.03c 0.30±0.02bc 0.59±0.24a 0.30±0.04bc 0.45±0.06ab 0.71±0.39a
  己酸Hexanoic acid 1.65±1.52a 1.05±0.00a
  乙苯Ethylbenzene 0.05±0.01b 0.02±0.01b 0.04±0.01b 0.70±0.00b 5.68±0.96a
  柠檬烯Limonene 1.31±0.08a 0.80±0.24b 1.41±0.12a 0.56±0.08c
  苊Acenaphthene 0.12±0.06b 0.19±0.11b 0.17±0.01b 0.61±0.00a

就具体香气成分而言, ‘美乐’葡萄果实主要香气物质有反式-2-己烯醛、己醛、乙醇、1-己醇和壬醛, 约占香气物质总量的90%。其中反式-2-己烯醛、己醛和乙醇分别占香气物质总量的40%、30%和17%。在正常条件下, SA15嫁接显著提高了反式-2-己烯醛和己醛含量, 其他香气物质没有显著差异; SA17嫁接显著提高果实的己醛、壬醛、乙醇和1-己醇含量, 显著降低反式-2-己烯醛含量。在盐碱处理下, 与自根树对照相比, SA15显著提高了以上这5种香气物质含量; SA17仅显著提高了反式-2-己烯醛和己醛的含量。

为进一步说明砧木和盐碱对‘美乐’葡萄香气的影响, 对‘美乐’葡萄果实香气成分进行主成分分析。由图 3可见:正常生长条件下, SA15嫁接树和自根树相距较近, SA17与SA15和自根树位于不同象限, 表明砧木SA15在前2个主成分对‘美乐’香气成分没有较大影响, 砧木SA17通过影响主成分1对香气成分产生影响。在盐碱处理下, SA15和SA17嫁接树与自根树分别位于不同象限, 表明2种砧木在盐碱条件下对香气成分有不同的影响。并且在盐碱处理下, 与未处理对照相比, 砧木SA15嫁接对主成分1和主成分2均有不同程度影响; SA17只对主成分1有较大影响, 说明盐碱处理下砧木SA15对香气成分影响较大。

图 3 ‘美乐’葡萄在香气成分前2个主成分上的分布 Fig. 3 The distribution of 'Merlot' grape berries in the first two principal components(PC)of aromatic compounds 1~3.对照(1.自根树; 2. SA15;3. SA17);4~6.盐碱处理(4.自根树; 5. SA15;6. SA17)。 1-3. Control(1. Self-rooted vine; 2. SA15;3. SA17);4-6. Salt and alkali treatment(4. Self-rooted vine; 5. SA15;6. SA17).
3 讨论

研究发现, 不同砧木对葡萄接穗生长势影响较大, 且不同砧木影响程度不同[25]。本研究中, SA15和SA17嫁接能促进葡萄生长, 并能缓解盐碱胁迫对葡萄植株生长的影响, 其中SA17的缓解作用更为显著。非盐生植物耐盐碱的关键因素之一在于维持叶片较低水平的Na+含量和维持K+/Na+比值[26]。本研究发现, 在盐碱处理下, 2种耐盐碱砧木尤其是SA15减小了K+/Na+比值的下降程度, 这可能是二者提高盐碱耐性的重要原因之一。

糖、酸含量是果实品质的重要组成, 很大程度上决定了葡萄果实风味。本研究发现, SA15和SA17两种砧木在正常生长条件下对可溶性固形物未产生显著影响, 对可滴定酸产生了不同影响。已有研究也表明砧木能影响果实糖、酸含量, 且不同砧木对果实糖、酸含量影响不同[27-28]。Jin等[29]研究发现, 与夏黑葡萄自根相比, 贝达砧木维持了果实糖酸水平, 而SO4、5BB和101-14M降低了糖、酸含量; 结合本研究结果, 推测在正常生长条件下砧木不能促进果实品质形成。但是, 在盐碱处理下SA15较对照显著提高了可溶性固形物含量, 降低了可滴定酸含量, 进而提高了糖酸比。砧木Ramsey、1103P和R2在盐处理条件下能促进葡萄果实品质[11]。此外, SA15和SA17对果实可溶性糖和有机酸含量产生了类似影响。因此, SA15等葡萄砧木可通过与盐互作调节糖酸水平从而改善葡萄果实品质。

酚类物质作为植物体内广泛存在的一种次生代谢产物, 在植物防御机制中起重要作用[30]。酚类物质主要包括花色苷类和非花色苷类, 非花色苷类主要包括黄烷醇和类黄酮等[31]。同时, 花色苷影响‘美乐’等红色葡萄果皮的着色, 主要决定葡萄及葡萄酒的颜色品质[32]。本试验发现, 在正常生长条件下, 砧木对花色苷未产生显著影响, 在盐碱处理下不同砧木对果实中总花色苷、总酚、黄烷醇和类黄酮的影响不同。在盐碱处理下, SA15显著提高了果实酚类物质含量, 有利于果实品质的形成; 相比而言, SA17仅提高了果实中总酚的含量, 其他3类物质均降低, 不利于果实品质的形成。

香气物质的含量与果实成熟度之间关系密切[33], 且对于葡萄而言, 香气物质还是构成葡萄酒品质的重要因素[34]。葡萄果实香味主要由挥发性香气物质产生, 主要包括醛类、醇类、酯类和酮类等, ‘美乐’葡萄主要香气物质为醛类和醇类。目前关于砧木对葡萄果实香气影响的报道较少, Jin等[29]研究发现, 砧木对各香气组分和种类有较大影响。本试验也发现砧木影响果实香气物质数量、总量及组成。由于‘美乐’香气物质种类丰富, 因此通过对果实香气物质进行主成分分析, 进一步研究耐盐碱砧木对葡萄果实香气的影响。通过对载荷图的分析发现, 正常生长条件下, 砧木SA17能显著影响‘美乐’葡萄香气; 在盐碱处理下, 砧木SA15和SA17对葡萄香气有不同的影响, 说明二者对具体香气物质的影响差异较大。

香气成分对风味的影响取决于该物质的含量和阈值, 比如反式-2-己烯醛、己醛和乙醇具有较高的阈值, 而壬醛等具有较低的阈值, 其小的含量变化能被感知[35]。目前很多香气成分的阈值还不清楚。因此, SA15和SA17对果实香气的影响应该结合香气成分含量变化及其阈值合理评价。鉴于香气阈值的缺乏, 下一步拟通过香气成分含量测定并结合人工感官评价更准确判断香气的变化。

参考文献(References)
[1]
Yang T, Zhang L, Hao H Y, et al. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis[J]. The Plant Journal, 2015, 84(6): 1274-1294. DOI:10.1111/tpj.13080
[2]
Wang H, Wu Z H, Han J Y, et al. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants[J]. PLoS One, 2012, 7(5): e37817. DOI:10.1371/journal.pone.0037817
[3]
Li R L, Shi F C, Fukuda K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora(Poaceae)[J]. South African Journal of Botany, 2010, 76(2): 380-387. DOI:10.1016/j.sajb.2010.01.004
[4]
杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837-845.
Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845 (in Chinese with English abstract). DOI:10.3321/j.issn:0564-3929.2008.05.010
[5]
杜远鹏, 翟衡, 王忠跃, 等. 葡萄根瘤蚜抗性砧木研究进展(Ⅱ)[J]. 中外葡萄与葡萄酒, 2007(4): 25-29.
Du Y P, Zhai H, Wang Z Y, et al. Advances in resistant rootstocks of grape rhizobium aphid(Ⅱ)[J]. Sino-Overseas Grapevine & Wine, 2007(4): 25-29 (in Chinese).
[6]
宋润刚, 李昌禹, 路文鹏, 等. 山葡萄品种硬枝嫁接成苗率与嫁接树生产性能的研究[J]. 中外葡萄与葡萄酒, 2002(6): 11-14.
Song R G, Li C Y, Lu W P, et al. Study on the seedling rates and productive capacity of hard-twig graft trees of Vitis amurensis[J]. Sino-Overseas Grapevine & Wine, 2002(6): 11-14 (in Chinese with English abstract). DOI:10.3969/j.issn.1004-7360.2002.06.003
[7]
秦红艳.山葡萄种质资源耐盐性评价研究[D].北京: 中国农业科学院, 2010: 33-40.
Qin H Y. Research of the salt-tolerance evaluation on Vitis amurensis germplasm resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010: 33-40(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-82101-2010171022.htm
[8]
Verma S K, Singh S K, Krishna H. The effect of certain rootstocks on the grape cultivar 'Pusa Urvashi'(Vitis vinifera L.)[J]. International Journal of Fruit Science, 2010, 10(1): 16-28. DOI:10.1080/15538361003676744
[9]
Mehanna H T, Fayed T A, Rashedy A A. Response of two grapevine rootstocks to some salt tolerance treatments under saline water conditions[J]. Journal of Horticultural Science & Ornamental Plants, 2010, 2(2): 93-106.
[10]
晋学娟, 翟衡. 不同盐碱胁迫对红地球/贝达嫁接苗生长及光合作用的影响[J]. 中外葡萄与葡萄酒, 2012(3): 8-11, 15.
Jin X J, Zhai H. Effect of different salt and alkali stress on the growth and photosynthesis of Red Globe/Beta grafted seedlings[J]. Sino-Overseas Grapevine & Wine, 2012(3): 8-11, 15 (in Chinese with English abstract). DOI:10.3969/j.issn.1004-7360.2012.03.001
[11]
Ahmad O A. Salinity soil effects on yeild, fruit quality and mineral composition of superior seedless grapevines grafted on some rootstocks[J]. Journal of Applied Sciences, 2016, 16(8): 359-371. DOI:10.3923/jas.2016.359.371
[12]
Walker R R, Blackmore D H, Clingeleffer P R, et al. Rootstock effects on salt tolerance of irrigated field-grown grapevines(Vitis vinifera L. cv. Sultana). 3. Fresh fruit composition and dried grape quality[J]. Australian Journal of Grape and Wine Research, 2007, 13(3): 130-141. DOI:10.1111/j.1755-0238.2007.tb00243.x
[13]
Ramakrishna A, Ravishankar G A. Influence of abiotic stress signals on secondary metabolites in plants[J]. Plant Signaling & Behavior, 2011, 6: 1720-1731.
[14]
Pedrero F, Alarcón J J, Nicolás E, et al. Influence of irrigation with saline reclaimed water on young grapefruits[J]. Desalination and Water Treatment, 2013, 51(10/11/12): 2488-2496.
[15]
Galli V, Messias R D S, Perin E C, et al. Mild salt stress improves strawberry fruit quality[J]. LWT:Food Science and Technology, 2016, 73: 693-699. DOI:10.1016/j.lwt.2016.07.001
[16]
郭淑华, 翟衡, 韩宁, 等. 葡萄种间杂交砧木育种F1代植株耐碱性盐能力分析[J]. 植物学报, 2018, 53(1): 51-58.
Guo S H, Zhai H, Han N, et al. Evaluation on alkaline salt tolerance of grape F1-generation hybrids[J]. Chinese Bulletin of Botany, 2018, 53(1): 51-58 (in Chinese with English abstract).
[17]
付晴晴, 孙鲁龙, 翟衡, 等. 葡萄种间杂交砧木育种F1代植株耐盐性分析[J]. 植物学报, 2017, 52(6): 733-743.
Fu Q Q, Sun L L, Zhai H, et al. Salt tolerant evaluation of F1-generation hybrids in grape[J]. Chinese Bulletin of Botany, 2017, 52(6): 733-743 (in Chinese with English abstract).
[18]
付晴晴, 谭雅中, 翟衡, 等. 3个葡萄株系在盐胁迫下的离子运输与分配[J]. 果树学报, 2018, 35(1): 56-65.
Fu Q Q, Tan Y Z, Zhai H, et al. Ion transport and distribution in three grape strains under salt stress[J]. Journal of Fruit Science, 2018, 35(1): 56-65 (in Chinese with English abstract).
[19]
赵世杰, 史国安, 董新纯. 植物生理学试验指导[M]. 北京: 中国农业科学技术出版, 2002.
Zhao S J, Shi G A, Dong X C. Technology of Plant Physiological Experiment[M]. Beijing: China Agricultural Science and Technology Press, 2002 (in Chinese).
[20]
Byamukama R, Kiremire B, Andersen M, et al. Anthocyanins from fruits of Rubus pinnatus and Rubus rigidus[J]. Journal of Food Composition and Analysis, 2005, 18(6): 599-605. DOI:10.1016/j.jfca.2004.04.007
[21]
刘芸, 仇农学, 杨玺玉. 葡萄皮渣提取物总酚含量及体外抗氧化活性、抑菌活性[J]. 食品科学, 2011, 32(1): 5-9.
Liu Y, Qiu N X, Yang X Y. Assessment of total phenolic content and in vitro antioxidant and antimicrobial activities of ethanol extract from grape residue left after making wine[J]. Food Science, 2011, 32(1): 5-9 (in Chinese with English abstract).
[22]
[23]
Xu B J, Chang K S. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines[J]. Food Chemistry, 2012, 134(3): 1287-1296. DOI:10.1016/j.foodchem.2012.02.212
[24]
孙红, 岳倩宇, 相广庆, 等. 不同浓度的NaCl处理对葡萄果实品质形成的影响[J]. 植物生理学报, 2018, 54(1): 63-70.
Sun H, Yue Q Y, Xiang G Q, et al. Impacts of different concentrations of NaCl on formation of grape berry quality[J]. Plant Physiology Journal, 2018, 54(1): 63-70 (in Chinese with English abstract).
[25]
梅军霞, 郑婷, 程建徽, 等. 7种砧木对红玛斯卡特葡萄生长与果实品质的影响[J]. 安徽农业科学, 2013, 41(23): 9548-9550, 9559.
Mei J X, Zheng T, Cheng J H, et al. Effects of seven kinds of rootstocks on the growth and fruit quality of 'Red Muscat' grape[J]. Journal of Anhui Agricultural Sciences, 2013, 41(23): 9548-9550, 9559 (in Chinese with English abstract). DOI:10.3969/j.issn.0517-6611.2013.23.010
[26]
López-Aguilar R, Orduno A, Lucero-Arce A, et al. Response to salinity of three grain legumes for potential cultivation in arid areas[J]. Soil Science and Plant Nutrition, 2003, 49(3): 329-336. DOI:10.1080/00380768.2003.10410017
[27]
Kubota N, Li X G, Yasui K. Effects of rootstocks on sugar, organic acid, amino acid, and anthocyanin contents in berries of potted 'Fujiminori' grapes[J]. Journal of the Japanese Society for Horticultural Science, 1993, 62(2): 363-370. DOI:10.2503/jjshs.62.363
[28]
淳长品, 彭良志, 雷霆, 等. 不同柑橘砧木对锦橙果实品质的影响[J]. 园艺学报, 2010, 37(6): 991-996.
Chun C P, Peng L Z, Lei T, et al. Effects of rootstocks on fruit quality of Jincheng sweet orange[J]. Acta Horticulturae Sinica, 2010, 37(6): 991-996 (in Chinese with English abstract).
[29]
Jin Z X, Sun T Y, Sun H, et al. Modifications of 'Summer Black' grape berry quality as affected by the different rootstocks[J]. Scientia Horticulturae, 2016, 210(21): 130-137.
[30]
李小龙.酿酒葡萄果实生长发育过程中酚类物质变化规律的研究[D].杨凌: 西北农林科技大学, 2015.
Li X L. Changes of phenolic components during the development of wine grape berries[D]. Yangling: Northwest A & F University, 2015(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-10712-1015333270.htm
[31]
Montealegre R R, Peces R R, Vozmediano J L, et al. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate[J]. Journal of Food Composition and Analysis, 2006, 19(6/7): 687-693.
[32]
Núñez V, Monagas M, Gomez-Cordovés M C, et al. Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile[J]. Postharvest Biology and Technology, 2004, 31(1): 69-79. DOI:10.1016/S0925-5214(03)00140-6
[33]
Selli S, Cabaroglu T, Canbas A, et al. Effect of contact on the aroma composition of the musts of Vitis vinifera L. cv. Muscat of Bornova and Narince grown in Turkey[J]. Food Chemistry, 2003, 81(3): 341-347. DOI:10.1016/S0308-8146(02)00428-4
[34]
El Hadi M A M, Zhang F J, Wu F F, et al. Advances in fruit aroma volatile research[J]. Molecules, 2013, 18(7): 8200-8229. DOI:10.3390/molecules18078200
[35]
Duan L L, Pan Q H, Tang X J, et al. Characteristic aroma compounds in two new Vitis vinifera cultivars(table grapes)and impact of vintage and greenhouse cultivation[J]. South African Journal for Enology & Viticulture, 2014, 35(2): 264-277.