南京农业大学学报  2018, Vol. 41 Issue (4): 685-690   PDF    
http://dx.doi.org/10.7685/jnau.201712019
0

文章信息

赵海燕, 甘淳丹, 兰汝佳, 管永祥, 张春明, 殷广德, 郑青松
ZHAO Haiyan, GAN Chundan, LAN Rujia, GUAN Yongxiang, ZHANG Chunming, YIN Guangde, ZHENG Qingsong
喷施新型腐殖酸型叶面肥对小麦旗叶抗氧化和产量及品质的影响
Effects of a new humic acid-foliar fertilizer on flag leaf senescence, yield and quality of spring wheat
南京农业大学学报, 2018, 41(4): 685-690
Journal of Nanjing Agricultural University, 2018, 41(4): 685-690.
http://dx.doi.org/10.7685/jnau.201712019

文章历史

收稿日期: 2017-12-17
喷施新型腐殖酸型叶面肥对小麦旗叶抗氧化和产量及品质的影响
赵海燕1 , 甘淳丹1 , 兰汝佳1 , 管永祥2 , 张春明1,3 , 殷广德2 , 郑青松1     
1. 南京农业大学资源与环境科学学院, 江苏 南京 210095;
2. 江苏省耕地质量与农业环境保护站, 江苏 南京 210036;
3. 新疆农业大学草业与环境科学学院, 新疆 乌鲁木齐 830052
摘要[目的]探究新型腐植酸型叶面肥在小麦生产上的应用,并研究其结合杀菌剂应用于防病虫害、干热风和提高产量的效果及其机制,为该肥料在小麦生产上推广施用提供科学依据。[方法]以‘扬麦16号’为材料,设置低剂量叶面肥(LF)处理(1 500 g·hm-2)、高剂量叶面肥(HF)处理(3 000 g·hm-2)、LF+多菌灵(LFC)处理和HF+多菌灵(HFC)处理,以喷施等量清水为对照,研究小麦穗期喷施含腐植酸液体叶面肥2次对作物产量和品质的调控效应,并检测不同处理的植株叶片叶绿素(Chl)、可溶性糖(SS)、可溶性蛋白(SP)含量和抗氧化酶的活性。[结果]喷施1 500和3 000 g·hm-2叶面肥后7和14 d,小麦旗叶的Chl、SS和SP含量均提高,超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性均增加,丙二醛(MDA)含量降低;其中,高浓度叶面肥处理的效应比低浓度处理的更为明显,结合多菌灵喷施的效应也更为明显。施肥处理明显提高小麦籽粒的千粒质量和产量,结合多菌灵的施肥处理的促进效果更为显著。低浓度和高浓度叶面肥处理的小麦籽粒产量分别比对照增加5.7%和8.3%,结合多菌灵施用后,分别增产8.4%和10.6%。施肥处理提高了小麦籽粒的蛋白质含量、湿面筋含量、沉降值和稳定时间,结合多菌灵的施肥处理的促进效果更为显著。[结论]在小麦抽穗期和齐穗期喷施含腐植酸叶面肥,能够明显提高叶片的抗氧化及籽粒灌浆和输送养分的能力,从而提高了小麦的产量和品质。
关键词小麦   叶面肥   抗氧化   腐植酸   产量   品质   
Effects of a new humic acid-foliar fertilizer on flag leaf senescence, yield and quality of spring wheat
ZHAO Haiyan1, GAN Chundan1, LAN Rujia1, GUAN Yongxiang2, ZHANG Chunming1,3, YIN Guangde2, ZHENG Qingsong1    
1. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;
2. Jiangsu Station of Agro-Environmental Monitoring and Protection, Nanjing 210036, China;
3. College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: [Objectives] This study aimed to evaluate the effects of new humic acid-foliar fertilizer and its combination with fungicides on wheat production and its mechanism, so that it could provide theoretical basis for the fertilizer application on wheat production. [Methods] Spring wheat 'Yangmai 16' was used as an experiment material, and regulations of its yield and quality with spraying by the following treatments, 1 500 g·hm-2 fertilizer(LF), 3 000 g·hm-2 fertilizer(HF), LF+carbendazim(LFC)and HA+carbendazim(HFC)at heading stage and full heading stage of wheat were studied, and spraying fresh water was as control. Contents of leaf chlorophyll(Chl), soluble sugar(SS), soluble protein(SP)and antioxidant enzyme activity of plant flag leaves under different fertilizer treatments were determined. [Results] Contents of Chl, SS and SP, and activities of SOD, APX and GR in flag leaves increased with varying degree under spraying the fertilizer at 1 500 and 3 000 g·hm-2 for 7 and 14 d. However, content of malondialdehyde(MDA)decreased under spraying the fertilizer. It found that the above-mentioned effects under high spraying concentration treatment were more obvious than those under low spraying concentration treatment, and the effect of fertilization combined with carbendazim was more significant in this study. Spraying with 1 500 and 3 000 g·hm-2 fertilizer significantly promoted the wheat yield by 5.7% and 8.3%, respectively. However, combined with carbendazim, spraying with 1 500 and 3 000 g·hm-2 fertilizer significantly promoted the wheat yield by 8.4% and 10.6%. Also, fertilizer with or without carbendazim showed similar promotive effects on protein content, wet gluten, sedimentation and stabilization tim of wheat grains. [Conclusions] In conclusion, foliar fertilizer application at heading stage and full heading stage of wheat increased antioxidation, improved leaf physiological function, enhanced grain filling and nutrien transporting, and improved wheat yield and quality.
Key words: wheat    foliar fertilizer    antioxidation    humic acid    yield    quality   

小麦是我国主要的粮食作物之一, 生育期较长, 需肥量大。由于生育后期干热风频繁, 易发早衰, 导致小麦千粒质量和品质下降, 使小麦产量受到很大损失[1]。合理施肥是提高作物营养、确保作物稳产的重要手段。喷施叶面肥是一种有效的增产技术。当土壤处于限制作物根系吸收营养, 或者作物处于快熟生长的时候, 叶面肥的施用具有明显的益处, 可直接供应作物叶片营养[2-3]。而且, 若叶面肥中含有营养元素、促生物质或抗胁迫物质, 喷施叶面肥则为一种抵抗逆境的方法[4-5]

生物腐植酸能有效释放肥料中的养分, 可以代替部分化肥; 并且, 生物腐植酸与化学农药混用, 可减少化学农药用量, 并降低其毒性, 提高生防效果, 降低对有益生物的杀伤力, 有利于保护环境和维持生态平衡[6-7]。近年来, 利用腐植酸类肥料改良土壤、提高化肥肥效已取得了很大的进展。腐植酸产品的开发与生产是发展有机-无机复混肥料切实可行的途径。含腐植酸的复合肥在提高化肥利用率、改良土壤、增加作物的抗逆性能和改善农产品品质方面的作用逐渐受到重视[8-9]。腐植酸绿色生态肥以实现农作物目标产量的同时追求肥料投入的最经济为目的, 彻底改变传统肥料配伍观念及施肥应用模式, 被称为是“第三代化肥”[8, 10]。作为复合肥或复混肥料的主要原料之一, 腐植酸已经广泛应用到肥料生产中, 尤其是肥料的二次加工领域, 已进入了配方肥基础原料行列[11]。应用腐植酸配方肥料对提高化学肥料利用率和提高农产品品质作用非常明显[12-14]。然而, 生物腐植酸由于起步晚、生产技术落后等原因, 仍然有许多问题需要探讨和解决。如生物腐植酸的各项具体组分与腐植酸及其配方肥的施用对植物生理、土壤结构以及土壤微生物的影响, 以及施用技术上的集成等。本研究以‘扬麦16号’为试验材料, 在小麦抽穗期和齐穗期进行含腐植酸叶面肥喷施试验, 探索该肥料的施用效果, 旨在为该肥料在小麦生产上推广应用提供科学依据。

1 材料与方法 1.1 试验材料

小麦(Triticum aestivum L.)品种为‘扬麦16号’。供试肥料为兴欣富利素, 由江苏农林生化有限公司提供, 产品类型为水剂。兴欣富利素是含腐植质氨基酸水溶肥料(大量元素型)的液体叶面肥, 主要养分腐植酸含量不少于30 g·L-1, 大量元素(N+P2O5+K2O)含量不少于200 g·L-1。多菌灵(25%可湿性粉)为江阴市福达农化有限公司生产。

1.2 试验设计与处理

试验于2016年4—6月在江苏省南京市江宁区湖熟绿煜农场进行。土壤含盐量0.48 g·kg-1, 全氮含量1.39 g·kg-1, 全磷含量0.92 g·kg-1, 全钾含量14.34 g·kg-1, 有机质含量21.11 g·kg-1, 碱解氮含量82.13 mg·kg-1, 有效磷含量12.7 mg·kg-1, 有效钾含量84.62 mg·kg-1。一次性基施农场的池塘底泥作为基肥, 除了试验处理外, 未施其他任何肥料。试验共设5个处理:对照(CK):喷施清水; LF:喷施叶面肥(每次750 g·hm-2), 喷施2次, 施肥总剂量1 500 g·hm-2; HF:喷施叶面肥(1 500 g·hm-2), 喷施2次, 施肥总剂量3 000 g·hm-2; LFC:喷施叶面肥(750 g·hm-2)+多菌灵, 喷施2次, 施肥总剂量1 500 g·hm-2; HFC:喷施叶面肥(1 500 g·hm-2)+多菌灵, 喷施2次, 施肥总剂量3 000 g·hm-2。在小麦抽穗期和齐穗期各喷施1次, 喷施时间为16:30—17:30。多菌灵用量为25%可湿性粉剂1 500 g兑水450 kg, 即多菌灵粉剂用量1 500 g·hm-2。每个处理4个平行小区, 每个小区面积为21 m2。取样时间为小麦抽穗期2次喷施叶面肥后7和14 d。

1.3 植株叶片叶绿素(Chl)、丙二醛(MDA)、可溶性糖(SS)、可溶性蛋白(SP)含量和抗氧化酶活性测定

植株叶片Chl含量采用可持式SPAD叶绿素仪(SPAD502-plus, 中国)检测。MDA、SS和SP含量测定参照王学奎[15]的方法。叶片超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)酶活性的测定采用苏州科铭生物技术有限公司酶活性试剂盒。

1.4 小麦籽粒千粒质量、产量和品质的测定

小麦于成熟期收获后进行测产及室内考种。籽粒收获贮存3个月后, 采用丹麦Foos公司1241型近红外谷物成分分析仪测定小麦籽粒品质指标(蛋白质含量、湿面筋含量、沉降值和稳定时间)。

1.5 数据处理和统计分析

采用Microsoft Excel 2013软件和SPSS 13.0软件进行试验数据的统计和相关性分析, 采用Duncan’s检验法进行显著性差异分析。

2 结果与分析 2.1 穗期喷施叶面肥对小麦旗叶叶绿素(Chl)和丙二醛(MDA)含量的影响

图 1可知:在小麦抽穗期2次喷施叶面肥后7和14 d, 4个处理Chl含量(SPAD值)均显著高于对照, 但处理间无显著差异。喷施叶面肥后7和14 d, 4个处理的旗叶MDA含量均显著低于对照。

图 1 喷施叶面肥对小麦旗叶叶绿素(Chl)和丙二醛(MDA)含量的影响 Figure 1 Effects of spraying foliar fertilizer on contents of chlorophyll(Chl)and malondialdehyde(MDA) in flag leaf of wheat 1)CK:对照, 喷施清水; LF:喷施叶面肥(750 g·hm-2); HF:喷施叶面肥(1 500 g·hm-2); LFC:喷施叶面肥(750 g·hm-2)+多菌灵; HFC:喷施叶面肥(1 500 g·hm-2)+多菌灵。下同。CK:Control, spraying fresh water; LF:Spraying foliar fertilizer of 750 g·hm-2; HF:Spraying foliar fertilizer of 1 500 g·hm-2; LFC:Spraying 750 g·hm-2 foliar fertilizer and carbendazim; HFC:Spraying 1 500 g·hm-2 foliar fertilizer and carbendazim. The same as follows.
2)不同小写字母表示在0.05水平差异显著。下同。Values by the different small letters on the column of the same cluster are significantly different at 0.05 level. The same as follows.
2.2 穗期喷施叶面肥对小麦旗叶可溶性糖(SS)和可溶性蛋白(SP)含量的影响

图 2可知:喷施后7 d, 与对照相比, 喷施叶面肥显著增加小麦旗叶的SS和SP含量。随叶面肥喷施量增加, 小麦旗叶SS和SP含量明显增加, 且结合多菌灵喷施对SS和SP含量增加的效果更明显。喷施2次后旗叶的SP含量增加更为明显。喷施后14 d, 叶片SP含量显著下降。

图 2 喷施叶面肥对小麦旗叶可溶性糖(SS)和可溶性蛋白(SP)含量的影响 Figure 2 Effects of spraying foliar fertilizer on contents of soluble sugar and soluble protein in flag leaf of wheat
2.3 穗期喷施叶面肥对小麦旗叶抗氧化酶活性的影响

图 3可知:喷施叶面肥处理明显提高小麦旗叶的SOD、APX和GR活性。7 d时, LF、HF、LFC和HFC处理SOD活性比对照分别增加9.8%、10.3%、9.9%和16.3%, APX活性比对照分别增加32.4%、41.5%、53.6%和68.4%, GR活性比对照分别增加49.4%、82.7%、66.7%和90.1%;14 d时, LF、HF、LFC和HFC处理SOD活性比对照分别增加21.0%、29.9%、26.5%和31.1%, APX活性比对照分别增加64.7%、83.7%、98.3%和107.5%, GR活性比对照分别增加70.6%、101.9%、88.2%和117.6%。

图 3 喷施叶面肥对小麦旗叶SOD、APX和GR活性的影响 Figure 3 Effects of foliar fertilizer on activities of SOD, APX and GR in flag leaf of wheat
2.4 喷施叶面肥对小麦产量和籽粒品质的影响

表 1可知:喷施叶面肥处理对单位面积穗数、穗粒数影响均不显著, 但明显提高小麦籽粒的千粒质量, 结合多菌灵的处理促进效果更为显著。LF、HF、LFC和HFC处理的千粒质量分别比对照增加5.5%、9.5%、8.3%和10.6%。喷施叶面肥显著提高小麦籽粒产量, LF、HF、LFC和HFC处理的籽粒产量分别比对照增加5.7%、8.3%、8.4%和10.6%。喷施叶面肥处理提高了小麦籽粒的蛋白质含量、湿面筋含量、沉降值和稳定时间, 结合多菌灵处理的促进效果更为显著, HFC处理的小麦籽粒蛋白质含量、湿面筋含量、沉降值和稳定时间分别比对照增加4.1%、18.9%、31.8%和10.7%(表 2)。

表 1 喷施叶面肥对小麦产量构成的影响 Table 1 Effects of spraying foliar fertilizer on yield component of wheat
处理
Treatment
单位面积穗数/(104 hm-2)
Ears per hectare
穗粒数
Grains per ear
千粒质量/g
1 000-grain weight
产量/(g·hm-2)
Yield
CK 388.50±12.07a 30.40±2.52a 36.32±0.66b 4 291.12±210.22b
LF 382.50±14.55a 30.94±2.14a 38.32±0.61ab 4 535.54±202.53ab
HF 389.50±9.75a 30.01±1.95a 39.77±0.74a 4 649.28±128.08a
LFC 389.00±12.88a 30.39±2.76a 39.33±0.73a 4 649.54±148.78a
HFC 385.50±16.92a 30.64±2.11a 40.17±0.59a 4 745.56±131.12a
注:同列不同小写字母表示处理间在0.05水平差异显著。下同。Values by the different small letters in the column are significantly different at 0.05 level. The same as follows.
表 2 喷施叶面肥对小麦籽粒蛋白质含量、湿面筋含量、沉降值和稳定时间的影响 Table 2 Effects of spraying foliar fertilizer on protein content, wet gluten content, sedimentation and stabilization time of wheat grains
处理
Treatment
蛋白质含量/%
Protein content
湿面筋含量/%
Wet gluten content
沉降值/mL
Sedimentation
稳定时间/min
Stabilization time
CK 10.04±0.25b 24.03±1.05c 37.03±1.83b 1.53±0.11b
LF 10.52±0.33a 27.44±1.11b 44.67±2.47a 1.61±0.12ab
HF 10.75±0.48a 29.16±1.23ab 46.25±2.11a 1.64±0.09ab
LFC 10.66±0.42ab 28.65±0.89ab 46.58±1.77a 1.71±0.08a
HFC 10.98±0.31a 29.67±1.27a 48.51±2.55a 1.83±0.11a
3 讨论

含腐植酸水溶肥料作为一种新型肥料, 与传统肥料相比, 其产品配方多样, 施用方法灵活, 既可以用于土壤浇灌、滴灌、叶面喷施, 也可以用于无土栽培。Yildirim[16]采用腐植酸叶面喷施和土壤施肥2种方式, 在番茄定植3周后, 每隔10 d施肥1次, 连续4次施肥, 发现2种施肥均显著提高番茄生长和番茄果实产量, 但叶面喷施增产效果高于土壤施肥, 且叶面喷施处理番茄果实中抗坏血酸含量显著高于土壤施肥处理。Dhanasekaran[17]的研究结果也表明喷施腐植酸肥料显著提高番茄的产量和品质。Karakurt等[18]在胡椒定植4周后, 采用腐植酸叶面喷施和灌根施肥2种方式, 每隔15 d施肥1次, 连续3次施肥, 发现施肥均显著提高胡椒产量, 尤其是叶面喷施处理。陆万山[19]研究表明, 小麦在返青期、拔节期、孕穗期、灌浆期分别喷施含腐植酸水溶肥料, 可以促进灌浆结实, 增加穗粒数和千粒质量。本研究表明, 在小麦抽穗期和齐穗期喷施叶面肥明显提高小麦籽粒的千粒质量和产量, 喷施叶面肥提高了小麦籽粒的蛋白质含量、湿面筋含量、沉降值和稳定时间, 结合多菌灵的施肥处理的促进效果更为显著。因此, 在小麦穗期用杀菌剂、叶面肥等混配剂喷雾, 能达到“一喷三防”(防病、防虫、防干热风)和增加产量的目的。

小麦早衰是生产过程中的主要灾害之一。籽粒的充实程度必然会受到植物早衰的影响。在生产实践中, 一些因素如高温、干旱、病虫害等会导致小麦、水稻、玉米等禾谷类作物叶片在生育期内生理生化过程的衰老提前, 光合作用同化能力降低, 叶片内部生理功能失调, 籽粒灌浆时间缩短, 籽粒干物质积累量减少, 从而影响结实率和千粒质量, 对其产量及其品质有很大影响。Man等[20]研究发现补充灌溉可明显提高小麦的叶绿素含量、光合能力、CAT与SOD活性, 延缓衰老, 提高籽粒灌浆能力, 从而增强小麦的抗旱性和提高产量。吴安昌等[21]发现拔节、孕穗期追氮比返青、起身期追氮更能提高小麦产量, 其中拔节期追氮对小麦产量的提高尤为明显。拔节期追氮显著提高产量的原因是追氮显著提高叶片叶绿素含量, 提高植株光合能力。Abid等[22]发现, 干旱下增施氮肥显著提高小麦叶片叶绿素含量, 核酮糖-1, 5-二磷酸羧化酶/加氧酶含量, 提高叶片的SOD、APX酶活。García等[23]发现蚓粪腐植酸肥料明显增加干旱胁迫下水稻根SOD和POD活性, 促进脯氨酸(Pro)在根中积累, 降低根的MDA含量, 从而促进干旱胁迫下水稻的生长。本研究表明, 在小麦叶片衰老的过程中, 喷施含腐植酸水溶性肥料旗叶的Chl含量提高, SS、SP含量明显增加。随着旗叶叶绿素、SS、SP含量的上升, SOD、APX、GR酶活性也明显增加。Karakurt等[24]在胡椒上研究发现, 含腐植酸肥料使叶片的Chl含量增加, 且主要是叶绿素b的含量增加。因此, 腐植酸叶面肥在提高作物酶活性、增加光合色素、促进光合作用和提高作物抗逆性方面上具有显著的作用[3]

综上所述, 在土壤肥力中等的田块, 在小麦生长后期喷施含腐植酸叶面肥能明显改善叶片的生理功能, 并提高叶片的抗氧化以及籽粒灌浆和营养输送的能力, 从而提高了小麦的产量和品质。建议喷施叶面肥一般选择在风力不大的傍晚、阴天或晴天的下午。叶面肥在作物施用的阶段效应和浓度效应, 即在选择作物生长发育的具体阶段、喷施的浓度以及喷施的次数、间隔的时间, 均需要进一步探讨。叶面肥的喷施效果还取决于施用地区土壤的地力特征与背景、基肥施用的类型和用量等, 都会影响叶面肥的施用策略和效果。在农业生产上, 叶面肥施用量不宜多, 最好达到叶面肥80%~90%的养分利用率, 从而能最大程度满足作物后期对养分的需求, 且不造成环境污染。

参考文献(References)
[1] Akter N, Islam M R. Heat stress effects and management in wheat:a review[J]. Agronomy for Sustainable Development, 2017, 37: 37. DOI: 10.1007/s13593-017-0443-9
[2] 刘娜, 金昕, 谢昶琰, 等. 诱导条件下不同配施钙肥处理减缓'黄冠梨'果面褐斑病的研究[J]. 南京农业大学学报, 2017, 40(5): 867-873.
Liu N, Jin X, Xie C Y, et al. Effects of different application of cooperative calcium treatments on the incidence of brown spot in 'Huangguan' pear fruit under induced conditions[J]. Journal of Nanjing Agricultural University, 2017, 40(5): 867-873. DOI: 10.7685/janu.201611033 (in Chinese with English abstract)
[3] Januškaitiė I, Kacieė G. The effect of foliar spray fertilizers on the tolerance of Hordeum vulgare to UV-B radiation and drought stress[J]. Cereal Research Communications, 2017, 45(3): 1-11.
[4] 沈浦, 冯昊, 罗盛, 等. 缺氮胁迫下含Na+叶面肥对花生生长的抑制及补氮后的恢复效应[J]. 植物营养与肥料学报, 2016, 22(6): 1620-1627.
Shen P, Feng H, Luo S, et al. Inhibition of Na+-containing foliar fertilizer on peanut growth under N deficiency stress and recovery effect by supplemental N spraying[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1620-1627. DOI: 10.11674/zwyf.16013 (in Chinese with English abstract)
[5] Lü X, Li T, Wen X, et al. Effect of potassium foliage application post-anthesis on grain filling of wheat under drought stress[J]. Field Crops Research, 2017, 206: 95-105. DOI: 10.1016/j.fcr.2017.02.015
[6] Goswami L, Nath A, Sutradhar S, et al. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants[J]. Journal of Environmental Management, 2017, 200: 243-252.
[7] 张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展[J]. 植物营养与肥料学报, 2017, 23(4): 1065-1076.
Zhang S Q, Yuan L, Lin Z A, et al. Advances in humic acid for promoting plant growth and its mechanism[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1065-1076. DOI: 10.11674/zwyf.16255 (in Chinese with English abstract)
[8] Nardi S, Ertani A, Francioso O. Soil-root cross-talking:the role of humic substances[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(1): 5-13. DOI: 10.1002/jpln.v180.1
[9] 张济世, 于波涛, 张金凤, 等. 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响[J]. 植物营养与肥料学报, 2017, 23(3): 704-711.
Zhang J S, Yu B T, Zhang J F, et al. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 704-711. DOI: 10.11674/zwyf.16415 (in Chinese with English abstract)
[10] Medina J, Monreal C, Barea J M, et al. Crop residue stabilization and application to agricultural and degraded soils:a review[J]. Waste Management, 2015, 42: 41-54. DOI: 10.1016/j.wasman.2015.04.002
[11] Zhang T, Li S Y, Sun X Y, et al. The earthworm Eisenia fetida can help desalinate a coastal saline soil in Tianjin, North China[J]. PLoS One, 2016, 10(12): e0144709.
[12] Ankad G M, Hiremath J, Patil R T, et al. Evaluation of Kunapa jala and Pancha gavya on plant quality, physiology, biochemistry, yield and growth attributes:a case study of Withania somnifera Dun[J]. Journal of Ayurveda and Integrative Medicine, 2017, 8: 247-251. DOI: 10.1016/j.jaim.2017.01.004
[13] Ciarkowska K, Solek-Podwika K, Filipek-Mazur B, et al. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield[J]. Geoderma, 2017, 303: 85-92. DOI: 10.1016/j.geoderma.2017.05.022
[14] Fernandez-Bayo J D, Achmon Y, Harrold D R, et al. Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy[J]. Journal of Agricultural and Food Chemistry, 2017, 65(17): 3434-3442. DOI: 10.1021/acs.jafc.6b04816
[15] 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006.
Wang X K. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2006. (in Chinese with English abstract)
[16] Yildirim E. Foliar and soil fertilization of humic acid affect productivity and quality of tomato[J]. Acta Agriculturae Scandinavica Section B:Soil and Plant Science, 2007, 57(2): 182-186.
[17] Dhanasekaran K. Effect of foliar application of enriched humic substances on the yield and quality of toamto(Lycopersicon esculentum Mill.)[J]. Advances in Plant Sciences, 2006, 19(2): 539.
[18] Karakurt Y, Unlu H, Unlu H, et al. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper[J]. Acta Agriculturae Scandinavica Section B:Soil and Plant Science, 2009, 59(3): 233-237.
[19] 陆万山. 含腐植酸水溶肥料在小麦上的应用效果试验[J]. 安徽农学通报, 2016, 22(19): 58-59.
Lu W S. Application effect test of humic acid water soluble fertilizer on wheat[J]. Anhui Agricultural Bulletin, 2016, 22(19): 58-59. DOI: 10.3969/j.issn.1007-7731.2016.19.025 (in Chinese with English abstract)
[20] Man J, Yu Z, Shi Y. Radiation interception, chlorophyll fluorescence and senescence of flag leaves in winter wheat under supplemental irrigation[J]. Scientific Reports, 2017, 7: 7767. DOI: 10.1038/s41598-017-07414-2
[21] 吴安昌, 黄正来, 吴延华. 追氮时期对不同小麦品种光合特性和产量的影响[J]. 麦类作物学报, 2010, 30(2): 342-345.
Wu A C, Huang Z L, Wu Y H. Effect of nitrogen top dressing stage on the photosynthesis and yield of different wheat varieties[J]. Journal of Triticeae Crops, 2010, 30(2): 342-345. DOI: 10.7606/j.issn.1009-1041.2010.02.028 (in Chinese with English abstract)
[22] Abid M, Tian Z, Ata-Ul-Karim S T, et al. Nitrogen nutrition improves the potential of wheat(Triticum aestivum L.)to alleviate the effects of drought stress during vegetative growth periods[J]. Frontiers in Plant Science, 2016, 7: 981.
[23] García A C, Santos L A, de Souza L G A, et al. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants[J]. Journal of Plant Physiology, 2016, 192: 56-63. DOI: 10.1016/j.jplph.2016.01.008
[24] Karakurt Y, Unlu H, Unlu H, et al. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper[J]. Acta Agriculturae Scandinavica Section B:Soil and Plant Science, 2009, 59(3): 233-237.