南京农业大学学报  2018, Vol. 41 Issue (2): 209-217   PDF    
http://dx.doi.org/10.7685/jnau.201709009
0

文章信息

刘向东, 张元臣
LIU Xiangdong, ZHANG Yuanchen
蚜虫共生菌感染格局、动态及在宿主种群分化中的作用
Infection pattern and dynamics of endosymbionts in aphids and their effects on population differentiation of hosts
南京农业大学学报, 2018, 41(2): 209-217
Journal of Nanjing Agricultural University, 2018, 41(2): 209-217.
http://dx.doi.org/10.7685/jnau.201709009

文章历史

收稿日期: 2017-09-04
蚜虫共生菌感染格局、动态及在宿主种群分化中的作用
刘向东 , 张元臣     
南京农业大学昆虫学系, 江苏 南京 210095
摘要:蚜虫体内感染共生菌的现象较为普遍。共生菌在蚜虫种群的存活、繁衍和应对外界压力等方面发挥着重要作用。蚜虫种群感染共生菌的种类和组成模式多样,这有利于蚜虫种群应对多变的环境。共生菌生活于宿主昆虫体内。宿主感染共生菌的种类和数量动态受宿主的遗传背景和生态适应力、外界环境条件等多种因素的影响。共生菌具有为宿主提供营养、消化植物组织和降解植物毒素等功能,从而影响宿主昆虫的寄主利用范围。原生和次级共生菌可引起宿主蚜虫寄主范围的改变,赋予蚜虫利用新寄主的能力,从而促进种群的分化。蚜虫体内通常有多种共生菌共存,共生菌种间关系会影响共生菌种群动态和生物功能的表现。因此,在共生菌群落层次上探明蚜虫-共生菌-寄主植物三者间的关系将是今后研究的重点。
关键词共生菌   多样性   种群密度   环境压力   寄主利用   相互关系   
Infection pattern and dynamics of endosymbionts in aphids and their effects on population differentiation of hosts
LIU Xiangdong , ZHANG Yuanchen    
Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
Abstract: Infection with endosymbiont is very common in aphid populations. Endosymbionts play key roles in determining survival, reproduction and responses to environmental stress of aphids. The endosymbiont species and infection patterns are various in aphids. The diversity of endosymbionts is advantageous for aphids to deal with different environmental conditions. Endosymbionts parasitize insect hosts. The species and population fluctuations of endosymbionts are determined by several factors including genetic background and fitness of insect hosts and environmental stress. Endosymbionts can synthesize essential substances for host aphids, digest plant tissues and neutralize plant toxins. Consequently, host utilization of insects might be affected by endosymbionts. It has been revealed that the primary and secondary endosymbionts could result in host shift of aphids, and confer the ability on aphids to use a novel host plant which they naturally cannot use. Therefore, the endosymbionts promote the population differentiation of aphids. Co-infection of endosymbionts is found in aphids. Interspecific relations between endosymbionts will affect the population dynamics and roles of endosymbionts. The study on relations among aphid-endosymbiont-host plant at community level will be attracting more and more attention from researchers.
Key words: endosymbiont    diversity    population density    environmental stress    host use    interrelation   

蚜虫体内普遍存在多种类型的共生菌。根据共生菌与宿主建立共生关系的时间长短及共生菌对宿主的必要性等特征, 可将蚜虫体内共生菌分为原生和次级共生菌两大类。研究表明, 原生共生菌Buchnera与蚜虫建立共生关系已有约1.5亿年历史, 已成为蚜虫不可分割的组成部分[1]Buchnera共生菌能合成蚜虫不能从植物汁液中获得但又是其生长发育和繁殖所必需的氨基酸[2-3], 同时还能合成维生素和参与嘌呤代谢等[4-7]。失去原生共生菌后, 蚜虫的生长发育变缓、繁殖能力降低或完全丧失[8-9]。原生共生菌在蚜虫世代间经胚胎或卵稳定地传给后代, 在人工操纵下也可在不同蚜虫个体间实现水平传播[10]

除原生共生菌外, 蚜虫体内还携带有多种次级共生菌, 如WolbachiaHamiltonellaRegiellaSerritaRickettsiaRickettisellaSpiroplasmaArsenophonus[11-13]。次级共生菌虽然不是蚜虫存活和繁殖所必需的, 但是与宿主蚜虫的生态适应性密切相关, 如能增强蚜虫的寄主利用能力、耐热性和防御天敌的能力等[14-17]。原生共生菌往往和一种或几种次级共生菌同时感染宿主蚜虫。原生和次级共生菌在宿主内长期共存, 对宿主蚜虫的生物功能存在一定程度的互补, 如原生共生菌Buchnera被人为去除后, 次级共生菌Serrita可占领Buchnera部分生态位并弥补其部分功能[8]; 在雪松长足大蚜(Cinara cedri)中, 次级共生菌Serratia有不断取代原生共生菌Buchnera功能的趋势[18]

目前, 昆虫与共生菌的关系已受到研究者们的广泛关注。共生菌功能的阐明将有利于揭示昆虫与植物的关系[19-20]。有关昆虫共生菌的形态、分布、传播方式、起源、与宿主的关系、功能和基因组等方面已有不少综述[20-28]。因此, 本文主要以蚜虫为对象, 仅从蚜虫种群感染共生菌的格局、共生菌种群消长的影响因素及共生菌在蚜虫寄主分化中的作用等方面进行综述, 以期为阐明蚜虫-共生菌-寄主植物间关系提供参考。

1 蚜虫种群共生菌感染格局

蚜虫种群感染共生菌的种类较多。豌豆蚜(Acyrthosiphon pisum)是至今发现感染共生菌种类最多的昆虫, 共生菌的许多生物功能都在豌豆蚜中首次发现[14, 16]。蚜虫感染次级共生菌的种类随物种和所处环境条件的不同而有所不同。豌豆蚜体内不仅含有原生共生菌Buchnera, 而且还可能感染次级共生菌HamiltonellaRegiellaSerratiaRickettsiella、PAXS(pea aphid X-type symbiont)、RickettsiaWolbachiaSpiroplasma[11, 29-34]。采自日本81个地点的119个豌豆蚜品系中, 66.4%的品系感染了SerratiaRegiellaRickettsiaSpiroplasma 4种次级共生菌中的一种, 同时33.6%的品系仅含有Buchnera, 而HamiltonellaWolbachiaArsenophonus均没有检测到; 不同共生菌种类可在同一地理种群中出现, 但同时感染2种次级共生菌的情况却出现较少[31]。北美豌豆蚜感染了上述8种次级共生菌, 并且各共生菌的感染比率在不同寄主植物上的种群间存在差异[32]

麦长管蚜(Sitobion avenae)种群中检测到了SerratiaRegiellaHamiltonellaRickettsia等次级共生菌。陕西杨凌和五丁关、河南郑州、安徽滁州、山西太谷和新疆石河子6个地理种群均100%感染SerratiaRegiella次级共生菌; 而杨凌、滁州和石河子种群中有15%~70%个体还感染了Hamiltonella共生菌[13]。英国麦长管蚜种群内含有RegiellaHamiltonellaSerratia等次级共生菌, 且RegiellaHamiltonella的感染率高, 但没发现感染RickettsiaSpiroplasmaRickettsiella[35]。德国麦长管蚜也感染了RegiellaHamiltonella[36]。南京的麦长管蚜种群中感染了RickettsiaSerratiaRegiellaHamiltonella。香蕉交脉蚜(Pentalonia nigronervosa)种群中100%个体含有BuchneraWolbachia 2种共生菌[27, 37]。英国荨麻小无网蚜(Microlophium carnosum)感染SerratiaHamiltonellaRegiella; 树莓膨管蚜(Amphorophora rubi)感染SerratiaRickettsiaHamiltonella; 豌豆蚜感染以上全部4种共生菌, 而Aphis sarothamni只感染HamiltonellaRegiella共生菌[38]

蚜虫体内感染的共生菌除种类存在差异外, 同种共生菌在蚜虫的不同种群中还存在基因型或株系的差异[32]。宿主蚜虫中相同种类共生菌表现出的生物功能不尽相同, 这很可能与共生菌的遗传变异或基因型不同有关。例如, 豌豆蚜中Buchnera共生菌基因的突变可引起宿主耐热能力的显著提高, 而没有发生基因突变的Buchnera基因型不能提高宿主的耐热性[10, 39]

虽然在同一蚜虫种群中能检测到多种共生菌的感染, 但是同一宿主蚜虫体内不会同时感染种群中所有种类的次级共生菌。同时感染2种次级共生菌的个体会有存在, 但共同携带3种及以上的情况很少[31, 35]。北美豌豆蚜每个个体中次级共生菌种类为0.76~1.737种, 平均为1.063种[32]。由于次级共生菌的多重感染会引起宿主昆虫适合度的降低[40], 故次级共生菌共存的结果不会是随机事件。在同一宿主种群中, 次级共生菌联合感染模式较为稳定。豌豆蚜、A. sarothamni和荨麻小无网蚜中共生菌感染的格局稳定, 不随时间的变化而变化[38]。共生菌种间的相融性, 易形成稳定的感染格局。

不同种类共生菌在蚜虫种群中的感染比率及感染比率的时空变化构成了蚜虫种群的共生菌感染格局。蚜虫种群中多样的共生菌感染格局, 很可能反映了宿主蚜虫所处环境的多样性, 以及宿主适应各环境条件的差异性。不同种类的次级共生菌对其宿主蚜虫的影响不尽相同。Hamiltonella能提高豌豆蚜抵抗寄生蜂的能力[40]; RegiellaRickettsiaRickettsiella可保护蚜虫少受真菌侵染[16, 41]; SerratiaRickettsia可提高蚜虫耐高温能力[17, 42]; 一些Regiella株系能调节宿主蚜虫对特定植物的利用能力[14-15]。宿主蚜虫种群感染多种类型的次级共生菌, 这无疑可提高种群适应复杂多变环境的能力。对蚜虫种群共生菌感染格局进行长期监测, 摸清感染格局与宿主种群数量动态间的关系, 还有可能为蚜虫种群暴发成灾的早期预警提供参考。

2 蚜虫体内共生菌种群的波动

为了较全面揭示共生菌种群在蚜虫宿主体内波动的原因, 本节结合蚜虫和其他类型昆虫的研究结果进行阐述。昆虫体内共生菌种群的密度与其生物功能的表现有关。在自然状况下, 豌豆蚜的原生共生菌Buchnera处于中等密度时, 蚜虫的适合度最高[43]。豆蚜(Aphis craccivora)因高温或低温引起体内原生共生菌密度下降时, 其繁殖力也下降[44]Wolbachia种群数量的高低会影响胞质不相容性的强弱[45-46]Spiroplasma密度达到一定水平时其杀雄作用才会显现[47]。共生菌的功能受其种群密度的调控, 因此, 明确共生菌种群波动的影响因素, 将有利于全面探明共生菌的生物功能。

2.1 宿主昆虫引起的共生菌种群波动

垂直传播的共生菌在宿主昆虫中存在明显的增殖过程。共生菌种群密度会随昆虫龄期的变化而变化。豌豆蚜体内原生共生菌Buchnera的密度在成蚜前显著升高, 成蚜产仔阶段保持较高水平, 但在产仔后期, 如20日龄后密度显著下降; 次级共生菌SerratiaRickettsia种群密度也随蚜虫年龄的增大而增大, 且30日龄时仍没有下降[8, 47]。黑腹果蝇(Drosophila melanogaster)中Spiroplasma共生菌种群密度从幼虫到成虫羽化期间逐渐上升[48]

昆虫的遗传特征影响其感染共生菌的种类和比率。相同生物型的豌豆蚜种群携带有相似的共生菌群落, 而不同生物型间共生菌群落组成存在差异[49]。以色列的B型烟粉虱主要感染RickettsiaHamiltonella, 而Q型烟粉虱主要感染RickettsiaArsenophonus, 并有少数个体感染Wolbachia[50]。褚栋等[51]对24个烟粉虱种群进行检测发现B型和Q型烟粉虱种群内均未检测到Wolbachia, 而非B和Q型的我国浙江种群和肯尼亚种群中均检测到了Wolbachia, 并且浙江烟粉虱种群的Wolbachia与肯尼亚种群中的属于不同的分型。昆虫表型的差异很可能是昆虫和感染的共生菌共同作用的结果[52]

昆虫宿主的遗传特性不仅影响感染共生菌的种类, 还会影响共生菌种群的密度。豌豆蚜Buchnera菌的种群密度受蚜虫品系的影响[53]。绿豆象(Callosobruchus chinensis)的Wolbachia密度是由宿主基因型、共生菌基因型和其他因子共同决定的[54]。寄生蜂(Leptopilina heterotoma)体内Wolbachia的密度也显著受寄生蜂基因型的影响, 并且宿主基因型的作用与环境温度有关[55]。桔粉蚧(Planococcus citri)中的2种共生菌MoranellaTremblaya的密度均受宿主基因型的影响, 并且共生菌种群密度由宿主母性遗传所决定[56]

宿主昆虫对体内共生菌种群的调控可通过启动吞噬、溶酶体和抗菌肽的作用来实现[57-60]。豌豆蚜中Buchnera的密度与宿主体内溶菌酶活性相关, 共生菌密度的降低是溶酶系统发挥作用降解共生菌的结果[61]Wolbachia种群数量可由宿主激活自噬作用来调节, 自噬作用启动后可有效降低Wolbachia种群的密度[62]。不同种类共生菌种群密度的调控方式存在差异。目前, 还没有完全清楚宿主-共生菌复合体间的相互关系。因此, 宿主昆虫调控其体内共生菌的机制还有待研究。

2.2 种间关系引起的共生菌种群波动

在同一宿主中同时存在2种或以上共生菌时, 共生菌种群之间会发生相互作用, 从而抑制或促进各自种群的发展。次级共生菌常与原生共生菌共存于同一宿主中, 甚至共享同一含菌细胞。次级共生菌因空间和营养等需求会影响原生共生菌种群数量的发展。在正常条件下, 豌豆蚜中的次级共生菌SerratiaRickettsia会抑制原生共生菌Buchnera的种群数量[8], 但是在高温环境下, 次级共生菌SerratiaRickettsia对原生共生菌又有保护作用[17]。由此说明, 原生共生菌和次级共生菌种群数量的相互调节受环境条件的影响。

次级共生菌之间会发生种群间的相互作用。黑腹果蝇中Spiroplasma可以显著抑制Wolbachia的种群数量, 但反过来, Wolbachia不会影响Spiroplasma的种群数量[63]。宿主体内的共生菌种间关系建立后, 它们通过调整各自的种群数量来共享资源和应对外界压力, 保持共生关系的平衡[8, 48]。昆虫宿主内共生菌群落中各物种间的相互关系值得深入研究, 以便揭示共生菌群落的功能。

2.3 外界环境条件引起的共生菌种群波动

昆虫及其体内共生菌对外界环境条件的变化会产生反应。不利温度对昆虫体内共生菌存在影响[25]。高温可降低BuchneraWolbachia、酵母菌等的种群密度。豌豆蚜体内原生共生菌Buchnera的密度随蚜虫饲养温度的升高而下降[64]。黑豆蚜(Aphis fabae)体内的菌胞数量随温度升高而减少[65]。高温处理褐飞虱可以降低其体内类酵母菌的数量, 但温度恢复正常后, 共生菌数量会恢复到正常水平[66]。35 ℃高温处理3 d后, 灰飞虱体内类酵母共生菌数量减少80%以上[67]。书虱(Liposcelis tricolor)长期饲养在33 ℃, 其种群感染Wolbachia的比率逐渐降低, 并且饲养6代后完全检测不到Wolbachia[68]。18 ℃低温和28 ℃高温均显著抑制黑腹果蝇体内Spiroplasma共生菌的种群密度, 并且低温还能抑制灰暗果蝇(Drosophila nebulosa)体内Spiroplasma的种群密度[69]。高温对烟粉虱中的Rickettsia种群密度存在影响, 但影响的程度在不同种群中有所差异[70]。由此表明, 温度对宿主昆虫内共生菌种群密度的影响较大, 不适宜的温度会引起昆虫体内共生菌种群密度的降低。

不同地理区域气候条件的不同, 会引起宿主昆虫种群中感染共生菌种类的地理差异。在日本, 豌豆蚜种群中Serratia感染率在各地都较高, 而Regiella仅在日本东北部感染率高, RickettsiaSpiroplasma在西南部零星出现; 同时, 随着年平均温度和降雨量的升高, Regiella的感染率下降[31]。美国加州豌豆蚜夏季感染Serratia的比率显著高于冬春季[17]; 果蝇在美国东部感染Spiroplasma比率最高, 中部次之, 而西部很少有感染[71]。在我国, 浙江杭州和湖南江华白蜡虫(Ericerus pela)种群中的一些个体不含杀雄菌Arsenophonus; 云南昭通白蜡虫种群中杀雄菌含量显著高于河北金口河和云南昆明种群[72]; 广西褐飞虱中的类酵母菌数量显著高于浙江和福建[66, 73-74]。日本栗实象甲(Curculio sikkimensis)体内共生菌的感染频率与气候和生态因子有关, 高感染SodalisWolbachiaRickettsia的种群出现在温度较高的地区; 低感染WolbachiaRickettsia的种群则出现在降雪较多的地区; 同时栗实象甲中Sodalis-RickettsiaWolbachia-Rickettsia的共同感染比例也与气候有关[75]。温度和降雨是对昆虫种群生存和繁殖等影响较大的因子, 也是影响昆虫体内共生菌感染种类和种群数量的重要因素。

2.4 宿主昆虫食物条件引起的共生菌种群波动

宿主昆虫的适合度受寄主植物或食料条件的影响。在适宜的寄主植物上, 昆虫宿主体内的共生菌种群密度较稳定, 反之, 共生菌种群密度会发生变化。日本三叶草(Trifolium repens)上的豌豆蚜感染Regiella比率显著高于豌豆(Vicia sativa)上的豌豆蚜[31]。北美豌豆上的豌豆蚜共生菌以Serratia占优势, 苜蓿上的以Hamiltonella占优势, 而三叶草上的以Regiella占优势[32]。不同寄主植物上生活的桃蚜, 其体内BuchneraSerratia共生菌种群的密度差异显著, 烟草和茄子上生活的Buchnera密度显著高于甘蓝(Brassica oleracea)上的, 甘蓝上的又显著高于菠菜(Spinacia oleracea)上的; Serratia的密度也表现为烟草和茄子上的显著高于甘蓝上的, 但菠菜与甘蓝上的无显著差异[76]。黑豆蚜体内次级共生菌的密度在野芝麻(Lamium purpureum)寄主上生活的显著高于在藜(Chenopodium album)和长果罂粟(Papaver dubium)寄主上生活的, 并且共生菌对蚜虫体形大小的影响也只在藜和长果罂粟寄主上才有表现, 而在野芝麻上不影响蚜虫的大小[77]。棉蚜体内Buchnera的密度受寄主植物的影响, 西葫芦和木槿上的棉蚜显著高于黄瓜上的棉蚜, 而黄瓜上的棉蚜又显著高于棉花上的棉蚜, 并且棉蚜的基因型可与寄主植物种类联合影响Buchnera的种群密度[78]

寄主植物对共生菌的影响很可能是寄主中的营养、抗虫因子或次生代谢物作用的结果。豌豆蚜中的原生共生菌Buchnera的种群密度与食物中氮水平呈正相关, 次级共生菌Serratia的密度在低氮饲料上显著升高[79]。褐飞虱人工饲料中必需氨基酸的缺少对褐飞虱体内共生菌数量有一定的刺激作用[80]。大豆蚜(Aphis glycines)受到大豆防御因子(Rag1基因)作用后, 其适合度下降74%, 同时体内共生菌BuchneraArsenophonus密度降低, Wolbachia密度升高[81]。植物次生代谢物会影响昆虫体内共生菌的种群密度。棉酚能显著降低棉蚜体内Buchnera共生菌的密度, 而葫芦素可提高Buchnera的密度[78]

虽然现在已有一些研究结果表明寄主植物和饲料组分可引起宿主昆虫共生菌种群密度的变化, 但是植物组分是通过何种途径从宿主消化道传递到共生菌, 并以何种物质或方式作用于共生菌的, 还尚不明确。

2.5 宿主所受其他压力引起的共生菌种群波动

宿主昆虫常常会受到寄生蜂侵染或药剂的胁迫。寄生和化学药剂的作用, 不仅降低了宿主昆虫的存活和繁殖能力, 而且对其体内共生菌种群也会产生影响。寄生蜂的寄生影响了豌豆蚜体内Buchnera共生菌的种群密度, 对寄生蜂敏感的豌豆蚜品系, 在寄生72 h后体内Buchnera的密度显著升高, 而在大约144 h时密度又下降到最低; 中抗品系蚜虫也表现出寄生96 h时Buchnera密度最高, 而144 h时最低; 高抗品系由于能完全清除寄生蜂的寄生, 因此被寄生后蚜虫体内Buchnera密度没有显著升高, 并且在144 h时也无显著降低。寄生蜂的寄生可引起豌豆蚜体内Hamiltonella密度的降低[53]。大豆蚜受到噻虫嗪杀虫剂作用后, 其适合度下降92%, 体内共生菌BuchneraArsenophonus密度均降低23%左右, 而Wolbachia密度升高1.5倍[81]。共生菌很可能参与了宿主昆虫对外界压力的抵抗, 从而提高宿主的适应能力[10, 34, 82]

共生菌与昆虫宿主经过长期的协同进化, 建立了较为稳定的共生关系。当宿主昆虫受到外界压力时, 其体内的共生菌会参与宿主的保护。不过, 并不是所有共生菌种类都能协助宿主抵抗外界各种压力。RickettsiaArsenophonus共生菌密度高的Q型烟粉虱对化学药剂噻虫嗪、吡虫啉、吡丙醚和螺甲螨酯的抵抗能力低, 但对啶虫脒的抵抗能力高; 而含有低密度Arsenophonus的烟粉虱抵抗药剂的能力恰好相反[83]。烟粉虱种群中存在不同种类和密度的共生菌, 这大大增加了种群抵抗各种药剂的能力。由于各共生菌种类对宿主的生物功能不尽相同, 因此宿主种群中保持共生菌种类的多样性和改变共生菌种群密度的灵活性, 这在一定程度上可提高宿主昆虫种群应对各种环境压力的能力, 从而保证昆虫种群和共生菌的长期共同发展。

3 共生菌与蚜虫种群寄主分化的关系 3.1 原生共生菌与蚜虫寄主利用能力的关系

共生菌在昆虫与植物关系中起着重要作用[19, 26]。共生菌能调控昆虫的一些重要生态特性[10, 52]。共生菌的存在扩大了宿主的生态位[84]Buchnera共生菌可利用蚜虫取食的非必需氨基酸和糖类等合成蚜虫不能从寄主植物中获得的必需氨基酸和维生素, 从而扩大蚜虫可利用的寄主范围[2, 52, 85]Buchnera基因组中氨基酸生物合成基因发生突变会导致豌豆蚜对食物中特定氨基酸需求的提高, 蚜虫对寄主植物利用能力的差异可能是其体内的Buchnera共生菌发生突变及蚜虫自身的遗传变异所致[86]。另外, 寄主植物会干扰蚜虫体内共生菌的营养功能[77], 从而影响蚜虫的寄主利用能力。

3.2 次级共生菌与蚜虫寄主利用能力的关系

现有的研究表明, 次级共生菌能改变宿主蚜虫的寄主范围, 但是这种现象受共生菌和蚜虫基因型的影响。例如, 次级共生菌Regiella提高了豌豆蚜利用苜蓿的能力, 但没有提高其对野豌豆的利用能力[14]; 并且Regiella只能提高豌豆蚜部分基因型对苜蓿的利用能力[87]。在5个感染了Regiella的欧洲豌豆蚜克隆中, 仅有一个克隆表现出利用苜蓿寄主能力的提高[15]; 在美国加州的豌豆蚜种群中没发现Regiella共生菌有提高宿主寄主利用能力的作用[88]。由此说明, 次级共生菌对宿主蚜虫寄主利用能力的影响还依赖于寄主植物种类、宿主昆虫基因型及其所处的环境条件等多种因素。

次级共生菌Arsenophonus可改变豆蚜的寄主利用能力, 感染了该共生菌的蚜虫能很好地利用刺槐(Robinia pseudoacacia)寄主; 不感染的蚜虫则不能利用刺槐, 但经人工获得Arsnophonus后也获得了利用刺槐寄主的能力[89]

昆虫肠道内含有的许多共生菌可为宿主提供营养、消化植物组织和降解植物毒素[20, 90]。因此, 肠道共生菌会影响宿主昆虫的寄主利用能力。蚂蚁肠道内的共生菌可为蚂蚁提供氮素营养, 并成为了蚂蚁种群进化的主要动力[91]。研究表明, 肠道共生菌与宿主昆虫可利用的寄主植物种类关系密切。臭蝽(Megacopta punctatissima)可危害豆类作物, 其在豆类作物上的卵孵化率为80%~100%;而与其亲缘关系很近的蝽(Megacopta cribraria)在豆类作物上卵孵化率很低, 不能利用豆类作物。如果将2种蝽的肠道共生菌进行互换, M. punctatissima就会失去利用豆类植物的能力, 而M. cribraria就获得了利用豆类植物的能力[92]。昆虫取食的寄主种类及结构会影响肠道共生菌的群落结构[93], 这种共生菌群落的变化很可能是宿主昆虫适应和利用不同寄主植物的结果。

共生菌对宿主昆虫的寄主利用能力有一定的调控作用, 但是昆虫的食性较为复杂, 并且食性进化没有固定的方向[94-95]。共生菌在昆虫食性进化中发挥作用的大小还有待于深入研究。从现有的研究结果推测, 昆虫的寄主范围是昆虫的遗传特性和其感染的共生菌共同作用的结果。

4 展望

蚜虫种群中普遍携带有共生菌, 共生菌和宿主昆虫已形成了完美的互利共生关系。蚜虫为共生菌提供生活场所和养分, 共生菌为宿主合成必需的营养或共同抵抗外来压力。同一蚜虫种群往往感染多种共生菌, 形成共生菌群落。目前对单种共生菌的功能作用研究较多, 而涉及共生菌群落功能的研究较少。因此, 查清蚜虫自然种群中感染共生菌的种类及感染模式, 阐明共生菌种间关系, 在群落水平上探讨共生菌在宿主蚜虫中的功能地位, 这将是蚜虫与共生菌相互关系研究的发展方向。

蚜虫种群中共生菌感染模式、感染比率和种群数量动态受到包括宿主昆虫本身在内的多种因素的影响。不同地理区域内的蚜虫种群共生菌感染格局的多样性, 不仅与共生菌种群的传播方式有关, 而且受环境条件的影响, 已形成的感染格局是长期自然选择的结果。不过, 有关共生菌是如何进入蚜虫体内建立共生关系, 并形成现有的感染格局, 这还值得研究。

昆虫的寄主利用能力具有可塑性[96-97]。共生菌在蚜虫食性决定中发挥了作用。不同种类蚜虫的食谱存在差异, 其体内共生菌种类或基因型也有所不同。探明蚜虫寄主范围和体内共生菌的关系, 将有望利用人工调控共生菌的方式来限制蚜虫的寄主范围, 从而可在一定程度上保护作物免受蚜害。

参考文献(References)
[1] von Dohlen C D, Moran N A. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation[J]. Biological Journal of the Linnean Society, 2000, 71(4): 689-717. DOI: 10.1111/bij.2000.71.issue-4
[2] Hansen A K, Moran N A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids[J]. Proc Natl Acad Sci USA, 2011, 108(7): 2849-2854. DOI: 10.1073/pnas.1013465108
[3] Douglas A E. Molecular dissection of nutrient exchange at the insect-microbial interface[J]. Current Opinion in Insect Science, 2014, 4: 23-28. DOI: 10.1016/j.cois.2014.08.007
[4] Nakabachi A, Ishikawa H. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera[J]. Journal of Insect Physiology, 1999, 45: 1-6. DOI: 10.1016/S0022-1910(98)00104-8
[5] Moran N A, Degnan P H. Fuctional genomics of Buchnera and the ecology of aphid hosts[J]. Mol Ecol, 2006, 15: 1251-1261.
[6] Thomas G H, Zucker J, Macdonald S J, et al. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola[J]. BMC Systems Biology, 2009, 3: 24. DOI: 10.1186/1752-0509-3-24
[7] Ramsey J S, MacDonald S J, Jander G, et al. Genomic evidence for complementary purine metabolism in the pea aphid, Acyrthosiphon pisum, and its symbiotic bacterium Buchnera aphidicola[J]. Insect Molecular Biology, 2010, 19(Suppl 2): 241-248.
[8] Koga R, Tsuchida T, Fukatsu T. Changing partners in an obligate symbiosis:a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid[J]. Proceedings of the Royal Society B:Biological Sciences, 2003, 270: 2543-2550. DOI: 10.1098/rspb.2003.2537
[9] 胡祖庆, 赵惠燕, 胡想顺, 等. 共生菌对麦长管蚜生长发育和繁殖的影响[J]. 西北农林科技大学学报(自然科学版), 2007, 35(6): 163-166.
Hu Z Q, Zhao H Y, Hu X S, et al. Effects of bacterial symbionts on growth, development and fecundity of Sitobion avenae(F.)(Hompotera:Aphididae)[J]. Journal of Northwest A & F University(Natural Science Edition), 2007, 35(6): 163-166. (in Chinese with English abstract)
[10] Moran N A, Yun Y. Experimental replacement of an obligate insect symbiont[J]. Proc Natl Acad Sci USA, 2015, 112(7): 2093-2096. DOI: 10.1073/pnas.1420037112
[11] Fukatsu T, Tsuchida T, Nikoh N, et al. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum(Insecta:Homoptera)[J]. Applied and Environmental Microbiology, 2001, 67(3): 1284-1291. DOI: 10.1128/AEM.67.3.1284-1291.2001
[12] Sandstrom J P, Russell J A, White J P, et al. Independent origins and horizontal transfer of bacterial symbionts of aphids[J]. Molecular Ecology, 2001, 10(1): 217-228. DOI: 10.1046/j.1365-294X.2001.01189.x
[13] 罗晨, 胡祖庆, 于永昂, 等. 不同地理种群麦长管蚜3种次级共生菌检测与系统发育分析[J]. 西北农林科技大学学报(自然科学版), 2015, 43(1): 141-146.
Luo C, Hu Z Q, Yu Y A, et al. Detection and phylogenetic analysis of three facultative endosymbionts in grain aphid, Sitobion avenae from different geographical regions[J]. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(1): 141-146. (in Chinese with English abstract)
[14] Tsuchida T, Koga R, Fukatsu T. Host plant specialization governed by facultative symbiont[J]. Science, 2004, 303: 1989. DOI: 10.1126/science.1094611
[15] Ferrari J, Scarborough C L, Godfray H C J. Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids[J]. Oecologia, 2007, 153: 323-329. DOI: 10.1007/s00442-007-0730-2
[16] Scarborough C L, Ferrari J, Godfray H C J. Aphid protected from pathogen by endosymbiont[J]. Science, 2005, 310: 1781. DOI: 10.1126/science.1120180
[17] Montllor C B, Maxmen A, Purcell A H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress[J]. Ecological Entomology, 2002, 27: 189-195. DOI: 10.1046/j.1365-2311.2002.00393.x
[18] Lamelas A, Pérez-Brocal V, Gómez-Valero L, et al. Evolution of the secondary symbiont "Candidatus Serratia symbiotica" in aphid species of the subfamily Lachninae[J]. Applied and Environmental Microbiology, 2008, 74(13): 4236-4240. DOI: 10.1128/AEM.00022-08
[19] Frago E, Dicke M, Godfray H C J. Insect symbionts as hidden players in insect-plant interactions[J]. Trends in Ecology and Evolution, 2012, 27(12): 705-711. DOI: 10.1016/j.tree.2012.08.013
[20] Hansen A K, Moran N A. The impact of microbial symbionts on host plant utilization by herbivorous insects[J]. Molecular Ecology, 2014, 23: 1473-1496. DOI: 10.1111/mec.2014.23.issue-6
[21] 苗雪霞, 丁德诚. 蚜虫与其胞内共生细菌的相互作用[J]. 生命科学, 2003, 15(4): 242-247.
Miao X X, Ding D C. Interaction between aphids and its intracellular bacterial symbionts Buchnera[J]. Chinese Bulletin of Life Sciences, 2003, 15(4): 242-247. (in Chinese with English abstract)
[22] 潘慧鹏, 张友军. 昆虫共生细菌Rickettsia的研究进展[J]. 昆虫学报, 2012, 55(9): 1103-1108.
Pan H P, Zhang Y J. Progress in the insect symbiont Richettsia[J]. Acta Entomologia Sinica, 2012, 55(9): 1103-1108. (in Chinese with English abstract)
[23] 刘琳, 黄晓磊, 乔格侠. 蚜虫初级内共生菌Buchnera aphidicola研究进展[J]. 应用昆虫学报, 2013, 50(5): 1419-1427.
Liu L, Huang X L, Qiao G X. Trends in research on the primary endosymbiont of aphids, Buchnera aphidicola[J]. Chinese Journal of Applied Entomology, 2013, 50(5): 1419-1427. DOI: 10.7679/j.issn.2095-1353.2013.195 (in Chinese with English abstract)
[24] 杨义婷, 郭建洋, 龙楚云, 等. 昆虫内共生菌及其功能研究进展[J]. 昆虫学报, 2014, 57(1): 111-122.
Yang Y T, Guo J Y, Long C Y, et al. Advances in endosymbionts and their functions in insects[J]. Acta Entomologica Sinica, 2014, 57(1): 111-122. (in Chinese with English abstract)
[25] 单红伟, 刘树生, 刘银泉. 昆虫共生体对不利温度的响应[J]. 植物保护学报, 2016, 43(1): 24-31.
Shan H W, Liu S S, Liu Y Q. Responses of insect holobionts to unfavorable temperatures[J]. Journal of Plant Protection, 2016, 43(1): 24-31. (in Chinese with English abstract)
[26] 李迁, 范佳, 孙京瑞, 等. 昆虫内共生菌-昆虫-植物互作关系研究进展[J]. 植物保护学报, 2016, 43(6): 881-891.
Li Q, Fan J, Sun J R, et al. Research progress in the interactions among the plants, insects and endosymbionts[J]. Journal of Plant Prtotection, 2016, 43(6): 881-891. (in Chinese with English abstract)
[27] de Clerck C, Fujiwara A, Joncour P, et al. A metagenomic approach from aphid's hemolymph sheds light on the potential roles of co-existing endosymbionts[J]. Microbiome, 2015, 3: 63. DOI: 10.1186/s40168-015-0130-5
[28] Zytynska S, Weisser W W. The natural occurrence of secondary bacterial symbionts in aphids[J]. Ecological Entomology, 2016, 41(1): 13-26. DOI: 10.1111/een.12281
[29] Chen D Q, Campbell B C, Purcell A H. A new Rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum(Harris)[J]. Current Microbiology, 1996, 33(2): 123-128. DOI: 10.1007/s002849900086
[30] Guay J F, Boudreault S, Michaud D, et al. Impact of environmental stress on aphid clonal resistance to parasitoids:role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid[J]. Journal of Insect Physiology, 2009, 55(10): 919-926. DOI: 10.1016/j.jinsphys.2009.06.006
[31] Tsuchida T, Koga R, Shibao H, et al. Diversity and geographic distribution of secondary endosymbiontic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum[J]. Molecular Ecology, 2002, 11: 2123-2135. DOI: 10.1046/j.1365-294X.2002.01606.x
[32] Russell J A, Weldon S, Smith A H, et al. Uncovering symbiont-driven genetic diversity across North American pea aphids[J]. Molecular Ecology, 2013, 22(7): 2045-2059. DOI: 10.1111/mec.12211
[33] Tsuchida T, Koga R, Fujiwara A, et al. Phenotypic effect of "Candidatus Rickettsiella viridis", a facultative symbiont of the pea aphid(Acyrthosiphon pisum), and its interaction with a coexisting symbiont[J]. Applied and Environmental Microbiology, 2014, 80(2): 525-533. DOI: 10.1128/AEM.03049-13
[34] Tsuchida T, Koga R, Horikawa M, et al. Symbiotic bacterium modifies aphid body color[J]. Science, 2010, 330: 1102-1104. DOI: 10.1126/science.1195463
[35] Łukasik P, Dawid M A, Ferrari J, et al. The diversity and fitness of infection with facultative endosymbionts in the grain aphid, Sitobion avenae[J]. Oecologia, 2013, 173: 985-996. DOI: 10.1007/s00442-013-2660-5
[36] Alkhedir H, Karlovsky P, Vidal S. Relationship between water soluble carbohydrate content, aphid endosymbionts and clonal performance of Sitobion avenae on cockfoot cultivars[J]. PLoS ONE, 2013, 8: e54327. DOI: 10.1371/journal.pone.0054327
[37] de Clerck C, Tsuchida T, Massart S, et al. Combination of genomic and proteomic approaches to characterize the symbiotic population of the banana aphid(Hemiptera:Aphididae)[J]. Environmental Entomology, 2014, 43(1): 29-36. DOI: 10.1603/EN13107
[38] Haynes S, Darby A C, Daniell T J, et al. Diversity of bacteria associated with natural aphid populations[J]. Applied and Environmental Microbiology, 2003, 69(12): 7216-7223. DOI: 10.1128/AEM.69.12.7216-7223.2003
[39] Dunbar H E, Wilson A C C, Ferguson N R, et al. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts[J]. PLoS Biology, 2007, 5(5): e96. DOI: 10.1371/journal.pbio.0050096
[40] Oliver K M, Moran N A, Hunter M S. Costs and benefits of a superinfection of facultative symbionts in aphids[J]. Proceedings of the Royal Society B:Biological Sciences, 2006, 273: 1273-1280. DOI: 10.1098/rspb.2005.3436
[41] Łukasik P, van Asch M, Guo H, et al. Unrelated facultative endosymbionts protect aphids against a fungal pathogen[J]. Ecology Letters, 2013, 16(2): 214-218. DOI: 10.1111/ele.2012.16.issue-2
[42] Chen D Q, Montllor C B, Purcell A H. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi[J]. Entomologia Experimentalis et Applicata, 2000, 95: 315-323. DOI: 10.1046/j.1570-7458.2000.00670.x
[43] Vogel K J, Moran N A. Sources of variation in dietary requirements in an obligate nutritional symbiosis[J]. Proceedings of the Royal Society B:Biological Sciences, 2011, 278: 115-121. DOI: 10.1098/rspb.2010.1304
[44] Chen C Y, Lai C Y, Kuo M H. Temperature effect on the growth of Buchnera endosymbiont in Aphis craccivora(Hemiptera:Aphididae)[J]. Symbiosis, 2009, 49(1): 53-59. DOI: 10.1007/s13199-009-0011-4
[45] Breeuwer J A J, Werren J H. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis[J]. Genetics, 1993, 135: 565-574.
[46] Clancy D J, Hoffmann A A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans[J]. Entomologia Experimentalis et Applicata, 1998, 86(1): 13-24. DOI: 10.1046/j.1570-7458.1998.00261.x
[47] Sakurai M, Koga R, Tsuchida T, et al. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum:novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera[J]. Applied and Environmental Microbology, 2005, 71(7): 4069-4075. DOI: 10.1128/AEM.71.7.4069-4075.2005
[48] Anbutsu H, Fukatsu T. Population dynamics of male-killing and non-male-killing spiroplasmas in Drosophila melanogaster[J]. Applied and Environmental Microbiology, 2003, 69(3): 1428-1434. DOI: 10.1128/AEM.69.3.1428-1434.2003
[49] Gauthier J P, Outreman Y, Mieuzet L, et al. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA[J]. PLoS ONE, 2015, 10(3): e0120664. DOI: 10.1371/journal.pone.0120664
[50] Skaljac M, Zanic K, Ban S G, et al. Co-infection and localization of secondary symbionts in two whitefly species[J]. BMC Microbiology, 2010, 10: 142. DOI: 10.1186/1471-2180-10-142
[51] 褚栋, 丛斌, 张友军, 等. 不同生物型烟粉虱体内Wolbachia共生菌的检测及其系统树分析[J]. 昆虫学报, 2005, 48(4): 518-525.
Chu D, Cong B, Zhang Y J, et al. Detection and phylogenetic analysis of Wolbachia in different Bemisia tabaci biotypes[J]. Acta Entomologia Sinica, 2005, 48(4): 518-525. (in Chinese with English abstract)
[52] Feldhaar H. Bacterial symbionts as mediators of ecologically important traits of insect hosts[J]. Ecological Entomology, 2011, 36: 533-543. DOI: 10.1111/een.2011.36.issue-5
[53] Martinez A J, Weldon S R, Oliver K M. Effects of parasitism on aphid nutritional and protective symbioses[J]. Molecular Ecology, 2014, 23(6): 1594-1607. DOI: 10.1111/mec.12550
[54] Kondo N, Shimada M, Fukatsu T. Infection density of Wolbachia endosymbiont affected by co-infection and host genotype[J]. Biology Letters, 2005, 1: 488-491. DOI: 10.1098/rsbl.2005.0340
[55] Mouton L, Henri H, Charif D, et al. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis[J]. Biology Letters, 2007, 3: 210-213. DOI: 10.1098/rsbl.2006.0590
[56] Parkinson J F, Gobin B, Hughes W O H. Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis[J]. Ecology and Evolution, 2016, 6(7): 2053-2060. DOI: 10.1002/ece3.2016.6.issue-7
[57] Le Clech W, Braquart-Varnier C, Raimond M, et al. High virulence of Wolbachia after host switching:when autophagy hurts[J]. PLoS Pathogens, 2012, 8(8): e1002844. DOI: 10.1371/journal.ppat.1002844
[58] Ratzka C, Gross R, Feldhaar H. Endosymbiont tolerance and control within insect hosts[J]. Insects, 2012, 3: 553-572. DOI: 10.3390/insects3020553
[59] Ratzka C, Gross R, Feldhaar H. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus[J]. Journal of Insect Physiology, 2013, 59: 611-623. DOI: 10.1016/j.jinsphys.2013.03.011
[60] Login F H, Balmand S, Vallier A, et al. Antimicrobial peptides keep insect endosymbionts under control[J]. Science, 2011, 334: 362-365. DOI: 10.1126/science.1209728
[61] Nishikori K, Morioka K, Kubo T, et al. Age-and morph-dependent activation of the lysosomal system and Buchnera degradation in aphid endosymbiosis[J]. Journal of Insect Physiology, 2009, 55: 351-357. DOI: 10.1016/j.jinsphys.2009.01.001
[62] Voronin D, Cook D A N, Steven A, et al. Autophagy regulates Wolbachia populations across diverse symbiotic associations[J]. Proc Natl Acad Sci USA, 2012, 29: E1638-E1646.
[63] Goto S, Anbutsu H, Fukatsu T. Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host[J]. Applied and Environmental Microbiology, 2006, 72(7): 4805-4810. DOI: 10.1128/AEM.00416-06
[64] Lu W N, Chiu M C, Kuo M H. Host life stage-and temperature-dependent density of the symbiont Buchnera aphidicola in a subtropical pea aphid(Acyrthosiphon pisum)population[J]. Journal of Asia-Pacific Entomology, 2014, 17: 537-541. DOI: 10.1016/j.aspen.2014.03.012
[65] 李献辉, 李保平. 温度对黑豆蚜体内共生菌胞数量及宿主体型大小的影响[J]. 昆虫学报, 2006, 49(3): 428-432.
Li X H, Li B P. Effect of temperature on the abundance of mycetocytes in Aphis fabae Scopoli(Aphididae, Homoptera)and body size of their hosts[J]. Acta Entomologica Sinica, 2006, 49(3): 428-432. (in Chinese with English abstract)
[66] 吕仲贤, 俞晓平, 陈建明, 等. 不同虫源和致害性的褐飞虱体内共生菌的种群动态[J]. 华东昆虫学报, 2001, 10(1): 44-49.
Lü Z X, Yu X P, Chen J M, et al. The population dynamics of symbiote in body of brown planthopper from different geographic fields and adapted to different resistant rice varieties[J]. Entomological Journal of East China, 2001, 10(1): 44-49. (in Chinese with English abstract)
[67] 张晓婕, 俞晓平, 陈建明. 高温对灰飞虱体内类酵母共生菌和耐药性的影响[J]. 中国水稻科学, 2008, 22(4): 416-420.
Zhang X J, Yu X P, Chen J M. Influence of high temperature on yeast-like endosymbiotes and pesticide resistance of small brown planthopper, Laodelphax striatellus[J]. Chinese Journal of Rice Science, 2008, 22(4): 416-420. (in Chinese with English abstract)
[68] Jia F X, Yang M S, Yang W J, et al. Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor(Psocoptera:Liposcelididae)[J]. Environmental Entomology, 2009, 38(5): 1365-1372. DOI: 10.1603/022.038.0503
[69] Anbutsu H, Goto S, Fukatsu T. High and low temperatures differently affect infection density and vertical transmission of male-killing Spiroplasma symbionts in Drosophila hosts[J]. Applied and Environmental Microbiology, 2008, 74(19): 6053-6059. DOI: 10.1128/AEM.01503-08
[70] Shan H W, Lu Y H, Bing X L, et al. Differential responses of the whitefly Bemisia tabaci symbionts to unfavorable low and high temperatures[J]. Microbial Ecology, 2014, 68(3): 472-482. DOI: 10.1007/s00248-014-0424-3
[71] Oliver K M, Smith A H, Russell J A. Defensive symbiosis in the real world:advancing ecological studies of heritable, protective bacteria in aphids and beyond[J]. Functional Ecology, 2014, 28: 341-355. DOI: 10.1111/fec.2014.28.issue-2
[72] 刘魏魏, 杨璞, 陈晓鸣, 等. 白蜡虫体内杀雄菌属(Arsenophonus)共生菌的分子检测[J]. 微生物学报, 2012, 52(8): 1002-1010.
Liu W W, Yang P, Chen X M, et al. Molecular detection of symbiotic bacteria Arsenophonus from Ericerus pela Chavannes[J]. Acta Microbiologica Sinica, 2012, 52(8): 1002-1010. (in Chinese with English abstract)
[73] 吕仲贤, 俞晓平, 陈建明, 等. 共生菌在褐飞虱致害性变化中的作用[J]. 昆虫学报, 2001, 44(2): 197-204.
Lü Z X, Yu X P, Chen J M, et al. Role of endosymbiote in virulence change of the brown planthopper to rice resistant varieties[J]. Acta Entomologica Sinica, 2001, 44(2): 197-204. (in Chinese with English abstract)
[74] 陈法军, 张珏峰, 周彦铨, 等. 不同地理种群褐飞虱体内共生酵母菌的个体大小及数量差异[J]. 昆虫知识, 2006, 43(4): 460-465.
Chen F J, Zhang J F, Zhou Y Q, et al. Individual size and abundance of the yeast-like endosymbiote in different geographic populations of brown planthopper, Nilaparvata lugens[J]. Chinese Bulletin of Entomology, 2006, 43(4): 460-465. DOI: 10.7679/j.issn.2095-1353.2006.115 (in Chinese with English abstract)
[75] Toju H, Fukatsu T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil:relevance of local climate and host plants[J]. Molecular Ecology, 2011, 20: 853-868. DOI: 10.1111/mec.2011.20.issue-4
[76] Liu Y H, Kang Z W, Guo Y, et al. Nitrogen hurdle of host alternation for a polyphgous aphid and the associated changes of endosymbionts[J]. Scientific Reports, 2016, 6: 24781. DOI: 10.1038/srep24781
[77] Wilkinson T L, Adams D, Minto L B, et al. The impact of host plant on the abundance and function of symbiotic bacteria in an aphid[J]. The Journal of Experimental Biology, 2001, 204: 3027-3038.
[78] Zhang Y C, Cao W J, Zhong L R, et al. Host plant determines the population size of an obligate symbiont(Buchnera aphidicola)in aphids[J]. Applied and Environmental Microbiology, 2016, 82(8): 2336-2346. DOI: 10.1128/AEM.04131-15
[79] Wilkinson T L, Koga R, Fukatsu T. Role of host nutrition in symbiont regulation:impact of dietary nitrogen on proliferation of obligate and facultative bacterial endosymbionts of the pea aphid Acyrthosiphon pisum[J]. Applied and Environmental Microbiology, 2007, 73(4): 1362-1366. DOI: 10.1128/AEM.01211-06
[80] 王国超, 傅强, 赖凤香, 等. 褐飞虱体内类酵母共生菌与氨基酸营养的关系[J]. 昆虫学报, 2005, 48(4): 483-490.
Wang G C, Fu Q, Lai F X, et al. Relationship between yeast-like symbiotes and amino acid requirements in the rice brown planthopper, Nilaparvata lugens Stål(Homoptera:Delphacidae)[J]. Acta Entomologica Sinica, 2005, 48(4): 483-490. (in Chinese with English abstract)
[81] Enders L S, Miller N J. Stress-induced changes in abundance differ among obligate and facultative endosymbionts of the soybean aphid[J]. Ecology and Evolution, 2016, 6(3): 818-829. DOI: 10.1002/ece3.2016.6.issue-3
[82] Oliver K M, Degnan P H, Burke G R, et al. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits[J]. Annual Review of Entomology, 2010, 55: 247-266. DOI: 10.1146/annurev-ento-112408-085305
[83] Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities[J]. Pest Management Science, 2009, 65(9): 939-942. DOI: 10.1002/ps.v65:9
[84] Moran N A, Plague G R, Sandstrom J P, et al. A genomic perspective on nutrient provisioning by bacterial symbionts of insects[J]. Proc Natl Acad Sci USA, 2003, 100(Suppl 2): 14543-14548.
[85] Price D R G, Feng H, Baker J D, et al. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts[J]. Proc Natl Acad Sci USA, 2014, 111(1): 320-325. DOI: 10.1073/pnas.1306068111
[86] Vogel K J, Moran N A. Effect of host genotype on symbiont titer in the aphid-Buchnera symbiosis[J]. Insects, 2011, 2(3): 423-434. DOI: 10.3390/insects2030423
[87] Leonardo T E, Muiru G T. Facultative symbionts are associated with host plant specialization in pea aphid populations[J]. Proceedings of the Royal Society B:Biological Sciences, 2003, 270: S209-S212. DOI: 10.1098/rsbl.2003.0064
[88] Leonardo T E. Removal of a specialization-associated symbiont does not affect aphid fitness[J]. Ecology Letters, 2004, 7(6): 461-468. DOI: 10.1111/ele.2004.7.issue-6
[89] Wagner S M, Martinez A J, Ruan Y M, et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore[J]. Functional Ecology, 2015, 29(11): 1402-1410. DOI: 10.1111/fec.2015.29.issue-11
[90] Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut[J]. Bioscience, Biotechnology, Biochemistry, 2010, 74(6): 1145-1151. DOI: 10.1271/bbb.100094
[91] Russell J A, Moreau C S, Goldman-Huertas B, et al. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants[J]. Proc Natl Acad Sci USA, 2009, 106(5): 21236-21241.
[92] Hosokawa T, Kikuchi Y, Shimada M, et al. Obligate symbiont involved in pest status of host insect[J]. Proceedings of the Royal Society B:Biological Sciences, 2007, 274: 1979-1984. DOI: 10.1098/rspb.2007.0620
[93] Colman D R, Toolson E C, Takacs-Vesbach C D. Do diet and taxonomy influence insect gut bacterial communities?[J]. Molecular Ecology, 2012, 21: 5124-5137. DOI: 10.1111/mec.2012.21.issue-20
[94] Janz N, Nyblom K, Nylin S. Evolutionary dynamics of host plant specialization:a case study of the tribe Nymphalini[J]. Evolution, 2001, 55: 783-796. DOI: 10.1554/0014-3820(2001)055[0783:EDOHPS]2.0.CO;2
[95] Nosil P. Transition rates between specialization and generalization in phytophagous insects[J]. Evolution, 2002, 56(8): 1701-1706. DOI: 10.1111/evo.2002.56.issue-8
[96] Wu W, Liang X L, Zhao H Y, et al. Special plant species determines diet breadth of phytophagous insects:a study on host plant expansion of the host-specialized Aphis gossypii Glover[J]. PLoS ONE, 2013, 8(4): e60832. DOI: 10.1371/journal.pone.0060832
[97] Liu X D, Xu T T, Lei H X. Refuges and host shift pathways of host-specialized aphids Aphis gossypii[J]. Scientific Reports, 2017, 7: 2008. DOI: 10.1038/s41598-017-02248-4