南京农业大学学报  2018, Vol. 41 Issue (5): 817-824   PDF    
http://dx.doi.org/10.7685/jnau.201802007
0

文章信息

叶卫国, 雷佳, 李淮源, 陈建军, 张宏建, 黄景崇, 詹良, 范才银
YE Weiguo, LEI Jia, LI Huaiyuan, CHEN Jianjun, ZHANG Hongjian, HUANG Jingchong, ZHAN Liang, FAN Caiyin
减氮增密对烤烟光合特性及烟叶结构的影响
Effects of nitrogen-saving and density-increasing on photosynthetic characteristics and leaf structure of flue-cured tobacco
南京农业大学学报, 2018, 41(5): 817-824
Journal of Nanjing Agricultural University, 2018, 41(5): 817-824.
http://dx.doi.org/10.7685/jnau.201802007

文章历史

收稿日期: 2018-02-04
减氮增密对烤烟光合特性及烟叶结构的影响
叶卫国1 , 雷佳2 , 李淮源1 , 陈建军1 , 张宏建1 , 黄景崇2 , 詹良3 , 范才银3     
1. 华南农业大学烟草研究室, 广东 广州 510642;
2. 广东中烟工业有限责任公司, 广东 广州 510310;
3. 湖南省烟草公司衡阳市公司常宁市分公司, 湖南 常宁 421500
摘要[目的]探讨减氮增密措施对烤烟(Nicotiana tabacum L.)光合特性和烟叶结构的影响,为生产上减少氮肥施用量,优化烟叶结构提供理论依据。[方法]以烤烟品种‘云烟87’为材料,设置4个处理:传统种植模式CK(种植密度13 500株·hm-2、施氮量150 kg·hm-2)、减氮模式T1(13 500株·hm-2、施氮量135 kg·hm-2)、增密模式T2(16 500株·hm-2、施氮量150 kg·hm-2)和减氮增密模式T3(16 500株·hm-2、施氮量135 kg·hm-2),研究不同部位烟叶的光合特性、物理特性及烤后烟叶经济性状的响应规律。[结果]T1、T2和T3处理均显著降低了烤烟中上部叶净光合速率,降低幅度为8.1%~30.7%,但对下部叶净光合速率影响却不一致,其中T1处理净光合速率降低,T2处理净光合速率增加,而T3处理则对净光合速率影响不显著。T3处理的烤烟上部叶叶面积、叶片厚度、叶质重分别降低了25.8%、7.3%和19.4%,对开片度没有显著影响,而下部叶的叶质重则提高了8.9%,含梗率降低了8.6%。T3处理烤后烟叶产量、产值、均价、中上等烟比例分别提高了4.7%、0.6万元·hm-2、1.4元·kg-1、4.7%;在烟叶结构方面,上部叶比例显著下降,中下部叶比例有所提高,尤其是中部叶比例提高了6.8%。施氮量和密度互作对烟叶的光合特性、物理性状和经济性状等指标均有不同程度的影响,下部叶的光合特性受密度影响较大,物理特性受施氮量和密度互作影响较大。[结论]适当的减氮增密组合措施有利于协调各部位烟叶净光合速率,优化烟叶结构,提高烟叶可用性。
关键词烤烟   减氮增密   光合特性   物理特性   烟叶结构   
Effects of nitrogen-saving and density-increasing on photosynthetic characteristics and leaf structure of flue-cured tobacco
YE Weiguo1, LEI Jia2, LI Huaiyuan1, CHEN Jianjun1 , ZHANG Hongjian1, HUANG Jingchong2, ZHAN Liang3, FAN Caiyin3    
1. Tobacco Research Laboratory, South China Agricultural University, Guangzhou 510642, China;
2. Guangdong Tobacco Industrial Limited Company, Guangzhou 510310, China;
3. Changning Branch of Hengyang Tobacco Company, Hunan Tobacco Company, Changning 421500, China
Abstract: [Objectives] The objectives of this study were to understand the effects of nitrogen-saving and density-increasing on photosynthetic characteristics and leaf structure of flue-cured tobacco(Nicotiana tabacum L.), and to provide theoretical basis for reducing the amount of nitrogen fertilizer and optimizing the structure of tobacco leaves in production. [Methods] The flue-cured tobacco variety 'Yunyan 87' was planted at traditional planting pattern CK(13 500 plants·hm-2, 150 kg·hm-2 nitrogen level), nitrogen-saving pattern T1(13 500 plants·hm-2, 135 kg·hm-2 nitrogen level), density-increasing pattern T2(16 500 plants·hm-2, 150 kg·hm-2 nitrogen level), nitrogen-saving and density-increasing pattern T3(16 500 plants·hm-2, 135 kg·hm-2 nitrogen level). The response laws of the photosynthetics and the physical characteristics of tobacco leaves in different parts, and the response laws of the economic traits of tobacco leaves after baking were studied. [Results] The results showed that the net photosynthetic rate of the middle and upper leaves of flue-cured tobacco reduced by 8.1%-30.7% in T1, T2 and T3 treatments. But the effect of different planting patterns on the lower leaves was not the same, wherein the net photosynthetic rate of the lower leaves reduced in T1 treatment, increased in T2 treatment, but it had no significant changes in T3 treatment. In terms of coordinating the physical and economic characteristics of tobacco leaves, the effects of T3 treatment were the most significant. In T3 treatment, the leaf area, the leaf thickness and the specific leaf weight of the upper leaves reduced by 25.8%, 7.3% and 19.4% respectively, and the leaf openness of the upper leaves had no significant changes; while the specific leaf weight of the lower leaves increased by 8.9%, the stem ratio of the lower leaves reduced by 8.6%. At the same time, the output, the output value, the average price and the proportion of medium tobacco increased by 4.7%, 6 000 yuan·hm-2, 1.4 yuan·kg-1, and 4.7% respectively in this pattern; in terms of the tobacco leaf structure, the proportion of the upper leaves reduced significantly, but the proportion of the lower leaves and the middle leaves increased, especially the proportion of the middle leaves increased by 6.8% in T3 treatment. The photosynthetic characteristics, physical properties and economic traits of tobacco leaves were mainly affected by nitrogen fertilizer and density interaction in varying degrees. The photosynthetic characteristics of the lower leaves were mainly affected by density, and the physical characteristics were mainly affected by nitrogen fertilizer and density interaction. [Conclusions] The results of the trial indicated that the net photosynthesis rate could be raised, the structure of flue-cured tobacco leaves could be optimized and the usability of tobacco leaves could be improved, by properly increasing the transplanting density and decreasing the amount of nitrogen application.
Keywords: flue-cured tobacco    nitrogen-saving and density-increasing    photosynthetic characteristics    physical characteristics    tobacco leaf structure   

氮肥是烟叶生产中的最主要的肥料之一,当前湘南烟叶生产中普遍存在氮肥用量过高、种植密度偏低等问题[1],造成烟株贪青晚熟、烟叶成熟度不够、叶片偏厚僵硬、正反面色差大、油分不足,可用性降低,烟叶结构也不合理[2],而且过量的氮素经雨水淋溶、灌溉等方式进入地下水和洋流中,带来了严重的环境污染问题[3-4]。因此,提高氮肥利用效率对于实现浓香型优质烟叶生产具有重要意义。

适宜的种植密度对协调烤烟群体与个体的关系,平衡烤烟群体结构,调节烟叶结构及其产量和质量均有重要作用[5]。在烤烟生产调查中发现,衡阳烟区烤烟种植密度普遍偏低(10 500~13 500株· hm-2),导致烤烟个体生长过旺、叶片发育过度,个体与群体不协调,上部叶比例偏高,烟叶结构不合理,浓香型风格弱化,难以满足卷烟工业对浓香型特色优质烟叶原料需求。近年来,关于烤烟减氮和合理密植的研究发现,断根追钾条件下减量施氮能降低上部叶烟碱、提高烟叶钾含量[6],减氮配施生物菌剂能降低中上部叶总糖含量[7],绿肥翻压后减氮能提高烟叶产量和产值、提高物理特性和协调化学成分[8-10]。以‘云烟87’为材料,在常德烟区种植密度为16 500株· hm-2、施氮量为135 kg·hm-2时,烟叶的经济效益最好[11];但‘云烟87’在郴州烟区的试验却发现密度为18 195株· hm-2、施氮量为142.5 kg·hm-2时,烟叶的经济性状更优[1]。可见,由于试验地点的不同,关于施氮量和种植密度对烤烟生长发育及其产量和质量影响的研究结果也不一致。

虽然施氮量和种植密度对烤烟生长发育、产量和质量的互作效应已有报道[12-13],但在减氮的同时提高种植密度对烤烟烟叶可用性的影响研究报道极少[14-15]。从理论上推算,烟叶单产为2 250 kg·hm-2时,施用67.5~82.5 kg·hm-2无机纯氮即可以满足烤烟生长发育需要[16],而目前东南烟区施氮量达到165 kg·hm-2,因而减氮增密理论上可行,但减氮增密对烤烟叶光合特性、烟叶可用性以及烟叶结构方面的影响尚未见研究报道。

本文采用田间试验方法,研究减氮增密对烤烟光合特性、物理特性以及烤后烟叶产量和质量的影响,探讨减少施氮量和增加种植密度对烟叶可用性与烟叶结构的效应,为寻找彰显浓香型风格特征的优质烟叶栽培组合措施提供参考。

1 材料与方法 1.1 试验材料

供试烤烟(Nicotiana tabacum L.)品种为‘云烟87’,由衡阳常宁市烟草专卖局提供。试验土壤前茬为水稻,土壤基本理化性质为:pH 6.5,有机质25.1 g·kg-1,全氮2.4 g·kg-1,碱解氮115.9 mg·kg-1,有效磷6.0 mg·kg-1,速效钾60.9 mg·kg-1,缓效钾78.7 mg·kg-1

1.2 试验设计

采用随机区组设计。以种植密度和施氮量作为试验因素,试验设置4个种植模式处理,分别是传统种植模式(CK)、减氮模式(T1)、增密模式(T2)和减氮增密模式(T3)(表 1)。试验于2016—2017年在湖南省衡阳常宁市三角塘镇石岭村进行,2年研究结果趋势类似,因此本文主要报道2017年试验结果。

表 1 试验处理 Table 1 Test treatment
处理代号Treatment code 处理Treatment 密度/(株·hm-2)
Density
施氮量/(kg·hm-2)
Nitrogen application level
CK 传统种植模式Traditional planting pattern 13 500 150
T1 减氮模式Nitrogen-saving 13 500 135
T2 增密模式Density-increasing 16 500 150
T3 减氮增密模式Nitrogen-saving and density-increasing 16 500 135

烤烟种植密度为16 500株· hm-2时,株距为0.5 m,行距为1.2 m;种植密度为13 500株· hm-2时,株距为0.6 m,行距为1.2 m。每处理设3次重复,共12个小区。每小区80株,四周设保护行。各处理均于2017年3月10日移栽,统一打顶,留叶18片,对烟叶挂牌标记。其他田间管理按照当地优质烟叶生产方案。

1.3 测定项目及方法

在每个小区选择长势长相均匀一致、能够代表小区生长状况的烟株10株,打顶后每株自上而下标记第3位叶为上部叶,第9位叶为中部叶,第15位叶为下部叶。打顶15 d后,在09:00—12:00,测定各部位叶片光合参数。测定时段内天气晴朗,田间光照强度1 612~1 851 μmol·m-2·s-1,温度30.9~32.6 ℃,空气相对湿度64.5%~67.2%。采用LI-6400便携式光合测定系统测定净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)。人工控制CO2浓度400 μmol·mol-1,温度25 ℃,光照强度1 000 μmol·m-2·s-1

利用YH-1叶片厚度测定仪测定叶片厚度;打孔器法测定叶质重;烟叶叶面积测定参照《烟叶叶面积测定方法:YC/T 142—2010》,开片度=宽度/长度×100%。按照常规方法测定含梗率以及烤后烟叶的产量、产值、均价、中上等烟叶比例和各部位烟叶比例等经济性状。

1.4 数据统计与分析

数据采用Excel 2007和SPSS 19.0进行数据处理和单因素方差分析。

2 结果与分析 2.1 减氮增密对烤烟不同部位叶片光合特性的影响 2.1.1 对主要光合特性指标的影响

表 2可以看出:与CK比较,T1处理的上部叶、中部叶和下部叶的净光合速率分别下降了8.1%、14.6%和27.6%,且差异显著。T2处理的上部叶、中部叶的净光合速率分别下降了8.5%、10.2%,但下部叶的净光合速率反而提高了43.4%。T3处理的中部叶、上部叶的净光合速率降低最显著,其降幅分别为30.7%和16.6%,而下部叶则无显著变化。T1处理的上部叶、中部叶和下部叶的气孔导度分别下降了19.4%、1.2%和31.9%。T2处理的上部叶气孔导度降低了18.9%,但中部叶和下部叶却分别提高了19.3%和28.9%。T3处理的上部叶气孔导度降低了27.5%,差异显著,而中、下部叶的气孔导度则无显著变化。T1处理的中部和上部烟叶的胞间CO2浓度分别提高了166.4%和147.2%,而下部叶则降低了27.6%,差异显著。T2和T3处理的各部位叶的胞间CO2浓度均显著增加,增幅分别为114.1%~224.0%和24.7%~213.1%。

表 2 减氮增密对烤烟不同部位叶片光合特性的影响 Table 2 Effect of nitrogen-saving and density-increasing on photosynthetic characteristics of leaves in different parts of flue-cured tobacco
处理代号
Treatment code
部位
Part
净光合速率/(μmol·m-2·s-1)
Net photosynthetic rate
气孔导度/(mmol·m-2·s-1)
Stomatal conductance
胞间CO2浓度/(μmol·mol-1)
Intercellular CO2 concentration
CK 上部 21.1±0.44a 65.1±1.22a 112.4±15.71c
T1 Upper 19.4±0.70b 52.5±4.53b 277.8±10.21a
T2 19.3±0.91b 52.8±3.45b 240.7±25.12b
T3 17.6±0.55c 47.2±1.12c 247.3±16.59b
CK 中部 20.5±0.54a 51.4±4.78b 98.8±22.70c
T1 Middle 17.5±0.52b 50.8±1.19b 263.2±10.24b
T2 18.4±0.72b 61.3±3.45a 320.1±7.52a
T3 14.2±0.77c 49.7±3.33b 309.3±15.23a
CK 下部 7.6±0.69b 28.8±2.55b 159.9±16.21c
T1 Lower 5.5±0.91c 19.6±2.17c 115.7±17.15d
T2 10.9±0.39a 40.5±3.17a 382.5±17.14a
T3 8.2±0.86b 27.9±1.16b 199.4±15.41b
注:同列数据不同字母表示在0.05水平差异显著。下同。
Note:The different letters in the same column indicate significant difference at 0.05 level.The same as follows.
2.1.2 不同部位烟叶光合特性的施氮量和密度互作效应

表 3可见:除上部叶和下部叶的净光合速率外,各部位烟叶其他光合特性指标的施氮量和种植密度互作效应显著。从主要变异来源看,上部叶的净光合速率和气孔导度的主要变异来源均为密度和施氮量,而胞间CO2浓度为施氮量、密度和施氮量互作。中部叶的净光合速率主要变异来源为施氮量,气孔导度为施氮量、密度和施氮量互作,胞间CO2浓度为密度。下部叶的3个指标的主要变异来源均为密度,其F值分别为490.1、422.5和412.3,明显大于施氮量效应及密度和施氮量互作效应,可见下部叶的光合特性受密度的影响较大。

表 3 不同部位烟叶光合特性的施氮量和种植密度互作效应分析(F值) Table 3 Analysis of nitrogen application level and planting density interaction effect of photosynthetic characteristics of tobacco leaves in different parts(F-value)
变异来源
Source of variation
净光合速率
Net photosynthetic rate
气孔导度
Stomatal conductance
胞间CO2浓度
Intercellular CO2 concentration
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
密度
Density(D)
234.8** 76.2** 490.1** 81.6** 26.3** 422.5** 189.1** 206.8** 412.3**
施氮量
Nitrogen level(N)
209.4** 446.6** 313.7** 87.3** 50.6** 50.9** 584.7** 98.2** 295.8**
D×N 0.0 68.0** 4.9 12.9* 41.2** 12.2* 498.4** 18.1** 48.9**
Note:* P < 0.05,* *P < 0.01. The same as follows.
2.2 减氮增密对烤烟物理特性及上部叶开片度的影响 2.2.1 减氮增密对不同部位烟叶物理性状的影响

图 1-A可见:与对照相比,各处理的上、中、下3个部位叶的叶面积均出现不同程度的下降,其中T3处理分别下降了25.8%、24.3%和22.6%,这说明减氮增密降低了烟叶单叶面积。烟叶含梗率是评价烟叶可用性的重要指标之一[17]。从图 1-B可以看出,中上部烟叶含梗率与对照相比,差异不显著,但下部叶的含梗率却显著降低,这可能与减氮、增密后烟株株型改变,使下部叶生长环境有所改善有关。由图 1-C发现,各处理的中、上部烟叶的叶片厚度降低的范围为4.3%~14.9%,而下部叶叶片厚度则有所增加。由图 1-D可见:各处理的中、上部烟叶的叶质重有所下降,其中T3的上部叶叶质重下降了19.4%,但下部叶均有所增加,增幅为8.9%~12.2%,烟叶结构更均衡。

图 1 减氮增密对烤烟烟叶物理特性的影响 Figure 1 The effect of nitrogen-saving and density-increasing on physical characteristics of leaves of flue-cured tobacco
2.2.2 不同部位烟叶物理性状的施氮量和密度互作效应

表 4可见:施氮量和密度的互作效应对上部叶叶片厚度,对中部叶单叶叶面积、叶质重,对下部叶的含梗率、叶片厚度、叶质量均有极显著影响。从主要变异来源看,上部叶的单叶叶面积和叶质重主要变异来源为施氮量,含梗率主要变异来源为密度,叶片厚度主要变异来源为施氮量和密度互作;中部叶的单叶叶面积、叶片厚度和叶质量主要变异来源均为施氮量,含梗率受施氮量、密度、施氮量和密度互作影响极小;下部叶的单叶叶面积主要变异来源为施氮量,含梗率主要变异来源为施氮量、施氮量和密度互作,叶片厚度和叶质量的主要变异来源均为施氮量和密度互作。可见,施氮量对不同部位烟叶的物理性质影响显著,而施氮量和密度互作则主要对下部叶影响显著。

表 4 不同部位烟叶物理性状的施氮量和密度互作效应分析(F值) Table 4 Analysis of nitrogen application level and density interaction effects of physical properties of tobacco leaves in different parts(F-value)
变异来源
Source of variation
单叶面积
Area per leaf
含梗率
Stem ratio
叶片厚度
Leaf thickness
叶质重
Specific leaf weight
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
密度
Density
13.6* 29.0** 0.7 17.3** 2.1 3.6 7.1* 10.4* 0.2 56.9** 59.0** 1.0
施氮量
Nitrogen level
74.3** 502.7** 436.8** 0.5 0.8 18.8** 9.5* 43.8** 21.5** 512.1** 224.0** 49.0**
D×N 1.4 59.9** 2.8 1.1 0.2 21.9** 21.2** 1.9 53.4** 0.5 44.0** 100.0**
2.2.3 减氮增密对烤烟上部叶开片度的影响

上部叶开片的程度对上部叶可用性有直接的影响。从表 5可见:与传统种植模式CK比较,T1处理的上部叶倒数第1~4片叶的开片度均显著提高,平均提高了2.2%,这说明在密度不变的前提下,减少10%的施氮量,有利提高上部叶的开片度,解决上部叶窄、厚的问题。而T2和T3处理的上部叶开片度为28.2%~30.0%,变化不显著,这说明增密或减氮增密均不会对上部叶开片度产生负面影响。

表 5 减氮增密对烤烟上部叶开片度的影响 Table 5 Effect of nitrogen-saving and density-increasing on leaf openness of upper leaves of flue-cured tobacco %
处理代号
Treatment code
倒1叶
The countdownfirst leaf
倒2叶
The countdownsecond leaf
倒3叶
The countdownthird leaf
倒4叶
The countdownfourth leaf
平均值
Average value
CK 28.0±0.80 c 28.8±0.96 b 29.5±1.03 b 30.0±1.29 ab 29.1±0.43 b
T1 32.8±1.98 a 31.0±2.05 a 31.0±1.24 a 30.7±0.84 a 31.3±0.48 a
T2 30.0±1.12 b 29.8±1.30 ab 28.8±1.35 b 28.2±2.10 b 29.2±0.41 b
T3 28.7±1.62 bc 28.5±1.85 b 28.6±2.20 b 28.9±1.19 b 28.7±0.10 b
2.3 减氮增密对烤后烟叶经济性状的影响 2.3.1 烤后烟叶经济指标

表 6可以看出:与CK相比,T1处理的产量下降,T2和T3处理分别显著提高9.2%和4.7%。3个处理的产值均提高,T1、T2和T3处理分别提高了0.2、0.4和0.6万元· hm-2。而均价和中上等烟比例则以减氮模式T1和T3处理表现较好,均价比CK分别提高了7.4%和6.1%(P < 0.05),中上等烟比例则分别提高了3.8%和4.7%。比较不同种植模式下各部位烟叶比例发现,增密和减氮均降低了上部叶比例,提高了中部叶比例,对于下部叶比例则影响较小,这对于优化烟叶结构有参考意义。总体上,T3处理表现最为突出,其产量、产值、均价和中上等烟比例均较CK有所提高,而在烟叶结构方面,虽然其下部叶比例略有提高,但中部叶比例提高了6.8%。

表 6 减氮增密对烤后烟叶经济性状的影响 Table 6 The Effect of nitrogen-saving and density-increasing on the economic characteristics of roasted tobacco leaves
处理代号
Treatmentcode
产量/
(kg·hm -2)Yield
产值/
(万元·hm -2)Outputvalue
均价/
(元·kg -1)Averageprice
中上等烟比例/%
Rate ofmediumtobacco
上部叶比例/%
Rate ofthe upperleaves
中部叶比例/%
Rate ofthe middleleaves
下部叶比例%
Rate ofthe lowerleaves
CK 2 252.9±22.51c 5.2±0.04d 23.1±0.19b 88.0±1.15b 44.2±1.91a 32.0±1.66d 23.8±1.86ab
T1 2 168.9±31.17d 5.4±0.02c 24.8±0.23a 91.8±1.28a 40.7±1.95b 34.5±1.30c 24.8±1.20ab
T2 2 461.1±15.01a 5.6±0.03b 22.7±0.18c 88.0±1.72b 40.5±2.55b 36.7±1.13b 22.8±1.35b
T3 2 359.6±26.99b 5.8±0.02a 24.5±0.21a 92.7±1.49a 35.3±1.72c 38.8±1.32a 25.9±1.41a
2.3.2 烤后烟叶经济指标的施氮量和密度互作效应

表 7可以看出:施氮量和密度互作仅对均价、中上等烟比例、上部叶比例和下部叶比例有显著的影响,对产量、产值和中部叶比例影响较小。从主要变异来源看,产量、产值和中部叶比例的主要变异来源均为密度,均价、中上等烟比例和下部叶比例的主要变异来源均为施氮量,而上部叶比例的主要变异来源则为密度和施氮量。

表 7 烤后烟叶经济指标的施氮量和密度互作效应分析(F值) Table 7 Analysis of nitrogen application level and density interaction effect of economic indicators of tobacco leaves after baking(F-value)
变异来源
Source ofvariation
产量
Yield
产值
Output value
均价
Averageprice
中上等烟比例
The proportion ofmedium tobacco
上部叶比例
The proportion ofthe upper leaves
中部叶比例
The proportion ofthe middle leaves
下部叶比例
The proportion ofthe lower leaves
密度
Density
97.3** 36.4** 47.5** 9.7* 481.1** 285.7** 0.1
施氮量
Nitrogen level
40.0** 9.1* 186.4** 69.3** 439.7** 74.6** 156.2**
D×N 4.8 0.0 15.3** 9.7* 16.8** 0.6 41.0**
3 讨论

不同部位烟叶由于生长位置的环境条件不同,光合特性可能存在差异。减少施氮量烤烟上部叶净光合速率降低[18-20],增加种植密度净光合速率也降低[21-22];但也有研究者认为,中、高密度的上部叶净光合速率较高[23]。本研究结果表明,T1、T2和T3处理的中、上部叶净光合速率显著降低,胞间CO2浓度显著升高。当净光合速率和胞间CO2浓度变化趋势相反时,净光合速率的降低与叶肉细胞羧化能力的降低有关;反之,则与气孔限制因素相关[24-25]。说明T1、T2和T3处理的中、上部叶净光合速率主要受非气孔限制影响。主要是因为中、上部叶在测定时处于旺盛生长阶段,对氮素的吸收比较敏感,减氮降低了氮素的供应,密植加剧了烟株群体间对养分的竞争,从而导致叶肉细胞的羧化能力下降,抑制烟叶光合作用[26],使T1、T2和T3处理的中、上部叶受到非气孔限制作用显著大于气孔限制作用。而T1、T2和T3处理下部叶的净光合速率和胞间CO2浓度的变化趋势相同,这说明T1、T2和T3处理下部叶的净光合速率主要受气孔限制的影响。气孔限制是由于气孔导度的降低引起的,与植物叶片生长环境的变化密切相关[25, 27]

本研究是在打顶15 d后测定的光合特性,此时下部叶正处于成熟阶段,CK的下部叶前期营养充足,发育早,落黄快,而T2处理由于烟株密度增加,加剧了对营养的竞争,导致下部叶营养减少,发育晚,落黄慢,测定时仍维持较高的净光合速率,这可能也是T2处理的下部叶净光合速率比CK高43.4%的原因之一。减氮增密改变了烟株整体烟叶营养供应平衡,优化了烟株株型和群体结构,T3处理的烤后烟叶结构明显改善,上部叶比例降低了8.9%,中部叶比例提高了6.8%,同时烟叶产量、产值和中上等烟比例均显著增加。而刘碧荣等以‘云烟87’为材料的研究结果表明,适度密植条件下,施纯氮90 kg·hm-2,留叶数16片,有利于优化烟叶结构,提高中上等烟比例[28]。可见,合理的减氮增密有利于提高烟叶产量和质量,优化烟叶结构。

参考文献(References)
[1] 邓小华, 肖志君, 齐永杰, 等. 种植密度和施氮量及其互作对湘南稻茬烤烟经济性状的效应[J]. 湖南农业大学学报(自然科学版), 2016, 42(3): 274-279.
Deng X H, Xiao Z J, Qi Y J, et al. Effective analysis of planting density, nitrogen level and its interaction on economic character of paddy-tobacco in South Hunan[J]. Journal of Hunan Agricultural University(Natural Science Edition), 2016, 42(3): 274-279. (in Chinese with English abstract)
[2] 李文卿, 陈顺辉, 李春俭, 等. 土壤氮和肥料氮对烤烟总氮和烟碱积累的影响[J]. 福建农业学报, 2008, 23(3): 314-317.
Li W Q, Chen S H, Li C J, et al. Effects of nitrogen in soil and fertilizer on accumulation and distribution of total nitrogen and nicotine in flue-cured tobacco[J]. Fujian Journal of Agricultural Sciences, 2008, 23(3): 314-317. DOI: 10.3969/j.issn.1008-0384.2008.03.021 (in Chinese with English abstract)
[3] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. DOI: 10.1038/nature13774
[4] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. DOI: 10.1038/nature11917
[5] 张黎明, 李云. 种植密度与施氮量对烤烟生长发育及产质量的影响[J]. 安徽农业科学, 2010, 38(23): 12437-12438.
Zhang L M, Li Y. Effects of planting density and nitrogen application rate on growth and development and yield quality of flue-cured tobacco[J]. Journal of Anhui Agricultural Sciences, 2010, 38(23): 12437-12438. DOI: 10.3969/j.issn.0517-6611.2010.23.048 (in Chinese with English abstract)
[6] 赵正雄, 殷红慧, 李宏光, 等. 断根追钾条件下减量施氮对烟株后期氮、钾吸收及烟叶产量质量的影响[J]. 作物学报, 2008, 34(7): 1294-1298.
Zhao Z X, Yin H H, Li H G, et al. Integrated effects of reducing N application and cutting-roots with K top-dressing on N, K uptake, and yield, quality of flue-cured tobacco[J]. Acta Agronomica Sinica, 2008, 34(7): 1294-1298. (in Chinese with English abstract)
[7] 毛家伟, 杨立均, 张翔, 等. 减氮配施生物菌剂对土壤肥力及烟叶产质量影响[J]. 中国农学通报, 2017, 33(15): 56-61.
Mao J W, Yang L J, Zhang X, et al. Effect of reduced nitrogen fertilizer application combined with biological agents on soil fertility and yield and quality of flue-cured tobacco[J]. Chinese Agricultural Science Bulletin, 2017, 33(15): 56-61. (in Chinese with English abstract)
[8] 石楠, 周米良, 邓小华, 等. 翻压绿肥后减施氮肥对烤烟产质量的影响[J]. 作物研究, 2015, 29(2): 166-169.
Shi N, Zhou M L, Deng X H, et al. Effect of green manure and reducing nitrogen application on yield and quality of flue-cured tobacco[J]. Crop Research, 2015, 29(2): 166-169. DOI: 10.3969/j.issn.1001-5280.2015.02.13 (in Chinese with English abstract)
[9] 邓小华, 杨丽丽, 陆中山, 等. 黑麦草绿肥翻压下烤烟减施氮量研究[J]. 中国烟草学报, 2016, 22(6): 70-77.
Deng X H, Yang L L, Lu Z S, et al. Research on reduction of nitrogen fertilizer application in flue-cured tobacco production cultivation caused by ploughing back ryegrass[J]. Acta Tabacaria Sinica, 2016, 22(6): 70-77. (in Chinese with English abstract)
[10] 袁家富, 徐祥玉, 赵书军, 等. 绿肥翻压和减氮对烤烟养分累积、产量及质量的影响[J]. 湖北农业科学, 2009, 48(9): 2106-2109.
Yuan J F, Xu X Y, Zhao S J, et al. Effect of green manure and nitrogen level on nutrient accumulation, yield and quality of flue-cured tobacco[J]. Hubei Agricultural Sciences, 2009, 48(9): 2106-2109. DOI: 10.3969/j.issn.0439-8114.2009.09.020 (in Chinese with English abstract)
[11] 孙敬钊.不同种植密度和施氮量对烤烟生长发育及产质量的影响[D].长沙: 湖南农业大学, 2016.
Sun J Z. Effect of planting density and nitrogen fertilization rate on growth, yield and quality of flue-cured tobacoo[D]. Changsha: Hunan Agricultural University, 2016(in Chinese with English abstract).
[12] 刘佳, 戴林建, 王勇, 等. 密度与施氮量对烤烟农艺性状及烟叶主要化学成分的互作效应[J]. 作物研究, 2017, 31(2): 152-159.
Liu J, Dai L J, Wang Y, et al. The interaction effect of density and N application rate on the main chemical composition and agronomic traits of flue-cured tobacco[J]. Crop Research, 2017, 31(2): 152-159. (in Chinese with English abstract)
[13] 李海林, 于庆涛, 张光利, 等. 种植密度和氮肥及其互作对邵阳烟区稻茬烤烟经济性状的影响[J]. 作物研究, 2016, 30(04): 417-421.
Li H L, Yu Q T, Zhang G L, et al. Effects of planting density, nitrogen levels and its interaction on economic character of paddy-tobacco[J]. Crop Research, 2016, 30(04): 417-421. (in Chinese with English abstract)
[14] 邓小华, 杨丽丽, 邹凯, 等. 烟稻轮作模式下烤烟增密减氮的主要化学成分效应分析[J]. 植物营养与肥料学报, 2017, 30(4): 991-997.
Deng X H, Yang L L, Zou K, et al. Effect of density-increasing and nitrogen-saving on chemical components of flue-cured tobacco under tobacco-rice rotation system[J]. Plant Nutrition and Fertilizer Science, 2017, 30(4): 991-997. (in Chinese with English abstract)
[15] 李传胜, 史宏志, 李怀奇, 等. 增密减叶减氮模式对烤烟上部叶的提质增香效果[J]. 河南农业科学, 2017, 46(4): 32-37.
Li C S, Shi H Z, Li H Q, et al. Effect of increasing plant density and reducing leaf number and nitrogen amount on upper leaf quality and aroma[J]. Journal of Henan Agricultural Sciences, 2017, 46(4): 32-37. (in Chinese with English abstract)
[16] 韩锦峰, 郭培国. 氮素用量、形态、种类对烤烟生长发育及产量品质影响的研究[J]. 河南农业大学学报, 1990, 24(3): 276-285.
Han J F, Guo P G. Study of the effects of applied different rates, forms and kinds of fertilizer N on growth, development, yield and quality of flue-cured tobacco[J]. Journal of Henan Agricultural University, 1990, 24(3): 276-285. (in Chinese with English abstract)
[17] 石锦辉, 黄景崇, 陈建军, 等. 指示叶片成熟度对一次性采收的上部烟叶可用性的影响[J]. 湖北农业科学, 2017, 56(21): 4101-4105.
Shi J H, Huang J C, Chen J J, et al. Effects of harvesting maturity of indicative leaves on availability of once harvested upper leaves in flue-cured tobacco[J]. Hubei Agricultural Sciences, 2017, 56(21): 4101-4105. (in Chinese with English abstract)
[18] 张军仓, 王玮, 冯辉, 等. 灌水与氮肥互作对烤烟生长及经济性状的影响[J]. 贵州农业科学, 2013, 41(12): 64-67.
Zhang J C, Wang W, Feng H, et al. Effects of interaction between irrigation and nitrogen fertilizer on growth and economic traits of flue-cured tobacco[J]. Guizhou Agricultural Sciences, 2013, 41(12): 64-67. DOI: 10.3969/j.issn.1001-3601.2013.12.017 (in Chinese with English abstract)
[19] 张生杰, 黄元炯, 任庆成, 等. 氮素对不同品种烤烟叶片衰老、光合特性及产量和品质的影响[J]. 应用生态学报, 2010, 21(3): 668-674.
Zhang S J, Huang Y J, Ren Q C, et al. Effects of nitrogen fertilization on leaf senescence, photosynthetic characteristics, yield, and quality of different flue-cured tobacco varieties[J]. Chinese Journal of Applied Ecology, 2010, 21(3): 668-674. (in Chinese with English abstract)
[20] 崔志燕, 阮志, 陈富彩, 等. 氮用量对陕南烟叶氮钾含量、光合特性和碳氮代谢酶活性及产质量的影响[J]. 西南农业学报, 2016, 29(3): 628-634.
Cui Z Y, Ruan Z, Chen F C, et al. Effects of nitrogen fertilizer application on nitrogen and potassium content, photosynthetic characteristics as well as enzyme activity of carbon and nitrogen metabolism and yield and quality of flue-cured tobacco in southern Shaanxi Province[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(3): 628-634. (in Chinese with English abstract)
[21] 时向东, 朱命阳, 赵会纳, 等. 种植密度对烤烟叶片生育期光合特性的影响[J]. 中国烟草学报, 2012, 18(6): 38-42.
Shi X D, Zhu M Y, Zhao H N, et al. Effects of planting density on tobacco leaf photosynthetic characteristics[J]. Acta Tabacaria Sinica, 2012, 18(6): 38-42. DOI: 10.3969/j.issn.1004-5708.2012.06.008 (in Chinese with English abstract)
[22] 王凯, 于洁, 葛生珍, 等. 种植密度和留叶数对彭水山地烟叶光合特性的影响[J]. 西南农业学报, 2013, 26(5): 1843-1846.
Wang K, Yu J, Ge S Z, et al. Effects of plant density and remained leaf number on photosynthetic characteristics of flue-cured tobacco in Pengshui[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(5): 1843-1846. (in Chinese with English abstract)
[23] 刘朝科, 王军, 谢玉华, 等. 种植密度与施氮量对烤烟光合特性及代谢酶活性的影响[J]. 华南农业大学学报, 2013, 34(4): 458-464.
Liu C K, Wang J, Xie Y H, et al. Effects of planting density and nitrogen application on the photosynthetic characteristics and metabolic enzyme activities of flue-cured tobacco[J]. Journal of South China Agricultural University, 2013, 34(4): 458-464. (in Chinese with English abstract)
[24] 许大全. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯, 1997, 33(4): 241-244.
Xu D Q. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4): 241-244. (in Chinese with English abstract)
[25] 陈根云, 陈娟, 许大全. 关于净光合速率和胞间CO2浓度关系的思考[J]. 植物生理学通讯, 2010, 46(1): 64-66.
Chen G Y, Chen J, Xu D Q. Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration[J]. Plant Physiology Communications, 2010, 46(1): 64-66. (in Chinese with English abstract)
[26] 林勇.不同施氮水平下烤烟光合特性和氮代谢的研究[D].福州: 福建农林大学, 2009.
Lin Y. Study on the photosynthetic characteristic and nitrogen metabolism in different nitrogen treatment of the flue-cured tobacco[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009(in Chinese with English abstract).
[27] 张广富, 赵铭钦, 王冬, 等. 不同种植密度烤烟净光合速率日变化与生理生态因子的关系[J]. 中国烟草学报, 2011, 17(1): 54-61.
Zhang G F, Zhao M Q, Wang D, et al. Relationship between diurnal changes of net photosynthetic rate and physio-ecological factors in flue-cured tobacco in different planting densities[J]. Acta Tabacaria Sinica, 2011, 17(1): 54-61. DOI: 10.3969/j.issn.1004-5708.2011.01.011 (in Chinese with English abstract)
[28] 刘碧荣, 祖朝龙, 马均, 等. 施氮量与留叶数调控对高海拔烟区烤烟烟叶结构、产量及品质的影响[J]. 烟草科技, 2017, 50(4): 25-30.
Liu B R, Zu C L, Ma J, et al. Effects of nitrogen fertilization and number of residual leaves on structure, yield and quality of flue-cured tobacco in high altitude tobacco-planting areas[J]. Tobacco Science & Technology, 2017, 50(4): 25-30. (in Chinese with English abstract)