南京农业大学学报  2018, Vol. 41 Issue (3): 392-401   PDF    
http://dx.doi.org/10.7685/jnau.201803059
0

文章信息

沈文飚, 苏久厂, 孙学军
SHEN Wenbiao, SU Jiuchang, SUN Xuejun
氢气植物学效应的研究进展
Research progress in the botanical effects of hydrogen gas
南京农业大学学报, 2018, 41(3): 392-401
Journal of Nanjing Agricultural University, 2018, 41(3): 392-401.
http://dx.doi.org/10.7685/jnau.201803059

文章历史

收稿日期: 2018-03-30
氢气植物学效应的研究进展
沈文飚1 , 苏久厂1 , 孙学军2     
1. 南京农业大学生命科学学院, 江苏 南京 210095;
2. 第二军医大学海军医学系, 上海 200433
摘要:氢气(hydrogen,H2)是一种新的气体信号分子。藻类和微生物的氢酶可以产生并释放H2,高等植物也可能存在类似于氢酶的蛋白催化H2的合成。同时,各种非生物胁迫和激素也可诱导产生H2。与动物中H2通过选择性抗氧化预防和辅助治疗多种疾病所不同的是,植物中H2的生理作用可能还与其通过迅速诱导活性氧信号,从而调动抗氧化防护系统有关。H2具有多种植物学效应,包括调控生长发育和提高对生物胁迫和非生物胁迫的抗/耐性,其分子机制涉及对miRNA、基因表达、激素水平和蛋白质修饰的调控,并可能与一氧化氮(nitric oxide,NO)和一氧化碳(carbon monoxide,CO)等气体信号转导有关。H2的研究掀起了新一轮健康革命,"氢农业"的发展也已初具规模。本文主要综述了H2产生、生理功能以及与激素等信号分子互作的研究进展,并对H2植物学效应和"氢农业"进行了展望。
关键词氢气   气体信号分子   高等植物   生物学效应   氢农业   
Research progress in the botanical effects of hydrogen gas
SHEN Wenbiao1 , SU Jiuchang1, SUN Xuejun2    
1. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
2. Faculty of Naval Medicine, Second Military Medicine University, Shanghai 200433, China
Abstract: Hydrogen(H2)is a new gas signal molecule, and hydrogen enzymes from the algae and microorganism can produce and release H2. Higher plants may have hydrogen-like protein(s)that catalyze the production of H2, and the production of H2 is also induced by abiotic stresses and phytohormones. As a novel antioxidant, H2 has been proven effective in adjutant therapy. Importantly, the role of H2 in plants may also be related to the first rapidly induced reactive oxygen species signals, thus triggering antioxidant defense. H2 plays multiple biological roles, including regulating plant growth, development, and increasing plant tolerance/resistance against abiotic and biotic stresses; its molecular mechanisms involve in the regulation of miRNA, gene expression, phytohormone levels, and protein modification. In addition, nitric oxide(NO)and carbon monoxide(CO)are involved in the biological effects induced by H2. Recently, researches of H2 had set off a new round of healthy revolution, and the development of hydrogen agriculture was just a beginning. This paper mainly reviewed the research progress of H2 production, physiological functions, and interactions with hormones and other signaling molecules. Finally, the prospect of botanical effects of H2 and hydrogen agriculture was suggested.
Key words: hydrogen gas    gasotransmitters    higher plants    biological effects    hydrogen agriculture   

占宇宙组成的75%以上的氢元素是自然界中最简单、最基本和最广泛的元素, 同时也是组成生物体最丰富的元素。氢气(H2)是双原子气体, 无色、无味、无毒[1]。作为清洁能源, H2的制备方法比较简单, 但因成本相对较高并未广泛应用。过去H2被认为是生物惰性分子。近年来, 随着对生物学功能的深入研究, 研究者认为H2可能是继一氧化氮(NO)、一氧化碳(CO)和硫化氢(H2S)之后又一个重要的气体信号分子。研究证明, H2对多种人类疾病和多种病理状态都有明显的缓解和治疗效果[1-2]。2007年《Nature Medicine》报道, H2通过选择性地清除羟基自由基, 缓解大鼠大脑中动脉缺血再灌注导致的氧化损伤[3], 从而引起学者的极大兴趣。目前, 起步较晚的H2植物学效应研究也取得较大的进展[4]

值得注意的是, H2可以增强土壤肥力, H2处理过的土壤可以促进农作物的生长, 并改善逆境条件下农作物的生长状况, 因此加拿大科学家将土壤中发挥类似于肥料作用的H2称为“氢肥”[5-6]

综合现有研究, H2不仅可提高植物对生物和非生物胁迫的抗/耐性[7-8], 而且还参与调控植物生长发育[8-9]。本文综述了H2植物学效应以及“氢农业”的相关研究进展, 重点针对生物体内源H2产生、生理功能以及与激素等其他信号分子的关系进行相关介绍, 并对H2植物学效应和“氢农业”的未来进行了总结和展望。

1 生物体内源H2的产生

生物体产生H2最早发现在某些藻类[1]和细菌中, 其产氢过程由氢酶(hydrogenase, 也称氢化酶)催化。至今为止, 尽管动物和植物体内仍未明确发现氢酶, 考虑到某些非生物胁迫和植物激素可以诱导植物产生内源H2, 因此推测植物可能主要通过非酶途径产生H2, 同时也不排除植物体内可能存在与氢酶相类似蛋白质的可能性。

1.1 藻类和微生物内源H2的产生

早期研究发现, 某些细菌和藻类能够产生H2与其体内含有合成H2的氢酶有关[10-11]。目前, 部分藻类氢酶基因已被克隆和鉴定[12-13]。氢酶根据生物体种类的不同主要分为[Ni-Fe]氢酶和[Fe-Fe]氢酶。[Ni-Fe]氢酶主要存在于产氢细菌和绿藻中, [Fe-Fe]氢酶则主要存在于厌氧细菌和蓝藻中[14]。除氢酶产氢外, 某些细菌的固氮酶(nitrogenase)也可以催化H2的合成[6, 15]

研究证实, 不同的光合抑制剂可以抑制栅藻和胞藻的氢酶活性, 降低H2的产生[16-17]。在医学研究领域, 氢酶将有可能作为新的抗生素靶标, 参与治疗细菌感染[18];由于人体不存在氢酶, 所以这种治疗方式是安全的。图 1图 2分别是藻类氢酶和固氮酶产氢的主要方式。

图 1 氢酶介导的氢气产生 Figure 1 Hydrogenase-induced H2 production Fdred:还原型铁氧还原蛋白Reduced ferredoxin; Fdox:氧化型铁氧还原蛋白Oxidized ferredoxin
图 2 固氮酶介导的氢气产生 Figure 2 Nitrogenase-induced H2 production
1.2 高等植物内源H2的产生

1947年, Boychenko[19]发现某些高等植物体内可能存在氢酶。20世纪60年代, Renwick等[20]检测到黑麦的产氢与微生物无关。大麦、玉米和冬黑麦等在无氧或低氧条件下可以释放H2[21-22]。至今为止, 现有的研究并没有证明高等植物存在氢酶, 但一些高等植物中存在与藻类氢酶具有同源性的基因[23]。盐、干旱以及百草枯等非生物胁迫和植物激素(脱落酸和生长素)均可诱导高等植物产生内源H2[24-29]。藻类研究提示, 高等植物H2的产生可能来源于非酶途径, 因为光合抑制剂可抑制苜蓿幼苗产生H2[26]

2 H2参与调控植物的生理过程 2.1 H2抵抗植物非生物与生物胁迫

植物胁迫分为生物胁迫和非生物胁迫。生物胁迫指病原体的感染、动物的取食以及杂草的竞争等; 非生物胁迫包括高温、寒冷、干旱、渗透、盐、百草枯以及重金属污染等。

2.1.1 H2参与抵抗植物非生物胁迫

H2参与植物抵御非生物胁迫的相关研究结果见表 1。干旱和盐胁迫是决定植物生长和发育的重要环境因子。通过富氢水处理为拟南芥幼苗提供外源H2的结果显示:H2可以通过减小叶片气孔开度增强耐旱性[28]。与此类似的是, H2可缓解聚乙二醇(PEG, 用来模拟干旱)引起的苜蓿幼苗渗透胁迫, 其过程可能由过氧化氢、血红素加氧酶和一氧化氮(NO)所介导[25-26, 30]。此外, H2可以提高拟南芥耐盐性, 其作用机制是:H2上调了锌指转录因子ZAT10/12的基因/蛋白质以及相关抗氧化基因的表达, 并维持了细胞内离子稳态[23-24]。H2还可以通过提高甘薯幼苗的相对含水量和抗氧化能力来增强其耐盐性[31]

表 1 氢气参与植物抗生物与非生物胁迫 Table 1 H2-involved in plant biotic and abiotic stresses tolerance
试验材料
Experimental materials
胁迫
Stress
作用机制
Mechanism
参考文献
References
紫花苜蓿
Medicago sativa
镉胁迫
Cadmium stress
减少重金属的吸收和积累Reducing the absorption and accumulation of heavy metals [32]
镉胁迫
Cadmium stress
降低氧化伤害, 增强硫化合物代谢, 维持金属元素稳态Reducing oxidative damage, increasing sulfur compound metabolism, and maintaining metal ion homeostasis [33]
铝胁迫
Aluminum stress
降低NO含量和铝积累Reducing the NO content and accumulation of aluminum [34]
汞胁迫
Mercury stress
增强抗氧化酶活性, 上调相应的基因表达量Enhancing activities of antioxidant enzymes, and up-regulating corresponding gene expression [35]
渗透胁迫
Osmotic stress
提高NO和脯氨酸含量, 重建细胞内氧化还原稳态Increasing the contents of NO and proline, and reestablishment of redox homeostasis [30]
渗透胁迫
Osmotic stress
氢气诱导过氧化氢产生和上调血红素加氧酶-1基因的表达H2-induced hydrogen peroxide production, and up-regulation of heme oxygenase-1 gene expression [25]
干旱胁迫
Drought stress
提高质外体pH和过氧化氢含量Increasing apoplastic pH and content of hydrogen peroxide [26]
百草枯胁迫
Paraquat stress
提高血红素氧化酶-1活性, 上调相应基因的表达量Increasing heme oxidase-1 activity, and up-regulating the expression of corresponding genes [27]
紫外线胁迫
Ultraviolet light stress
提高类黄酮的含量和抗氧化能力Increasing content of flavonoid and antioxidant capacity [36]
拟南芥
Arabidopsis thaliana
干旱胁迫
Drought stress
NADPH氧化酶诱导的ROS参与了H2介导的气孔关闭NADPH oxidase-induced ROS production involved in H2-mediated stomatal closure [28]
盐胁迫
Salinity stress
氢气调控ZAT10/12转录因子表达及抗氧化基因的表达H2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes [24]
水稻
Oryza sativa
盐胁迫
Salinity stress
促进Na+的外排, 维持离子平衡Promoting the efflux of Na+, and maintenance of ion homeostasis [37]
盐胁迫
Salinity stress
增强抗氧化酶的活性, 上调相应基因表达量Enhancing the activity of antioxidant enzymes, and up-regulating the expression of corresponding genes [23]
冷胁迫
Cold stress
氢气通过参与miR398miR319介导的氧化还原平衡的重建缓解水稻冷胁迫H2 might contribute to the enhancement of cold tolerance by the reestablishment of redox homeostasis via miR398 and miR319 [38]
铝胁迫
Aluminium stress
氢气提高抗氧化能力, 降低铝和柠檬酸积累H2 increases antioxidant capacity, and reduces accumulation of aluminum and citrate [39]
硼胁迫
Boron stress
上调水通道蛋白基因的表达以及重建氧化还原平衡Up-regulation of genes encoding specific aquaporins, and reestablishment of redox homeostasis [40]
萝卜
Raphanus sativus
紫外线胁迫
Ultraviolet light stress
重建氧化还原稳态, 提高花青苷的合成Reestablishment of redox homeostasis, and increasing synthesis of anthocyanins [41]
白菜
Brassica campestris
镉胁迫
Cadmium stress
提高抗氧化能力, 降低镉积累Increasing antioxidant capacity, and reducing cadmium accumulation [42]
灵芝
Ganoderma lucidum
醋酸胁迫
Acetic acid stress
调控醋酸胁迫下灵芝的形态学、生长以及次生代谢H2 regulates morphology, growth and secondary metabolism via glutathione peroxidase under HAc stress [43]
真姬菇
Hypsizygus marmoreus
镉胁迫、盐胁迫、过氧化氢
Cadmium stress, salinity stress, hydrogen peroxide
降低脂质过氧化水平, 提高抗氧化能力Reducing lipid peroxidation, and increasing antioxidant capacity [44]
黄瓜
Cucumis sativus L.
冷胁迫
Cold stress
增强抗氧化系统活性和渗透调节能力, 减缓失水速度H2 enhances abilities of antioxidant system and osmotic adjustment, and slows the dehydration rate [45]
热胁迫
Heat stress
提高光合作用、抗氧化能力以及渗透物质的积累Improving the photosynthetic capacity, increasing the antioxidant response and the accumulation of osmolytes [46]
干旱胁迫
Drought stress
提高相对含水量和抗氧化能力, 减少脂质过氧化和过氧化氢的含量Increasing relative water content and antioxidant capacity, and reducing contents of lipid peroxidation and hydrogen peroxide [47]
玉米
Zea mays L.
高光胁迫
High light stress
提高抗氧化能力, 维持叶片的光合作用Improving antioxidant capacity, and maintaining photosynthesis in leaves [48]
甘薯
Dioscorea esculenta
盐胁迫
Salinity stress
提高相对含水量和抗氧化能力Increasing the relative water content and antioxidant capacity [31]
番茄
Solanum lycopersicum
灰霉菌
Botrytis cinerea
提高多酚氧化酶(PPO)活性和NO含量Increasing the polyphenol oxidase(PPO)activity and NO content [49]
油菜
Brassica campestris
镉胁迫
Cadmium stress
重建谷胱甘肽稳态, 提高抗氧化能力, 降低镉积累Reestablishment of glutathione homeostasis, increasing antioxidant capacity, and reducing accumulation of cadmium [50]

金属离子污染一直是农业生产中的难题, 而且严重影响到人类健康。现有的研究显示, H2可以通过减少植物体内金属离子积累来缓解离子毒害, 同时提高植物修复能力。重金属镉是一种环境污染物, 会对人类造成严重的健康损害。多项研究证明, H2通过提高植物(白菜、紫花苜蓿和油菜)幼苗的抗氧化能力降低镉胁迫诱导的氧化损伤, 缓解幼苗的生长抑制, 同时降低镉积累[32-33, 42, 50]。除镉中毒外, 汞也会对动植物和人体造成极大的损害。汞胁迫可以引起紫花苜蓿幼苗的氧化损伤, 而H2可以通过降低植物汞积累来降低毒害[35]。此外, 高浓度的铝也会抑制植物的生长。研究证明, H2预处理可以显著缓解铝胁迫引起的苜蓿幼苗根生长抑制, 其作用机制是H2降低了幼苗体内NO的合成[34]。与此一致的是, H2可以促进铝胁迫下水稻种子的萌发[39], 与其参与调控miRNA(主要是miR 528miR160amiR398amiR159a)表达有关。

冷胁迫和热胁迫都会对植物生长产生不利影响, 是影响农业生产的重要环境因素。研究证明, H2通过参与miR 398miR319 介导的氧化还原平衡的重建, 缓解水稻冷胁迫[38]。H2还可以通过增强抗氧化酶活性和渗透调节能力, 进而缓解黄瓜幼苗的冷胁迫[45]。最近的研究证实, H2通过提高光合作用和抗氧化能力以及渗透物质的积累, 从而缓解黄瓜幼苗的热胁迫[46]

此外, 农业生产上使用化学农药治理杂草, 也会对作物造成一定的伤害。Jin等[27]的研究表明, 外源H2可以显著降低百草枯引起的苜蓿幼苗氧化伤害, 其缓解过程是通过血红素加氧酶-1(HO-1)介导。硼对植物生长至关重要, 但过量硼诱导的氧化应激影响植物种子萌发及幼苗生长, 而H2可以通过调控水通道蛋白基因的表达和重建氧化还原平衡, 缓解水稻硼毒害[40]

紫外线会对植物细胞造成伤害。研究证实, H2通过提高类黄酮和花青苷的合成以及重建细胞内氧化还原稳态, 缓解紫花苜蓿和萝卜芽苗菜的紫外伤害[36, 41]。除紫外线外, 高强度光照也会对植物生长造成一定的影响, 而H2可以缓解玉米幼苗的高光胁迫[48]

2.1.2 H2提高植物抗病性

植物病害是指植物在生物或非生物因子的影响下, 发生一系列形态、生理生化上阻碍植物正常发育和生长的病理变化。H2可以调控与植物抗病相关激素(如水杨酸和茉莉酸)的受体蛋白基因的表达[23]。H2还可通过提高番茄果实的多酚氧化酶(PPO)活性和NO含量, 从而增强对灰霉菌的抗性[49]。上述H2提高植物抗病性的研究提示, 通过使用富氢水灌溉可以提高作物对病害的抵抗力, 从而在一定程度上减少农药的使用。

2.2 H2参与调控植物生长发育

植物的侧根参与了植株的固着以及水分与营养元素的吸收, 侧根的发育增强了根系的吸收能力和表面积。与此同时, 不定根的发育对植物无性繁殖、农林园艺枝条扦插以及工厂化育苗同样具有重要意义。H2参与调控植物不定根[4, 51]和侧根[4, 29]的发育, 相关的研究结果见表 2。Cao等[29]研究表明, 生长素诱导产生的H2参与了拟南芥幼苗侧根的发生。H2还可促进黄瓜外植体不定根发生, 其过程至少部分与HO-1/CO介导的应答相关[52];CO参与了干旱胁迫下H2介导的黄瓜不定根的发生[51]。与CO相类似, NO可能作为H2的下游信号分子参与H2促进黄瓜不定根发生的过程[53-54]。此外, H2还可以促进万寿菊和猪笼草的不定根发生[55-56]

表 2 氢气调控植物生长发育 Table 2 H2-regulated growth and development in plants
试验材料
Experimental materials
器官
Organs
表型或作用机制
Phenotypes or mechanism
参考文献
References
拟南芥
Arabidopsis thaliana
侧根发育
Lateral root development
提高NO含量, 促进侧很发生Increasing NO content, and promoting lateral root development [29]
黑麦
Secale cereale L.
萌发
Germination
提高萌发率Increasing germination rate [20]
黄瓜
Cucumis sativus L.
不定根发育
Adventitious root development
调控下游信号NO代谢Regulating downstream NO metabolism [53]
不定根发育
Adventitious root development
调控HO-1/CO信号Regulating HO-1/CO signal transduction [52]
不定根发育
Adventitious root development
提高相对含水量和抗氧化能力, 减少脂质过氧化和过氧化氢的含量Increasing relative water content and antioxidant capacity, and reducing contents of lipid peroxidation and hydrogen peroxide [47]
万寿菊
Tagetes erecta L.
不定根发育
Adventitious root development
提高相对含水量与生根相关酶的总量, 保持细胞膜的完整Increasing relative water content and rooting-related enzymes, and keeping cell membrane integrity [55]
猪笼草
Nepenthes sp.
不定根发育
Adventitious root development
提高植株的生根率、发芽率、根数及根长Improving the rooting rate, germination rate, root number, and root length [56]
2.3 H2参与水果和花卉保鲜

水果和花卉的季节性和地区性很强, 其采后储藏和销售过程中易失水萎蔫、腐烂和变质。与传统保鲜技术相比, H2作为保鲜剂具有安全、无毒和无污染的特性。相关研究结果见表 3

表 3 氢气延缓水果和鲜切花的衰老 Table 3 H2-delayed senescence of fruits and cut flowers
试验材料
Experimental materials
表型或作用机制
Phenotypes or mechanism
参考文献
References
华优猕猴桃
Actinidia chinensis
提高抗氧化能力, 降低脂质过氧化Improving antioxidant capacity, and reducing lipid peroxidation [57]
徐香猕猴桃
Actinidia deliciosa
通过抑制乙烯合成酶的活性, 减少乙烯的生物合成Reducing ethylene biosynthesis by inhibiting activity of ethylene synthase [58]
百合
Lilium orential 'Manissa'
维持水分平衡、膜稳定性, 缓解氧化伤害Maintaining moisture balance, membrane stability, and mitigating oxidative damage [59]
减缓叶绿素的分解和细胞膜的损伤Slowing down the decomposition of chlorophyll and cell membrane damage [60]
香石竹
Dianthus caryophyllus L.
减缓鲜质量的下降和花瓣萎蔫的速度Delaying the decline in fresh weight and the speed of wilting of petals [61]
小苍兰
Freesia refracta
增加叶片长度、叶片宽度、花茎长度、花朵直径和小花数Increasing leaf length, leaf width, stem length, flower diameter, and number of flowers [62]
玫瑰
Rosa hybrida L.
维持水分平衡、膜稳定性, 缓解氧化伤害Maintaining moisture balance, membrane stability, and mitigating oxidative damage [59]
真姬菇
Hypsizygus marmoreus
增强抗氧化能力, 提升其采后的品质, 延长其保鲜期Enhancing antioxidant capacity, improving post-harvest quality, and extending its shelf life [63]

猕猴桃是营养价值丰富的水果, 具有清理肠胃、抗衰老等功能, 但是其不耐储藏且容易腐烂。富氢水处理猕猴桃可以提高猕猴桃细胞的抗氧化能力、降低乙烯的合成, 延缓贮藏期间的成熟和衰老[57-58]。研究者发现富氢水的生理作用部分来自于低氧[28, 30], 而氢气直接熏蒸处理也能延缓猕猴桃的衰老[58]

与水果保鲜类似, 鲜切花保鲜也是研究热点。H2可以减小气孔开度、保持水分平衡和膜稳定性, 降低叶绿素分解和细胞膜损伤, 延缓百合和玫瑰切花的衰老[59-60]。富氢水可以延长香石竹切花的盛开期[61]。除延缓切花衰老外, 富氢水也可提高小苍兰球茎的球茎大小和生物量[62]

2.4 H2提高作物种子萌发

早在1964年, 研究证明H2能够促进黑麦种子发芽[20]。此外, 外源富氢水预处理水稻种子显著降低盐胁迫引起的种子萌发率和抑制幼苗生长[37]。H2对绿豆和水稻种子的萌发也具有不同程度的促进作用[23]

2.5 H2提高植物根际微生物数量

H2是豆科植物根瘤固氮过程中的副产物。当豆科植物和根瘤菌共生时, 豆科植物的根瘤菌具有吸氢酶(uptake hydrogenase)活性时, 可以循环利用H[64]2; 当豆科植物不能循环利用H2时, 释放的H2扩散到土壤中可以增加土壤微生物的生物量, 包括促进植物根际促生细菌(尤其是氢氧化细菌)的群落生长, 改变土壤微生物的群落结构[65]。例如, H2处理刺槐林土壤样品可显著提高土壤氢氧化细菌数量[66]。不仅如此, 扩散到土壤中的H2还可以促进植物生长[65, 67], 提高根际二氧化碳固定量[68]。对菜园土壤进行H2处理后, 土壤中根瘤菌的固氮能力和脲酶活性增强, 土壤中有机质的降解速度减缓[69]

2.6 H2在真菌保鲜及提高抗逆性方面的应用

真姬菇是一种深受消费者喜欢的食用真菌, 其外形美观、味道鲜美。真姬菇在采后不耐贮藏, 容易腐烂变质。研究证明, H2可以增强真姬菇的抗氧化能力从而提高其采后品质, 延长其货架期[63]。此研究为食用菌保鲜以及延长货架期提供了一种新型而又简单的方法。

另一项研究显示, H2可以缓解真姬菇菌丝的非生物胁迫(主要是镉、盐和过氧化氢), 其作用机制是H2降低了脂质过氧化以及细胞内活性氧水平, 而且还提高了抗氧化酶和丙酮酸激酶的活性[44]。更有趣的是, H2通过调控谷胱甘肽过氧化物酶活性参与调节醋酸胁迫下灵芝的形态学变化、生长发育以及次生代谢[43]

图 3 植物氢气生物学效应的可能作用机制 Figure 3 Possible mechanism related to botanical effects of hydrogen gas
3 H2与其他信号分子的关系 3.1 H2与植物激素的互作

H2的生理代谢与多种植物激素信号之间存在相互影响[70]。Zeng等[23]研究结果表明, H2通过调控激素受体基因的表达影响绿豆种子的萌发。此外, 外源H2可以缓解生长素极性运输受抑导致的黄瓜外植体不定根发生的抑制, 我们推测生长素可能参与了H2介导的不定根发生[52]。已有研究证实, H2可以通过抑制乙烯合成相关酶活性降低乙烯释放量延缓猕猴桃的成熟和衰老[58]。最近的研究显示, H2可以抑制铝胁迫下水稻种子萌发过程中ABA的合成, 同时可以提高赤霉素(GA)含量[39]。更有趣的是, 植物激素也可以诱导H2的产生, 如ABA处理拟南芥可以迅速提高H2释放量[28]

3.2 H2调控血红素加氧酶信号通路

H2预处理可以上调黄瓜外植体HO-1 基因的表达, 提高其编码的蛋白含量[52]。H2的生理学作用可被HO-1抑制剂锌原卟啉所抑制, 而且该抑制作用还可被CO逆转, 提示HO-1/CO介导了H2诱导的黄瓜外植体不定根形成[52]。与此类似的是, H2显著提高了紫花苜蓿HO-1的表达和HO活性, 而HO-1的抑制剂锌原卟啉则抑制了H2的作用[27]

3.3 H2与活性氧(ROS)信号互作

H2可以通过上调相关抗氧化酶基因的表达提高抗氧化酶活性, 从而降低细胞内ROS含量, 缓解植物的非生物胁迫[24, 27, 32]。与此类似的是, H2通过提高苜蓿幼苗过氧化物酶和抗坏血酸过氧化物酶的活性以及相应的基因表达, 从而缓解汞胁迫诱导的氧化伤害[35]。Hu等[57]结果表明, H2可以提高猕猴桃细胞的超氧化物歧化酶活性维持较低的ROS水平, 延长货架期。遗传学证据表明, 当拟南芥的NADPH氧化酶基因突变时, H2无法诱导气孔的关闭, 提示NADPH氧化酶诱导的ROS参与了H2介导的气孔关闭[28]

3.4 H2与NO的关系

NO作为重要的植物气体信号分子, 参与调控多种生理过程[28, 30, 34]。H2可以通过减少苜蓿幼苗内源NO的含量而降低铝的积累[34]。Zhu等[53]证明NO参与了H2介导的黄瓜外植体不定根的发生。H2显著提高了苜蓿幼苗硝酸还原酶(NR)介导的NO合成以及依赖于NO的亚硝基化修饰, 从而提高耐旱性[30]。遗传学的数据表明, 拟南芥NR基因突变后, H2无法诱导NO产生和气孔关闭, 提示NO参与了H2介导的气孔关闭过程[28]。与上述结论相一致的是, 依赖于NR产生的NO还参与了H2介导的拟南芥侧根发生[29]

4 问题与展望 4.1 “氢农业”的发展及出现的问题

H2植物学效应的研究提示, H2在农业上具有广阔的应用前景, “氢肥”概念的提出为“氢农业”的发展提供了可能[5-6]。此外, H2是豆科植物固氮酶的副产物。与豆科植物相邻的土壤, 其土壤肥力显著增强[5], 因此可以将豆科植物与粮食作物进行轮作, 提高粮食产量。H2作为植物生长调节剂不会造成环境污染, 可以应用于高附加值农业、家庭和观光农业等。H2还可以减少植物体内重金属积累[32-33, 35, 42, 50]和农药残留[27]。为了避免H2运输和贮存带来的安全隐患, 建议使用氢气发生装置制氢, 并采用现制现用的方式。需要提醒的是, H2在水中的溶解度很低, 其使用浓度远低于爆炸范围[2]。值得思考的是, 由于农产品运输和贮藏期间亚硝酸盐会逐渐积累, 因此, H2是否可以降低亚硝酸盐含量也是一个新的研究方向。H2大规模应用所带来的高成本限制了“氢农业”发展, 因此如何降低成本也是今后必须考虑的因素之一。

4.2 未来展望

目前, 对植物H2的研究主要集中在其生物学效应上, 植物H2产生的来源和途径仍不清楚。由于应答ABA信号时H2的产生非常迅速[28], 因此不排除H2的非酶促产生途径, 如叶绿体的光合电子传递链和线粒体的呼吸链, 且可能由质子产生H2。与动物中H2是通过选择性抗氧化发挥作用不同的是, 植物H2的作用机制(至少在拟南芥耐旱性方面)是首先迅速诱导ROS信号, 然后通过调动NO信号来促进气孔关闭[28]。值得注意的是, 富氢水的生理作用部分来源于低氧[28, 30]。为了消除富氢水中低氧所带来的次生效应, 应该采用H2熏蒸的处理方法。

H2生物学效应的分子机制涉及对miRNA、基因与蛋白表达、激素水平和蛋白翻译后修饰的调控[28-30, 33, 38-39, 58], 但至今并没有发现H2的直接靶标。结合遗传学材料的相关研究将有助于解析植物H2信号转导的相关机制及其作用靶标。此外, 更先进的生物学分析技术, 如代谢组学、表观遗传学、转录组学和蛋白质组学的应用, 将有助于研究H2的调控机制, 从而推动与H2信号转导有关的转录因子和调控元件的鉴定与功能解析。

参考文献(References)
[1] Wang R. Gasotransmitters:growing pains and joys[J]. Trends Biochem Sci, 2014, 39(5): 227-232. DOI: 10.1016/j.tibs.2014.03.003
[2] Ohta S. Recent progress toward hydrogen medicine:potential of molecular hydrogen for preventive and therapeutic applications[J]. Curr Pharm Des, 2011, 17: 2241-2252. DOI: 10.2174/138161211797052664
[3] Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13: 688-694. DOI: 10.1038/nm1577
[4] Li C, Gong T, Bian B, et al. Roles of hydrogen gas in plants:a review[J]. Funct Plant Biol, 2018. DOI: 10.1071/FP17301
[5] Dong Z, Wu L B, Caldwell C D, et al. Hydrogen fertilization of soils:is this a benefit of legumes in rotation?[J]. Plant Cell Environ, 2003, 26(11): 1875-1879. DOI: 10.1046/j.1365-3040.2003.01103.x
[6] Golding A L, Dong Z. Hydrogen production by nitrogenase as a potential crop rotation benefit[J]. Environ Chem Lett, 2010, 8(2): 101-121. DOI: 10.1007/s10311-010-0278-y
[7] 刘方, 刘勇波, 李俊生, 等. H2在植物抗胁迫中的作用[J]. 植物生理学报, 2015, 51(2): 141-152.
Liu F, Liu Y B, Li J S, et al. The role of hydrogen in plant stress tolerance[J]. Plant Physiology Journal, 2015, 51(2): 141-152. (in Chinese with English abstract)
[8] 孟凡虹, 王伊帆, 伍冰倩, 等. H2对植物生理功能的影响及作用机制研究进展[J]. 河南农业科学, 2017, 46(2): 1-5.
Meng F H, Wang Y F, Wu B Q, et al. Research progress on effects of hydrogen on plant physiological roles and its mechanism[J]. Journal of Henan Agricultural Sciences, 2017, 46(2): 1-5. (in Chinese with English abstract)
[9] 田纪元, 邬奇, 苏娜娜, 等. 富氢水对植物的生长效应及在芽苗菜生产中的应用前景[J]. 中国蔬菜, 2016(9): 31-34.
Tian J Y, Wu Q, Su N N, et al. Effects of hydrogen-rich water on plant growth and its application prospect in sprout seedling production[J]. China Vegetables, 2016(9): 31-34. (in Chinese with English abstract)
[10] Gaffron H. Reduction of carbon dioxide with molecular hydrogen in green algae[J]. Nature, 1939, 143: 204-205. DOI: 10.1038/143204a0
[11] Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae[J]. J Gen Physiol, 1942, 26: 219-240. DOI: 10.1085/jgp.26.2.219
[12] Forestier M, King P, Zhang L, et al. Expression of two[J]. FEBS J, 2003, 270(13): 2750-2758.
[13] Eroglu E, Melis A. Photobiological hydrogen production:recent advances and state of the art[J]. Bioresource Technol, 2011, 102(18): 8403-8413. DOI: 10.1016/j.biortech.2011.03.026
[14] Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited:recent progress and future prospects[J]. Int J Mol Sci, 2015, 16(5): 10537-10561.
[15] Meyer J, Kelley B C, Vignais P M. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulate[J]. J Bacteriol, 1978, 136(1): 201-208.
[16] Florin L, Tsokoglou A, Happe T. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain[J]. J Biol Chem, 2001, 276(9): 6125-6132. DOI: 10.1074/jbc.M008470200
[17] Cournac L, Guedeney G, Peltier G, et al. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type Ⅰ NADPH-dehydrogenase complex[J]. J Bacteriol, 2004, 186(6): 1737-1746. DOI: 10.1128/JB.186.6.1737-1746.2003
[18] Nie W, Tang H, Fang Z, et al. Hydrogenase:the next antibiotic target?[J]. Clin Sci, 2012, 122(12): 575-580. DOI: 10.1042/CS20110396
[19] Boychenko E A. Hydrogenase of isolated chloroplasts[J]. Biokhimiya, 1947, 12(2): 153-162.
[20] Renwick G M, Giumarro C, Siegel S M. Hydrogen metabolism in higher plants[J]. Plant Physiol, 1964, 39(3): 303-306. DOI: 10.1104/pp.39.3.303
[21] Torres V, Ballesteros A, Fernandez V M. Expression of hydrogenase activity in barley(Hordeum vulgare L.)after anaerobic stress[J]. Arch Biochem Biophys, 1986, 245(1): 174-178. DOI: 10.1016/0003-9861(86)90202-X
[22] 张凤章, 林淑贞, 龙敏南, 等. 高等植物放氢的初步研究[J]. 厦门大学学报(自然科学版), 1997(5): 808-811.
Zhang F Z, Lin S Z, Long M N, et al. A preliminary study of hydrogen evolution activity in higher plant[J]. Journal of Xiamen University(Natural Science Edition), 1997(5): 808-811. (in Chinese with English abstract)
[23] Zeng J, Zhang M, Sun X. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants[J]. PLoS One, 2013, 8: e71038. DOI: 10.1371/journal.pone.0071038
[24] Xie Y, Mao Y, Lai D, et al. H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion[J]. PLoS One, 2012, 7: e49800. DOI: 10.1371/journal.pone.0049800
[25] Jin Q, Cui W, Dai C, et al. Involvement of hydrogen peroxide and heme oxygenase-1 in hydrogen gas-induced osmotic stress tolerance in alfalfa[J]. Plant Growth Regul, 2016, 80(2): 215-223. DOI: 10.1007/s10725-016-0159-x
[26] Jin Q, Zhu K, Cui W, et al. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa[J]. J Plant Growth Regul, 2016, 35: 565-573. DOI: 10.1007/s00344-015-9561-2
[27] Jin Q, Zhu K, Cui W, et al. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system[J]. Plant Cell Environ, 2013, 36: 956-969. DOI: 10.1111/pce.2013.36.issue-5
[28] Xie Y, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis[J]. Plant Physiol, 2014, 165(2): 759-773. DOI: 10.1104/pp.114.237925
[29] Cao Z, Duan X, Yao P, et al. Hydrogen gas is involved in auxin-induced lateral root formation by modulating nitric oxide synthesis[J]. Int J Mol Sci, 2017, 18(10): 2084. DOI: 10.3390/ijms18102084
[30] Su J, Zhang Y, Nie Y, et al. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings[J]. Environ Exp Bot, 2018, 147: 249-260. DOI: 10.1016/j.envexpbot.2017.12.022
[31] 赵苹艺, 胡玉龙, 李雪华, 等. 不同浓度H2对NaCl胁迫下甘薯苗生理指标的影响[J]. 湖北农业科学, 2016, 55(12): 3013-3017.
Zhao P Y, Hu Y L, Li X H, et al. Effects of different concentrations of hydrogen-rich water on physiological characteristics of sweet potato under salt stress[J]. Hubei Agricultural Sciences, 2016, 55(12): 3013-3017. (in Chinese with English abstract)
[32] Cui W, Gao C, Fang P, et al. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water[J]. J Hazard Mater, 2013, 260: 715-724. DOI: 10.1016/j.jhazmat.2013.06.032
[33] Dai C, Cui W, Pan J, et al. Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa[J]. J Proteomics, 2017, 152: 109-120. DOI: 10.1016/j.jprot.2016.10.013
[34] Chen M, Cui W, Zhu K, et al. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production[J]. J Hazard Mater, 2014, 267: 40-47. DOI: 10.1016/j.jhazmat.2013.12.029
[35] Cui W, Fang P, Zhu K, et al. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings[J]. Ecotox Environ Safe, 2014, 105: 103-111. DOI: 10.1016/j.ecoenv.2014.04.009
[36] Xie Y, Zhang W, Duan X, et al. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of(iso)flavonoids and antioxidant defence in Medicago sativa[J]. Funct Plant Biol, 2015, 42(12): 1141-1157.
[37] Xu S, Zhu S, Jiang Y, et al. Hydrogen-rich water alleviates salt stress in rice during seed germination[J]. Plant Soil, 2013, 370: 47-57. DOI: 10.1007/s11104-013-1614-3
[38] Xu S, Jiang Y, Cui W, et al. Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression[J]. Plant Soil, 2017, 414(1/2): 53-67.
[39] Xu D, Cao H, Fang W, et al. Linking hydrogen-enhanced rice aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated gene expression:a case study on germination[J]. Ecotoxicol Environ Saf, 2017, 145: 303-312. DOI: 10.1016/j.ecoenv.2017.07.055
[40] Wang Y, Duan X, Xu S, et al. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation, water status and reactive oxygen species balance:a case study for rice[J]. Ann Bot, 2016, 118(7): 1279-1291. DOI: 10.1093/aob/mcw181
[41] Su N, Wu Q, Liu Y, et al. Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation[J]. J Agric Food Chem, 2014, 62(27): 6454-6462. DOI: 10.1021/jf5019593
[42] Wu Q, Su N, Cai J, et al. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities[J]. J Plant Physiol, 2015, 175: 174-182. DOI: 10.1016/j.jplph.2014.09.017
[43] Ren A, Liu R, Miao Z G, et al. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum[J]. Environ Microbiol, 2017, 19(2): 566-583. DOI: 10.1111/emi.2017.19.issue-2
[44] Zhang J, Hao H, Chen M, et al. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus[J]. AMB Express, 2017, 7(1): 107. DOI: 10.1186/s13568-017-0406-1
[45] 刘丰娇, 蔡冰冰, 孙胜楠, 等. 富氢水浸种增强黄瓜幼苗耐冷性的作用及其生理机制[J]. 中国农业科学, 2017, 50(5): 881-889.
Liu F J, Cai B B, Sun S N, et al. Effect of hydrogen-rich water soaked cucumber seeds on cold tolerance and its physiological mechanism in cucumber seedlings[J]. Scientia Agricultura Sinica, 2017, 50(5): 881-889. DOI: 10.3864/j.issn.0578-1752.2017.05.011 (in Chinese with English abstract)
[46] Chen Q, Zhao X, Lei D, et al. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves[J]. Plant Grow Regul, 2017, 83: 69-82. DOI: 10.1007/s10725-017-0284-1
[47] Chen Y, Wang M, Hu L, et al. Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress[J]. Front Plant Sci, 2017, 8: 128.
[48] Zhang X, Zhao X, Wang Z, et al. Protective effects of hydrogen-rich water on the photosynthetic apparatus of maize seedlings(Zea mays L.)as a result of an increase in antioxidant enzyme activities under high light stress[J]. Plant Growth Regul, 2015, 77(1): 43-56. DOI: 10.1007/s10725-015-0033-2
[49] 卢慧, 伍冰倩, 王伊帆, 等. 富氢水处理对采后番茄果实灰霉病抗性的影响[J]. 河南农业科学, 2017, 46(2): 64-68.
Lu H, Wu B Q, Wang Y F, et al. Effects of hydrogen-rich water treatment on defense responses of postharvest tomato fruit to Botrytis cinerea[J]. Journal of Henan Agricultural Sciences, 2017, 46(2): 64-68. (in Chinese with English abstract)
[50] Wu Q, Su N, Chen Q, et al. Cadmium-induced hydrogen accumulation is involved in cadmium tolerance in Brassica campestris by reestablishment of reduced glutathione homeostasis[J]. PLoS One, 2015, 10(10): e0139956. DOI: 10.1371/journal.pone.0139956
[51] Zhu Y, Liao W. A positive role for hydrogen gas in adventitious root development[J]. Plant Signal Behav, 2016, 6: e1187359.
[52] Lin Y, Zhang W, Qi F, et al. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner[J]. J Plant Physiol, 2014, 171(2): 1-8. DOI: 10.1016/j.jplph.2013.08.009
[53] Zhu Y, Liao W, Wang M, et al. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber[J]. J Plant Physiol, 2016, 195: 50-58. DOI: 10.1016/j.jplph.2016.02.018
[54] Zhu Y, Liao W, Niu L, et al. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber[J]. BMC Plant Biol, 2016, 16(1): 146. DOI: 10.1186/s12870-016-0834-0
[55] Zhu Y, Liao W. The metabolic constituent and rooting-related enzymes responses of marigold explants to hydrogen gas during adventitious root development[J]. Theor Exp Plant Physiol, 2017, 29(2): 77-85. DOI: 10.1007/s40626-017-0085-y
[56] 汪艳平, 卫辰. 富氢水处理对猪笼草扦插生根的影响[J]. 现代农业科技, 2016(14): 136-137.
Wang Y P, Wei C. Effect of hydrogen-rich water concentration on rooting of Nepenthes[J]. Modern Agricultural Science and Technology, 2016(14): 136-137. DOI: 10.3969/j.issn.1007-5739.2016.14.079 (in Chinese with English abstract)
[57] Hu H, Li P, Wang Y, et al. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit[J]. Food Chem, 2014, 156: 100-109. DOI: 10.1016/j.foodchem.2014.01.067
[58] Hu H, Zhao S, Li P, et al. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis[J]. Postharvest Biology and Technology, 2018, 135: 123-130. DOI: 10.1016/j.postharvbio.2017.09.008
[59] Ren P J, Jin X, Liao W B, et al. Effect of hydrogen-rich water on vase life and quality in cut lily and rose flowers[J]. Horticulture, Environment, and Biotechnology, 2017, 58(6): 576-584. DOI: 10.1007/s13580-017-0043-2
[60] 任鹏举, 李雪萍, 徐晓婷, 等. H2对切花百合瓶插寿命和品质的影响[J]. 甘肃农业大学学报, 2017, 52(1): 103-108.
Ren P J, Li X P, Xu X T, et al. Effects of hydrogen gas on vase life and quality of cut lily[J]. Journal of Gansu Agricultural University, 2017, 52(1): 103-108. (in Chinese with English abstract)
[61] 蔡敏, 杜红梅. 富氢水预处理对香石竹切花瓶插寿命的影响[J]. 上海交通大学学报(农业科学版), 2015, 33(6): 41-45.
Cai M, Du H M. Effects of hydrogen-rich water pretreatment on vase life of carnation(Dianthus caryophyllus)cut flowers[J]. Journal of Shanghai Jiaotong University(Agricultural Science Edition), 2015, 33(6): 41-45. (in Chinese with English abstract)
[62] 宋韵琼, 沙米拉·太来提, 杜红梅. 富氢水处理对小苍兰生长发育的影响[J]. 上海交通大学学报(农业科学版), 2016, 34(3): 55-61.
Song Y Q, Shamila·Tailaiti, Du H M. Effects of hydrogen-rich water treatment on the growth and development of freesia(Freesia refracta)[J]. Journal of Shanghai Jiaotong University(Agricultural Science Edition), 2016, 34(3): 55-61. (in Chinese with English abstract)
[63] Chen H, Zhang J, Hao H, et al. Hydrogen-rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus[J]. AMB Express, 2017, 7(1): 221. DOI: 10.1186/s13568-017-0496-9
[64] Evans H J, Harker A R, Papen H, et al. Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia[J]. Annu Rev Microbiol, 1987, 41: 335-361. DOI: 10.1146/annurev.mi.41.100187.002003
[65] Dong Z, Layzell D B. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils[J]. Plant Soil, 2001, 229(1): 1-12. DOI: 10.1023/A:1004810017490
[66] 刘慧芬, 王卫卫, 曹桂林, 等. H2对刺槐根际土壤微生物种群和土壤酶活性的影响[J]. 应用与环境生物学报, 2010, 16(4): 515-518.
Liu H F, Wang W W, Cao G L, et al. Effect of hydrogen on microbial population and enzyme activity in Robinia pseudoacacia rhizosphere soil[J]. Chinese Journal of Applied and Environmental Biology, 2010, 16(4): 515-518. (in Chinese with English abstract)
[67] Stein S, Selesi D, Schilling R, et al. Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation[J]. Soil Biol Biochem, 2005, 37(10): 1938-1945. DOI: 10.1016/j.soilbio.2005.02.035
[68] Zhang Y, He X, Dong Z. Effect of hydrogen on soil bacterial community structure in two soils as determined by terminal restriction fragment length polymorphism[J]. Plant Soil, 2009, 320(1): 295-305.
[69] 刘薇. 分子氢对土壤有效养分的影响及其机理初探[D]. 武汉: 华中农业大学, 2001.
Liu W. The research on effect of molecular hydrogen on available nutrition and mechanism[D]. Wuhan: Huazhong Agricultural University, 2001(in Chinese with English abstract).
[70] Liu F, Li J, Liu Y. Molecular hydrogen can take part in phytohormone signal pathways in wild rice[J]. Biologia Plantarum, 2016, 60(2): 311-319. DOI: 10.1007/s10535-016-0591-9