南京农业大学学报  2019, Vol. 42 Issue (1): 88-93   PDF    
http://dx.doi.org/10.7685/jnau.201803037
0

文章信息

舒晓晗, 赵日那, 孟玲, 李保平
SHU Xiaohan, ZHAO Rina, MENG Ling, LI Baoping
我国异色瓢虫体型大小和色斑类型变异与纬度的关系
Body size and color spot pattern in relation to the latitude in Harmonia axyridis(Coleoptera: Coccinellidae) from China
南京农业大学学报, 2019, 42(1): 88-93
Journal of Nanjing Agricultural University, 2019, 42(1): 88-93.
http://dx.doi.org/10.7685/jnau.201803037

文章历史

收稿日期: 2018-03-19
我国异色瓢虫体型大小和色斑类型变异与纬度的关系
舒晓晗 , 赵日那 , 孟玲 , 李保平     
南京农业大学植物保护学院/农作物生物灾害综合治理教育部重点实验室, 江苏 南京 210095
摘要[目的]体型大小不仅是动物的重要形态特征之一,而且与动物的生活史、生态学和进化密切相关。本研究旨在揭示我国广布的异色瓢虫(Harmonia axyridis)地理种群间形态分化的规律。[方法]从全国纬度在28°(浙江龙泉)至45°(黑龙江哈尔滨)之间的区域采集异色瓢虫样本,测量雌、雄成虫体长及体宽和体积,并观察色斑类型,分析形态特征变异与纬度的关系。[结果]异色瓢虫成虫存在体型性二型现象,雌虫体型显著大于雄虫;雌、雄虫体型大小的差异随纬度升高而减小。雌虫体型不随纬度变化而变化,与贝格曼法则的预测不符;但雄虫体型随纬度上升而增大,符合贝格曼法则。种群中具有淡底色型色斑的异色瓢虫数量占优,具有暗底色型色斑的昆虫较少,暗底色型中黑缘型昆虫极少;具有淡底色型色斑瓢虫占比在高纬度地区略大于低纬度地区。[结论]异色瓢虫体型大小及色斑类型与纬度存在一定相关性。
关键词异色瓢虫   贝格曼法则   地理变异   体型性二型   体型大小   色斑类型   
Body size and color spot pattern in relation to the latitude in Harmonia axyridis(Coleoptera: Coccinellidae) from China
SHU Xiaohan, ZHAO Rina, MENG Ling, LI Baoping    
College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
Abstract: [Objectives] Animal body size is not only a morphological trait of importance, but also associated with life history, ecology and evolution. This study examined morphological variation among geographical populations of Harmonia axyridis in China. [Methods] Samples of H. axyridis adults were collected at random from the range between 28° and 45° latitudes and measured in their body size(length, width and volume) by sex; their color spot patterns were also categorized. These measures were analyzed in relation to latitude. [Results] Female body was significantly larger than the male, and sexual differences decreased with increasing latitudes. Female body size did not vary with latitude, not in line with the prediction of Bergmann's rule; male body size increased with increasing latitudes, in line with Bergmann's rule. Pale background color spot pattern was overall dominant in populations, followed by the dark background pattern, and then by the black margin pattern. The ladybird beetles with the pale background were more at the high latitude than at the low. [Conclusions] Body size and color spot pattern of H. axyridis vary somewhat with the latitude.
Keywords: Harmonia axyridis    Bergmann's rule    geographical variance    sexual size dimorphism    body size    color spot pattern   

异色瓢虫[Harmonia axyridis(Pallas)]原产于亚洲东北部, 对多种蚜虫、螨类、蚧壳虫等害虫具有很强的控制作用[1]。其作为天敌被引入北美地区用于生物防治, 对当地蚜害控制发挥了重要作用; 但引入欧洲后, 虽在控制蚜虫上发挥了重要作用, 但由于威胁本土瓢虫多样性而被当作外来入侵生物[2]。近年来, 尤其在欧洲, 为认识异色瓢虫的入侵性开展了大量研究[3-6]; 但在异色瓢虫的原产地, 人们却很少关注其种下分化以及与其他瓢虫的互作(竞争和共存)。这种信息不对称严重阻碍了对异色瓢虫入侵性的深刻认识[4]

体型大小不仅是动物的重要形态特征之一[7], 而且与动物的生活史、生态学和进化密切相关[8]。贝格曼法则(Bergmann's rule)预测, 动物的体型随纬度(或海拔)升高而逐渐变大[9]; 但逆贝格曼法则(converse Bergmann's rule)却作出相反的预测[10]。迄今, 在已研究的极少数昆虫中, 既有支持以上法则, 也有不符合上述法则的情况(无相关性)[11]。体型大小常与性二型(sexual dimorphism)现象存在关联, 即所谓"体型性二型(sexual size dimorphism)"现象[12]。根据任希法则(Rensch's rule)预测, 在雌性大于雄性的动物类群中两性体型大小差异随平均体型增大而减小, 称为"偏雌体型性二型"; 而在雄性较大的动物中该差异随平均体型增大而增大, 称为"偏雄体型性二型"[13]。人们常用任希法则进行种间比较, 但有时也可用于种内种群间的比较[14]。这些法则的适用范围有待于在更多昆虫类群中进行检验。

鞘翅色斑多态现象常见于瓢虫, 通常认为与栖境、气候和食物等外部因素有关, 可能在瓢虫防御和适应环境中发挥作用[15]。例如, 对六斑月瓢虫[Cheilomenes sexmaculata(Fabricius)]的研究发现鞘翅色斑类型与纬度有关[16], 但这一关联是否具有普遍性, 尚需对更多瓢虫的研究验证。异色瓢虫色斑的调查在国内外已有报道, 主要关注色斑变化的时间动态、遗传机制和形态多样性[17-20]。例如, 异色瓢虫不同色斑类型在生长发育、繁殖及种群动态上存在一定差异[21-22], 但迄今, 对异色瓢虫体型大小及色斑类型随纬度的变异规律知之甚少。本研究旨在揭示异色瓢虫形态随纬度的变异规律, 为进一步认识异色瓢虫种群分化机制及适应性提供依据, 也为认识异色瓢虫与其他瓢虫的竞争互作机制提供参考。

1 材料与方法 1.1 昆虫采集

从我国8省、12个地区的作物田或撂荒地生境中使用捕虫网或徒手采集异色瓢虫成虫(表 1)。将采集的异色瓢虫饥饿处理48 h后置于-20 ℃冰箱保存备用。

表 1 异色瓢虫样本采集信息 Table 1 Information of collecting Harmonia axyridis samples
采集地点
Location
经、纬度
Longitude and latitude
植物
Plant
采集时间(年-月)
Date(Year-month)
浙江龙泉 Longquan, Zhejiang 119°8'32″E, 28°4'39″N 桃树 Amygdalus percica 2017-05
浙江杭州 Hangzhou, Zhejiang 120°2'55″E, 30°15'0″N 柳树 Salix babylonica 2017-05
浙江湖州 Huzhou, Zhejiang 120°1'5″E, 30°51'26″N 芦竹 Arundo donax 2017-05
江苏常熟 Changshu, Jiangsu 120°54'55″E, 31°35'38″N 桃树 A. percica 2017-05
江苏南京 Nanjing, Jiangsu 118°37'30″E, 32°1'56″N 蚕豆 Vicia faba 2017-05
安徽蚌埠 Bengbu, Anhui 117°26'51″E, 32°54'30″N 断续菊 Sonchus asper 2017-05
安徽宿州 Suzhou, Anhui 117°14'52″E, 33°40'45″N 柳树 S. babylonica 2017-05
江苏徐州 Xuzhou, Jiangsu 117°17'29″E, 34°16'31″N 桃树 A. percica 2017-05
山东济南 Jinan, Shandong 116°48'30″E, 36°36'16″N 桃树 A. percica 2017-05
河北昌黎 Changli, Hebei 119°10'1″E, 39°43'5″N 桃树 A. percica 2017-05
吉林长春 Changchun, Jilin 125°24'16″E, 43°48'50″N 柳树 S. babylonica 2017-06
黑龙江哈尔滨 Harbin, Heilongjiang 126°55'22″E, 45°46'56″N 大豆 Glycine max 2017-07
1.2 异色瓢虫体型测量

将冷冻处理的标本置于体视镜(Motic SMZ-140, 中国)下观察, 使用成像系统拍照后用Motic Images Plus 2.0软件分别测量(精确到0.01 mm)雌、雄虫的体长(L)及体宽(W), 按照椭球形体积计算公式(V=π× L× W2/6)[23]获得瓢虫体积; 根据Lovich等[24]的公式计算体型二型指数(size dimorphism index, SDI), SDI=(雌虫平均大小/雄虫平均大小)-1。

1.3 异色瓢虫鞘翅色斑类型划分

根据异色瓢虫成虫鞘翅底色、斑点数目和位置划分色斑类型[4](表 2)。统计各色斑型瓢虫数量所占比例。

表 2 异色瓢虫色斑类型 Table 2 Color spot pattern in H. axyridis
色斑类型 Color spot pattern 描述 Description
淡底色型 Pale background 黄底或红底鞘翅上有0~19个黑色斑点 With 0-19 black spots on a yellow or red background
暗底色型 Dark background 黑色底鞘翅上有斑点 With spots on a black background
四窗型 Quadruple window 每瓣黑底鞘翅中央有2个黄色至红色斑点, 上大下小
With 2 yellow or red spots(upper one bigger)on a dark background at the center of each wing
二窗型 Double window 每瓣黑底鞘翅上部有1个较小的黄色至红色斑点
With a small yellow or red spot on a dark background at upper part of each wing
黑缘型 Black-margin 每瓣黑底鞘翅中央有1个较大的黄色至红色斑点
With a big yellow or red spot on a dark background at the center of each wing
1.4 数据分析

t测验比较异色瓢虫雌、雄性之间在体型大小上的差异; 用一般线性回归模型分析体型二型指数(SDI)及体型大小随纬度的变化趋势。采用5%概率作为显著水平的统计推断标准。数据分析使用R软件[25]

2 结果与分析 2.1 异色瓢虫雌、雄体型差异随纬度的变化

异色瓢虫雌、雄成虫体型存在显著差异(体长:t=15.60, P<0.01;体宽:t=8.42, P<0.01;体积:t=12.02, P<0.01)。体长和体积的体型二型指数(SDI)分别与纬度间存在显著的线性负相关性(体长:R2=0.49, P=0.01;体积:R2=0.39, P=0.03);而体宽的SDI与纬度的相关性未达到显著水平(R2=0.32, P=0.06)(图 1)。

图 1 异色瓢虫体型二型指数(SDI)随纬度的变化趋势 Fig. 1 Size dimorphism index(SDI)in relation to latitude in H. axyridis
2.2 异色瓢虫体型大小随纬度的变化

图 2可见:雄虫的体长、体宽和体积均与纬度存在显著的直线正相关性(体长:R2=0.02, P=0.03;体宽:R2=0.03, P=0.01;体积:R2=0.03, P=0.01);体长、体宽和体积(±SE)分别从28.08°N的(5.90±0.22)mm、(4.67±0.26)mm和(68.93±10.39)mm3增至45.78°N的(6.65±0.11)mm、(5.06±0.16)mm和(89.60±6.31)mm3。雌虫体型与纬度不存在显著的相关性(体长:R2=0.001, P=0.60;体宽:R2=0.004, P=0.24;体积:R2=0.001;P=0.54);体长平均为(6.85±0.02)mm, 体宽为(5.30±0.02)mm, 体积为(101.74±1.00)mm3

图 2 异色瓢虫雌(点线)、雄(实线)成虫体长及体宽和体积随纬度的变化趋势 Fig. 2 Change in body length, width and volume in relation to latitudes in female(broken line) and male(solid line)H. axyridis adults
2.3 异色瓢虫色斑类型的变异

样本中发现4种色斑型:淡底色型和暗底色型, 其中暗底色型又分二窗型、四窗型和黑缘型(表 3)。淡底色型的异色瓢虫最多, 在各地区占62.5%以上, 大于暗底色型; 二窗型和四窗型的比例相似; 黑缘型稀有, 只在徐州地区出现3头, 占总样本数的3.75%。高纬度地区(河北昌黎、吉林长春、黑龙江哈尔滨等地)淡底色型所占比例(大于80%)略高于低纬度地区(浙江龙泉、浙江杭州、浙江湖州等地)所占比例(小于75%)。

表 3 异色瓢虫不同地理种群中4种色斑类型数量及其比例 Table 3 Numbers and proportions of different color spot patterns in H. axyridis populations
种群
Population
样本数
n
色斑型Color spot pattern
淡底色型
Pale background
pattern
暗底色型Dark background pattern
二窗型
Double window
pattern
四窗型
Quadruple window
pattern
黑缘型
Black-margin
pattern
浙江龙泉Longquan, Zhejiang 15 10(66.67%) 2(13.33%) 3(20.00%) 0(0.00%)
浙江杭州Hangzhou, Zhejiang 36 26(72.22%) 5(13.89%) 5(13.89%) 0(0.00%)
浙江湖州Huzhou, Zhejiang 40 30(75.00%) 6(15.00%) 4(10.00%) 0(0.00%)
江苏常熟Changshu, Jiangsu 13 10(76.92%) 0(0.00%) 3(23.08%) 0(0.00%)
江苏南京Nanjing, Jiangsu 62 40(64.52%) 9(14.52%) 13(20.97%) 0(0.00%)
安徽蚌埠Bengbu, Anhui 51 36(70.59%) 8(15.69%) 7(13.73%) 0(0.00%)
安徽宿州Suzhou, Anhui 67 59(88.06%) 2(2.99%) 6(8.96%) 0(0.00%)
江苏徐州Xuzhou, Jiangsu 80 56(70.00%) 11(13.75%) 10(12.50%) 3(3.75%)
山东济南Jinan, Shandong 56 35(62.50%) 12(21.43%) 9(16.07%) 0(0.00%)
河北昌黎Changli, Hebei 96 78(81.25%) 10(10.42%) 8(8.33%) 0(0.00%)
吉林长春Changchun, Jilin 53 47(88.68%) 2(3.77%) 4(7.55%) 0(0.00%)
黑龙江哈尔滨Harbin, Heilongjiang 20 17(85.00%) 3(15.00%) 0(0.00%) 0(0.00%)
注:括号内数据为瓢虫个体比例。The percentage in brackets is the proportion of H.aryridis.
3 讨论

体型性二型现象广泛存在于动、植物中[26]。在昆虫中, 同一种群的雌性个体一般大于雄性个体[27]。本研究结果表明, 异色瓢虫成虫存在体型性二型现象, 无论是按体长、体宽还是体积算, 雌虫的体型均大于雄虫。Stillwell等[12]认为, 昆虫体型性二型现象的产生是由雌、雄虫在卵大小、生长速率和发育时间等因素上的差异造成, 后两者与昆虫所处的生长环境又有密切关系。昆虫雌、雄体型大小差异随环境而存在差异, 受环境温度、寄主以及季节变化等影响[28-30]。例如, 豆象(Stator limbatus)不同地理种群的雌、雄体型大小差异可能与其所在环境有关[31]。本研究中不同地理种群异色瓢虫的雌、雄体型大小差异也不同, 在低纬度地区(浙江龙泉、浙江杭州等地)较大, 在高纬度地区(吉林长春、黑龙江哈尔滨等地)较小, 这可能与种群所在的环境因素有关。

Shelomi[11]总结了348种昆虫形态随纬度变化的趋势, 发现123种支持贝格曼法则, 111种支持逆贝格曼法则, 其余的114种未表现出趋势。毕孟杰等[32]依据有限的体型和分布数据在较粗的空间尺度上(省级行政区)分析瓢虫体型的地理变异后发现, 捕食性瓢虫体长、体宽和长宽比均与纬度呈显著正相关, 符合贝格曼法则。本研究详细调查我国纬度在28°~45°的异色瓢虫分析发现, 异色瓢虫雄成虫体型(体长、体宽和体积)随着纬度的升高而增大, 符合贝格曼法则; 但雌成虫的体型与纬度不存在相关性; 各地理种群中雌、雄成虫间体型差异符合任希法则。

异色瓢虫成虫体型大小随纬度的变化趋势在雌、雄性之间具有不同表现, 原因可能在于异色瓢虫雌、雄虫所受到的自然选择压力不同。瓢虫雌虫体型大小与生殖力密切相关[33-34], 因而受到更大的选择压力而较稳定; 雄虫受到的选择压力较小, 从而更易受环境的影响。雌虫的稳定性强, 可能是异色瓢虫在原产地(亚洲东北部)广阔的分布区占据优势地位的原因之一; 也可能是其在新的引入地(美洲、欧洲)迅速成为优势种的原因之一, 因为具有较高而稳定的生殖力是外来入侵生物成功入侵的重要特征之一[35]

异色瓢虫色斑类型丰富, 素有"多斑瓢虫"之称, 其色斑类型差异主要在鞘翅的颜色和斑点的形状、数量以及前胸背板斑纹上。本研究发现, 淡底色型的数量最多, 在各种群中均多于暗底色型; 暗底色型异色瓢虫中, 四窗型和二窗型数量大致相当, 黑缘型数量最少。本研究未发现前人报道的其他色斑类型, 这可能是由于采集时间和地理环境的不同所造成的。以上发现与赵天璇等[36]结论基本一致。同时, 高纬度地区(河北昌黎、吉林长春、黑龙江哈尔滨等地)淡底色型瓢虫所占比例(大于80%)略高于低纬度地区(浙江龙泉、浙江杭州、浙江湖州等地, 小于75%), 这与杜文梅等[37]和徐青叶等[38]研究结果一致。此外, 异色瓢虫色斑的比例随季节变化而改变, 暗底色型的比例在春季较低, 在秋季升高[39]; 在不同温度下异色瓢虫色斑类型的比例也不相同[40]。本研究说明, 异色瓢虫色斑与环境存在一定的关联。至于色斑与瓢虫适应性之间的进化生物学机制仍知之甚少, 值得深入探究。

致谢: 吉林农业大学臧连生教授、河北省农科院果树研究所于丽辰教授、东北农业大学韩兰兰教授、济南市民李华军先生协助采集样本, 南京农业大学植物保护学院本科生麦莹芳和张兴宇参与部分试验。

参考文献(References)
[1]
Koch R L. The multicolored Asian lady beetle, Harmonia axyridis:a review of its biology, uses in biological control, and non-target impacts[J]. Journal of Insect Science, 2003, 3(1): 1-16. DOI:10.1673/031.003.0101
[2]
Brown P M, Thomas C E, Lombaert E, et al. The global spread of Harmonia axyridis(Coleoptera:Coccinellidae):distribution, dispersal and routes of invasion[J]. BioControl, 2011, 56(4): 623-641. DOI:10.1007/s10526-011-9379-1
[3]
Roy H E, Wajnberg E. From biological control to invasion:the ladybird Harmonia axyridis as a model species[J]. BioControl, 2008, 53(1): 1-4. DOI:10.1007/s10526-007-9127-8
[4]
Roy H E, Brown P M J, Adriaens T, et al. The harlequin ladybird, Harmonia axyridis:global perspectives on invasion history and ecology[J]. Biological Invasions, 2016, 18(4): 997-1044. DOI:10.1007/s10530-016-1077-6
[5]
Vilcinskas A, Stoecker K, Schmidtberg H, et al. Invasive harlequin ladybird carries biological weapons against native competitors[J]. Science, 2013, 340(6134): 862-863. DOI:10.1126/science.1234032
[6]
Lombaert E, Guillemaud T, Lundgren J, et al. Complementarity of statistical treatments to reconstruct worldwide routes of invasion:the case of the Asian ladybird Harmonia axyridis[J]. Molecular Ecology, 2014, 23(24): 5979-5997. DOI:10.1111/mec.12989
[7]
Chown S L, Gaston K J. Body size variation in insects:a macroecological perspective[J]. Biological Reviews, 2010, 85(1): 139-169.
[8]
Smith F A, Lyons S K. On being the right size: the impor tance of size in life history, ecology, and evolution[M]//Smith F A, Lyons S K. Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group. Chicago: University of Chicago Press, 2013: 1-12.
[9]
Blackburn T M, Gaston K J, Loder N. Geographic gradients in body size:a clarification of Bergmann's rule[J]. Diversity and Distribution, 1999, 5(4): 165-174. DOI:10.1046/j.1472-4642.1999.00046.x
[10]
Blanckenhorn W U, Demont M. Bergmann and converse Bergmann latitudinal clines in arthropods:two ends of a continuum?[J]. Integrative and Comparative Biology, 2004, 44(6): 413-424. DOI:10.1093/icb/44.6.413
[11]
Shelomi M. Where are we now?Bergmann's rule sensu lato in insects[J]. The American Naturalist, 2012, 180(4): 511-519. DOI:10.1086/667595
[12]
Stillwell R C, Blanckenhorn W U, Teder T, et al. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects:from physiology to evolution[J]. Annual Review of Entomology, 2010, 55: 227-245. DOI:10.1146/annurev-ento-112408-085500
[13]
Blanckenhorn W U, Dixon A F, Fairbairn D J, et al. Proximate causes of Rensch's rule:does sexual size dimorphism in arthropods result from sex differences in development time?[J]. The American Naturalist, 2007, 169(2): 245-257.
[14]
Gaston K J, Chown S L. Macroecological patterns in insect body size[M]//Smith F A, Lyons S K. Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group. Chicago: University of Chicago Press, 2013: 13-61.
[15]
Majerus M E. A Natural History of Ladybird Beetles[M]. Cambridge: Cambridge University Press, 2016.
[16]
Kawakami Y, Yamazaki K, Ohashi K. Geographical variations of elytral color polymorphism in Cheilomenes sexmaculata(Fabricius) (Coleoptera:Coccinellidae)[J]. Entomological Science, 2013, 16(2): 235-242. DOI:10.1111/ens.2013.16.issue-2
[17]
郭长飞, 许炜明, 何瞻, 等. 异色瓢虫色斑多样性调查及各地十九斑变型COI基因系统进化分析[J]. 植物保护学报, 2016, 43(1): 155-161.
Guo C F, Xu W M, He Z, et al. Color variations of Harmonia axyridis and phylogenetic analysis of 19-spot H. axyridis based on their COI genes[J]. Journal of Plant Protection, 2016, 43(1): 155-161 (in Chinese with English abstract).
[18]
宫庆涛, 耿军, 张坤鹏, 等. 泰安市异色瓢虫色斑型和性比变化[J]. 环境昆虫学报, 2016, 38(2): 313-323.
Gong Q T, Geng J, Zhang K P, et al. Phenotypes and sex ratio changes of Harmonia axyridis(Pallas) in Tai'an[J]. Journal of Environmental Entomology, 2016, 38(2): 313-323 (in Chinese with English abstract).
[19]
Li J, Ke X, Wang Z, et al. Investigation on color pattern diversity of overwintering Harmonia axyridis in southern suburb of Jiamusi[J]. Plant Diseases and Pests, 2011, 2(4): 40-42.
[20]
Osawa N, Nishida T. Seasonal variation in elytral colour polymorphism in Harmonia axyridis(the ladybird beetle):the role of non-random mating[J]. Heredity, 1992, 69(4): 297-307. DOI:10.1038/hdy.1992.129
[21]
Wang S, Michaud J P, Tan X L, et al. Melanism in a Chinese population of Harmonia axyridis(Coleoptera:Coccinellidae):a criterion for male investment with pleiotropic effects on behavior and fertility[J]. Journal of Insect Behavior, 2013, 26(5): 679-689. DOI:10.1007/s10905-013-9384-6
[22]
Ueno H, Sato Y, Tsuchida K. Colour-associated mating success in a polymorphic ladybird beetle, Harmonia axyridis[J]. Functional Ecology, 1998, 12(5): 757-761. DOI:10.1046/j.1365-2435.1998.00245.x
[23]
Atkinson W D. A comparison of the reproductive strategies of domestic species of Drosophila[J]. Journal of Animal Ecology, 1979, 48(1): 53-64. DOI:10.2307/4099
[24]
Lovich J E, Gibbons J W. A review of techniques for quantifying sexual size dimorphism[J]. Growth Development and Aging, 1992, 56: 269-281.
[25]
R Core Team. R: A Language and Environment for Statistical Computing[EB/OL]. R Foundation for Statistical Computing, Vienna, Austria.[2016-10-31]. https://www.r-project.org/.
[26]
Fairbairn D J, Blanckenhorn W U, Székely T. Sex, Size and Gender Roles:Evolutionary Studies of Sexual Size Dimorphism[M]. London: Oxford University Press, 2007.
[27]
García-Navas V, Noguerales V, Cordero P J, et al. Ecological drivers of body size evolution and sexual size dimorphism in short-horned grasshoppers(Orthoptera:Acrididae)[J]. Journal of Evolutionary Biology, 2017, 30(8): 1592-1608. DOI:10.1111/jeb.13131
[28]
Cirino L A, Miller C W. Seasonal effects on the population, morphology and reproductive behavior of Narnia femorata(Hemiptera:Coreidae)[J]. Insects, 2017, 8(1): 13. DOI:10.3390/insects8010013
[29]
Stillwell R C, Fox C W. Environmental effects on sexual size dimorphism of a seed-feeding beetle[J]. Oecologia, 2007, 153(2): 273-280. DOI:10.1007/s00442-007-0724-0
[30]
Gianoli E, Suárez L H, Gonzáles W L, et al. Host-associated variation in sexual size dimorphism and fitness effects of adult feeding in a bruchid beetle[J]. Entomologia Experimentalis et Applicata, 2007, 122(3): 233-237. DOI:10.1111/eea.2007.122.issue-3
[31]
Stillwell R C, Morse G E, Fox C W. Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle[J]. The American Naturalist, 2007, 170(3): 358-369.
[32]
毕孟杰, 沈梦伟, 周可新, 等. 中国瓢虫体型的地理分异及其与环境因子的关系[J]. 生物多样性, 2015, 23(6): 775-783.
Bi M J, Shen M W, Zhou K X, et al. Geographical variance of ladybird morphology and environmental correlates in China[J]. Biodiversity Science, 2015, 23(6): 775-783 (in Chinese with English abstract).
[33]
Berger D, Walters R, Gotthard K. What limits insect fecundity?Body size-and temperature-dependent egg maturation and oviposition in a butterfly[J]. Functional Ecology, 2008, 22(3): 523-529.
[34]
Honěk A. Intraspecific variation in body size and fecundity in insects:a general relationship[J]. Oikos, 1993, 66(3): 483-492. DOI:10.2307/3544943
[35]
Pyšek P, Richardson D M. Invasive species, environmental change and management, and health[J]. Annual Review of Environment and Resources, 2010, 35: 25-55. DOI:10.1146/annurev-environ-033009-095548
[36]
赵天璇, 袁明龙. 我国异色瓢虫的生物生态学特性[J]. 草业科学, 2017, 34(3): 614-629.
Zhao T X, Yuan M L. Biological and ecological characteristics of Harmonia axyridis in China[J]. Pratacultural Science, 2017, 34(3): 614-629 (in Chinese with English abstract).
[37]
杜文梅, 陈丽玲, 阮长春, 等. 长春市异色瓢虫色斑类型调查与研究[J]. 中国农学通报, 2010, 26(4): 258-266.
Du W M, Chen L L, Ruan C C, et al. Investigations of the color variations of Harmonia axyridis(Pallas) in Changchun[J]. Chinese Agricultural Science Bulletin, 2010, 26(4): 258-266 (in Chinese with English abstract).
[38]
徐青叶, 林青青, 金上, 等. 临安大明山异色瓢虫及龟纹瓢虫鞘翅色斑多样性分析[J]. 杭州师范大学学报(自然科学版), 2014, 13(2): 159-163.
Xu Q Y, Lin Q Q, Jin S, et al. On the elytra colored speck diversity of Harmonia axyridis(Pallas) and Propylea japonica(Thunberg) in Daming mountain[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2014, 13(2): 159-163 (in Chinese with English abstract). DOI:10.3969/j.issn.1674-232X.2014.02.008
[39]
Wang S, Michaud J P, Zhang R, et al. Seasonal cycles of assortative mating and reproductive behaviour in polymorphic populations of Harmonia axyridis in China[J]. Ecological Entomology, 2009, 34(4): 483-494.
[40]
Dobzhansky T. Geographical variation in lady-beetles[J]. The American Naturalist, 1933, 67(709): 97-126. DOI:10.1086/280472