南京农业大学学报  2018, Vol. 41 Issue (1): 3-17   PDF    
http://dx.doi.org/10.7685/jnau.201705036
0

文章信息

庄丽芳, 亓增军
ZHUANG Lifang, QI Zengjun
植物染色体诱变研究与应用进展
Recent advances in inducing and application of plant chromosome aberrations
南京农业大学学报, 2018, 41(1): 3-17
Journal of Nanjing Agricultural University, 2018, 41(1): 3-17.
http://dx.doi.org/10.7685/jnau.201705036

文章历史

收稿日期: 2017-05-22
植物染色体诱变研究与应用进展
庄丽芳 , 亓增军     
南京农业大学作物遗传与种质创新国家重点实验室, 江苏 南京 210095
摘要:植物染色体工程是通过人工诱致染色体变异进行植物改良的技术。染色体变异在外源基因转移和利用、染色体倍性操作、反向育种等方面发挥着重要作用,促进了染色体基因组学、物理作图和染色体生物学研究。基因组学、分子标记和染色体鉴定技术的发展进一步促进了化学、物理和遗传诱变的深入研究和应用,不断创造和鉴定出更多具有不同用途的染色体变异,为植物改良和遗传研究提供了新工具。本文综述了植物染色体诱变研究与应用进展,并对存在的问题和发展趋势进行了讨论,为有效开展染色体工程提供参考。
关键词植物   染色体工程   物理诱变   化学诱变   遗传诱变   
Recent advances in inducing and application of plant chromosome aberrations
ZHUANG Lifang, QI Zengjun    
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
Abstract: Chromosome engineering refers to a kind of plant improvement technology in which chromosome aberrations are artificially induced. Chromosome aberrations play significant roles not only in transfering and utilization of alien genes, chromosome ploidy manipulation and reverse breeding, but also in chromosome genomics, physical mapping and chromosome biology.With the development of plant genomics, molecular markers and chromosome identification technology, more chromosome aberrations with different purposes have been induced by chemical, physical and biological methods and identified for both plant improvement and genetic study. Recent progress of such researches was summarized and problems and prospects of induction and application of plant chromosome aberrations were discussed.
Key words: plant    chromosome engineering    physical mutagenesis    chemical mutagenesis    genetic mutagenesis   

染色体是遗传物质的载体, 在长期进化过程中演化出一系列的防御和修复机制来抵御各种胁迫诱发的变异。但是, 许多诱变因子可以打破染色体自身的防御或修复机制, 导致染色体变异。染色体变异是物种进化的动力之一, 包括结构和数目变异, 前者包括易位、缺失、倒位和重复, 后者包括以染色体组为基数的整倍性变异和以染色体为基数的非整倍性变异。植物染色体工程是人工诱致染色体变异进行植物改良的技术。许多物理、化学和遗传因子可以有效诱发染色体变异, 但这些方法诱发的变异大部分是随机发生的, 随着染色体生物学的研究进展, 通过人工操作改变染色体遗传方式或者定向诱致染色体变异已成为可能, 能够促进同源或部分同源染色体重组的突变体为提高传统育种效率提供了新技术, 而抑制同源染色体重组突变体的获得为以降低重组率为目的的育种新技术提供了可能, 拓宽了染色体工程研究和应用领域。本文综述了化学诱变、物理诱变和遗传因子诱变技术在植物上的研究与应用进展, 并对存在的问题和发展趋势进行了讨论, 为有效开展染色体工程提供参考。

1 化学诱变

化学诱变最早追溯到1937年Blakeslee发现秋水仙碱能够诱导染色体加倍[1]。20世纪40年代不同科学家发现氮气和芥子气可诱发染色体结构变异[1]。随后, 许多化学因子的致畸效应被相继发现。Langie等[2]综述表明, 某些化学因子在低剂量状态下可以诱发人类染色体变异, 对人体健康存在风险。可以预见, 能够诱发人类染色体变异的化学因子有可能也会导致植物变异, 但很多化学因子在植物中的致畸性缺乏持续和深入研究。系统分析化学因子在植物中的效应, 一方面可以评价化学因子的潜在风险, 另一方面可以趋利避害, 开发植物染色体诱变新方法。

已发表的化学因子中, 秋水仙碱的效应最清楚, 其与微管蛋白结合抑制纺锤丝形成, 从而可以诱导形成不减数配子而使染色体数加倍[3]。甲基磺酸乙酯(ethyl-methanesulfonate, EMS)是广泛应用的另一化学因子, 通过对鸟嘌呤烷基化导致碱基转换或替换而诱发基因和染色体突变[4]。EMS可随机插入基因组任何位置, 突变率高、覆盖全, 且稳定, EMS诱变与PCR检测相结合建立的TILLING(targeting induced local lesions in genomes)技术是目标基因定点突变的重要方法[5-9], 在拟南芥、大麦等物种中得到成功应用[10]。化学诱变操作简单、有效和可靠[11], 不但广泛应用于基因突变研究[12-14], 而且在染色体变异研究中也取得了不少进展。

目前, 已对至少14种化学因子在不同植物上的染色体诱变效应进行了研究, 包括秋水仙碱、EMS、叠氮化钠(NaN3)、N-甲基-N-亚硝基脲(N-methyl-N-nitrosourea, MNU)、甲基胺草磷(amiprophos-methyl, APM)、二甲基亚砜(dimethyl sulphoxide, DMSO)、羟胺(hydroxylamine, HA)、马来酰肼(maleic hydrazide, MH)、8-乙氧基咖啡因(8-ethoxycaffeine, EOC)、甲基磺酸甲酯(methyl methanesulfonate, MMS)、羟基尿(hydroxyurea, HU)、丝裂霉素C(mitomycin C, MMC)、乙基磺酸甲酯(methyl ethanesulfonate, MES)和zebularine, 涉及的植物有小麦、小黑麦、大麦、玉米、洋葱、蚕豆、芝麻、向日葵、NigellaTrigonella[15-32]。诱发的变异包括染色体易位、染色体断片、染色体桥、染色体团和微核等, 其诱变机制涉及碱基转换、DNA甲基化水平变化、染色体蛋白乙酰化, 或影响DNA复制、合成, 或影响细胞分裂周期, 以及形成DNA链内或链间复合物等[4, 33-34]

除上述因子外, 一些表观遗传因子, 例如影响DNA碱基和染色体组蛋白甲基化、磷酸化或乙酰化等因子也具有影响染色体结构的效应[35]。例如, 碱基类似物5-azacytidine、5-aza-2′deoxycytidine和zebularine可以与DNA甲基转移酶结合导致DNA甲基化水平降低, 影响细胞核和染色体结构, 调控基因转录和生长发育[36-37], 其中zebularine由于稳定性好、低毒性, 在微生物、动物和人类研究中应用较多[38-41]。在植物中, Baubec等[37]发现zebularine具有抑制拟南芥生长, 降低甲基化水平, 激活沉默基因表达和降低DNA螺旋化水平的效应。Cho等[42]发现zebularine能够诱发小麦-大赖草二体附加系根尖细胞染色体变异, 产生无着丝粒片段、环状染色体、双着丝粒染色体, 以及插入易位、缺失和其他易位染色体。我们发现用zebularine浸泡八倍体小黑麦干种子, 可有效诱发染色体变异, 其中500 μmol · L-1处理24 h产生的变异类型最多且存活率高, 变异类型中以无着丝粒片段、缺失或端体最多, 其次为易位, 包括大片段易位、小片段易位和插入易位, 而环状和多着丝粒染色体最少(图 1-A); 有趣的是从M2植株中发现了稳定的缺失、易位和端体等染色体变异体, 表明部分染色体变异可以稳定传递[43]。在小黑麦分蘖和孕穗期用zebularine处理也获得了类似结果, 因此, 我们成功建立了利用zebularine诱发小黑麦染色体变异新方法(专利申请号:201610076099.2)。随着寡核苷酸探针的开发和应用[44], FISH(fluorescence in situ hybridization)技术变得更加简单、经济和有效, 使大规模准确鉴定染色体变异成为可能, 目前我们已获得了一批稳定的黑麦染色体变异体, 正以此构建一套基于小黑麦背景的黑麦染色体缺体、端体和系列易位的染色体变异体库(图 1-B)。因此, 利用调控染色体结构的表观修饰因子有望开发出更多高效的诱变方法, 但是由于物种间基因组差异和甲基化、磷酸化和乙酰化水平不同, 针对不同因子, 需要分析不同物种的诱变特点, 摸索最适浓度和诱变方法。

图 1 Zebularine诱致的八倍体小黑麦'荆辉1号'变异体(A、B)和配子辐射诱致的小麦-黑麦小片段易位系(C、D)染色体涂染分析 Figure 1 Chromosome painting of triticale'Jinghui 1'aberrations(A, B)induced by zebularine and small segmental wheat-rye translocations(C, D)induced by gamete irradiation A.zebularine处理M1植株根尖细胞染色体, 红色信号为TAMRA修饰的(AAC)10探针, 绿色为Fluorescein-12-dUTP标记的黑麦基因组DNA信号, 变异染色体单独排列在下方; B.zebularine处理的M3植株16MHX134-2, 含1对小麦-黑麦易位染色体T3DS · 3RL和1条小麦染色体易位T3DS · 1DS, 小麦染色体不完整, 黑麦及变异染色体单独排列在下方, 采用oligonucleotide multiplex#4与Fluorescein-12-dUTP标记的黑麦基因组DNA(绿色)作探针, 其中oligonucleotide multiplex#4包含TAMRA修饰的寡核苷酸探针pAs1-1、pAs1-3、pAs1-4、pAs1-6、AFA-3、AFA-4和pSc119.2-1, 显示红色信号, FAM修饰的(GAA)10为绿色; C.辐射诱致的易位系T5DL · 5DS-2RS#1, 探针信号颜色同图B; D.辐射诱致的易位系T1BL · 1BS-2RL#1, 红色信号为pAs1-1、pAs1-3、pAs1-4、pAs1-6、AFA-3、AFA-4和Digoxigenin-11-dUTP标记的45S rDNA质粒探针, 绿色为pSc119.2-1和(GAA)10(图 1-AB由马旭辉提供, 图 1-CD由曹正兰提供)。 A.M1 plant root tip cells, red signals show(AAC)10 modified with TAMRA, green signals show Fluorescein-12-dUTP labeled total genomic DNA of rye, chromosome aberrations were arrayed below; B.M3 plant 16MHX134-2, including one pair of wheat-rye translocation chromosome T3DS · 3RL and one wheat-wheat translocation T3DS · 1DS, all rye chromosomes and its aberrations were arrayed below, oligonucleotide multiplex#4 included pAs1-1, pAs1-3, pAs1-4, pAs1-6, AFA-3, AFA-4 and pSc119.2-1 modified with TAMRA(showing red signals)and(GAA)10modified with FAM and rye gDNA labeled with Fluorescein-12-dUTP(green)as probes; C.Translocation line T5DL · 5DS-2RS#1, signals same as figure B; D.Translocation line T1BL · 1BS-2RL#1, 45S rDNA labeled with Digoxigenin-12-dUTP(red)was mixed with oligonucleotide multiplex#4 where pSc119.2-1 was changed to green(modified with FAM)and rye total genomic rye DNA labeled with Fluorescein-12-dUTP(green)as probes. Photos were provided by Ma Xuhui(Fig. 1-A, B)and Cao Zhenglan(Fig. 1-C, D).
2 配子辐射诱变

自从1927年Muller[45]和1928年Stadler[46]发现X-射线辐射可以诱发基因突变和染色体变异以来, 电离辐射技术在染色体工程中得到大量应用[47-50]。电离辐射可以导致染色体直接断裂, 也可以通过DNA损伤并在随后的复制、修复过程中产生变异, 主要方式为非同源末端重接(nonhomologous end joining, NHEJ)[2]。多种植物组织通过辐射都可以产生变异, 其中雌雄配子由于含有单套基因, 对辐射更敏感, 同时配子变异可以通过自交或回交直接传递到下一代, 有利于加快染色体工程进程, 因此得到越来越多的应用。配子辐射在短期内能够获得大量染色体变异, 特别是顶端易位和中间插入小片段易位, 可以定向转移和利用亲缘植物有利基因, 创造新种质; 大量染色体变异涉及不同的断裂位点, 因此结合分子标记分析可以进行染色体缺失作图(deletion mapping)和辐射杂种作图(radiation hybrid mapping, 简称RH mapping), 为目标基因发掘和精细定位, 特别是为缺少参考基因组物种的遗传研究提供了重要方法。

Bie等[51]对硬粒小麦-簇毛麦双倍体(2n=6x=42, AABBVV)进行辐射处理, 结合基因组原位杂交(genomic in situ hybridization, GISH)发现, 花粉辐射可以在高达72.1%的M1代植株中产生小麦-簇毛麦染色体易位, 其中顶端小片段和中间插入易位分别为40.8%和6.1%。Cao等[52]比较了不同辐射剂量对花粉和雌配子的诱变效应, 发现含有小麦-簇毛麦染色体易位的植株频率为49.5%~96.4%, 其中70%以上的易位可以通过回交传递给下一代。利用这套材料已筛选到140份结构变异体, 建立了涉及1V~7V的染色体变异体库[53], 并从中选育出易位系T5VS · 5DL[54]、T5VS · 5AL[55]、T1VS · 1BL、T1VS · 1DS、T1VL · 1DL[56]和T2VS · 2DL[57]。Chen等[58]通过辐照小麦-簇毛麦抗白粉病易位系T6VS · 6AL雌配子, 获得涉及6VS小片段中间插入易位、末端易位和6VS缺失, 频率分别为21.02%、14.01%和14.65%。Chen等[59]从辐射杂种中选育出2个稳定的小片段易位系, 已向多个单位发放(陈佩度, 私人通讯), 有望成为利用Pm21的新种质。配子辐射提高了染色体工程效率, 通过辐射双倍体可以获得大量变异体, 使构建覆盖整个基因组的易位库成为可能。簇毛麦易位库构建及应用为染色体工程提供了新思路, 省去了传统研究中先通过双倍体与小麦杂交、回交建立附加系然后再诱导易位系的步骤。

由于高能量射线辐照引起的染色体断裂-重接是随机发生的, 因此配子辐射产生的变异大多是非补偿性的。少数发生在部分同源染色体间的罗伯逊易位和小片段顶端或中间插入易位由于仅携带有限的外源目标基因, 在对小麦的遗传平衡性没有影响的条件下可以用作新种质, 但是大部分辐射诱发的染色体变异涉及不利基因连锁或小麦遗传平衡性的破坏, 因而很难直接用于生产。辐射诱致的染色体变异涉及染色体随机断裂和重接, 为开展外源目标基因区段定位及其染色体缺失作图提供了可能。利用辐射获得了系列易位或缺失系:Zheng等[60]将长穗偃麦草蓝粒基因Ba1定位于4AgL 0.71-0.80, Chen等[59]Pm21定位到6VS 0.45-0.58, Pu等[61]将百萨偃麦草蓝粒基因BaThb定位于4JL-11区段, Zhuang等[62-63]将荆州黑麦抗白粉病基因PmJZHM2RL定位于2RL-7区段(图 1-C, D), Song等[64-65]将冰草抗叶锈病基因定位于6PS 0.81-1.00, Li等[66-67]将冰草抗白粉病基因定位于2PL 0.66-0.86, 并构建了相应的染色体物理图谱。

染色体缺失作图可以实现目标基因和分子标记的物理定位, 但是难以确定标记间排列顺序。由于高能量射线诱发的染色体断裂在染色体上是随机且均匀发生的, 不受重组率影响, 因此任意2个标记同时发生缺失的频率就与2个标记的实际物理距离紧密相关。利用辐射产生的系列变异和高通量标记分析可以构建覆盖均匀、密度高以及与序列图更一致的物理图谱, 这种作图方法被称为辐射杂种作图。该技术最早起源于人类和哺乳动物[68-69], 在植物上的应用始于玉米[70], 其后该技术逐步拓展到大麦、棉花和小麦等[71-75]。2016年Tiwari等[76]利用不同剂量γ-射线对小麦品种‘中国春’(AABBDD)花粉进行辐射, 并授粉给硬粒小麦‘Altar 8’(AABB), 随机选择115个辐射杂种利用90 k SNP芯片进行分析, 获得了38 404个SNP标记, 其中26 299个SNP标记定位在21条小麦染色体上, A、B和D组染色体分别具有8 470、11 461和6 368个标记。由于产生了7 269个新的染色体bin, 因此该图谱的精确程度远超以往, 平均密度为248 kb/cR1500, 总长为6 866 cR1500, 为BAC测序和二代测序序列的定位和组装提供了有用资源[76]。全基因组辐射杂种作图将会大大推动亲缘植物的遗传和基因组研究, 加快有利基因的发掘和利用。

3 遗传因子诱变 3.1 杀配子基因

山羊草属的某些染色体在小麦背景中具有优先传递的能力, 导致不含这些染色体的配子育性降低, 并发生明显的染色体变异, 这些染色体被称为杀配子染色体(gametocidal chromosomes, Gc)[77]。研究发现, Gc诱发缺失和易位的机制与染色体断裂-融合-桥循环(breakage-fusion-bridge cycles, BFB)有关[78], Tsujimoto等[79]对杀配子基因诱导的1B缺失系Kdel1B-65分析发现, 断点区域包含18S rRNA、telomere repeats及其连接序列, 其中在连接序列区域涉及一个31 bp的反向重复, 端粒序列的起点源于反向重复内的TAG。Gc诱发的断点区域形成新DNA序列的证据说明染色体断裂-融合-桥循环发生在Gc诱发的第1次染色质断裂时期。遗憾的是迄今尚未有克隆杀配子基因的报道, 但是一些Gc广泛用于诱导染色体重排。

在小麦中, 全世界广泛利用的一套缺失系就是利用杀配子染色体诱致产生的[80], 也有很多诱导黑麦、大麦、偃麦草、大赖草等染色体重排的报道[63, 78, 81-82]。Gc诱导的易位大多发生在非同源染色体之间, 变异类型随机, 绝大部分在生产上应用价值不大, 但是系列缺失和端体等变异成为物理作图和基因组学研究的重要工具。Qi等[83]利用101个缺失系, 构建了包含16 093个标记的小麦7个部分同源染色体缺失图谱, 揭示了小麦染色体结构特征及其与水稻、短柄草染色体的共线性。有研究利用诱致的缺失和易位系, 构建了大麦7H、5H、4H、3H和2H[84-91]和黑麦1R物理图谱[92-94]。杀配子染色体诱导产生的等臂染色体i7HS · 7HS自交产生端体t7HS*和t7HS* *, t7HS*和t7HS* *虽然缺乏已知着丝粒序列, 但传递正常, 为研究新着丝粒形成和演化提供了信息[95]

3.2 ‘中国春’ph1b突变体

在异源六倍体小麦中控制同源染色体配对的Ph1基因, 主要通过降低非同源染色体着丝粒在有丝分裂和减数分裂中的结合, 进而有效控制同源染色体配对[96-97], 使普通小麦42条染色体在减数分裂中期Ⅰ能稳定地联会成21个二价体, 保证染色体正常分离和遗传物质稳定传递。但是, 当Ph1发生缺失或突变后, 部分同源染色体之间也能够发生配对, 通过遗传重组实现基因交流。‘中国春’ph1b突变体是染色体5B缺失约70 Mb区段引起的[98]。Griffiths等[97]Ph1定位于5BL 2.5 Mb区域, 该区域包含一个cdc2相关基因簇, 并在多倍体化过程中发生了近端部异染色质的插入, 这一结构特征在多个物种中与Ph1的功能相关并参与减数分裂过程, 因此很可能为Ph1的候选位点。

ph1b突变体为诱导小麦与亲缘物种部分同源染色体重组提供了有力工具, 成功用于诱导小麦与拟斯卑尔脱山羊草、簇毛麦、二角山羊草、沙融山羊草、大麦、长穗偃麦草、羊草、中间偃麦草等近缘种属的易位系[99-106]。分子标记辅助选择结合细胞学分析大大提高了利用ph1b突变体开展染色体工程的效率[99]。追踪ph1b突变体的分子标记可用来快速鉴定ph1bph1b纯合体, 方便了该基因的转移和利用[107-113]ph1b突变体诱导的易位发生在部分同源染色体之间, 具有很好的遗传补偿性, 但是由于ph1b突变体背景‘中国春’的农艺性状较差, 因此通过回交转育创制农艺性状优良的ph1b突变体, 将有利于获得导入外源有用基因并且农艺性状较好的易位系, 提高其利用价值。

3.3 着丝粒基因突变体

着丝粒也称主缢痕, 在细胞分裂中是纺缍丝附着的地方, 控制染色体的正确定向与分离。着丝粒序列为串联重复序列, 在不同物种间高度分化, 但其重复序列基元长度相似, 约为140~180 bp[114]。植物着丝粒区的核小体结构由着丝粒组蛋白基因CENH3编码的CENH3代替H3形成, CENH3取代H3是形成着丝点的关键。与H3的N端和C端均具有较高保守性不同, CENH3仅在C端具有较高保守性, 而在N端多态性明显[115], 因此不同物种的着丝粒产生明显分化。大多数二倍体物种仅有1个基因编码CENH3, 在异源多倍体和部分二倍体植物中具有2个基因, 但有些物种仅有1个基因有活性[116-117]。小麦与玉米、燕麦与玉米、大麦与球茎大麦杂交后均存在染色体消失现象[118-122], 主要与CENH3蛋白丢失和着丝粒失活有关[121]。这种现象给人们一种启发, CENH3基因发生突变后, 其正常功能受到削弱甚至丧失, 突变体与野生型杂交后也有可能造成突变体染色体消失。Comai等[123]在拟南芥中获得了cenh3-1突变体, 该突变体与野生型杂交确实发生了突变体染色体消失现象, 并可以成功诱导产生单倍体[124-125]。Tan等[126]发现不同突变体在单倍体诱导方面无明显差异, 单倍体产生的原因在于CENH3蛋白的修饰差异而不是表达水平变化。Karimi-Ashtiyani等[10]获得了拟南芥、大麦、甜菜等CENH3突变体, 其中拟南芥突变体与野生型杂交可以成功诱导单倍体。着丝粒蛋白基因突变体可以用于降低染色体倍性、诱致配子致死突变纯合体, 快速产生作图群体、染色体代换系、反向育种亲本和促进孤雌生殖等[122, 127], 该方法的成熟和推广将为植物遗传改良和杂种优势利用带来革命性影响。

3.4 无融合生殖诱导

与有性生殖不同, 一些植物能够利用胚珠等体细胞直接产生种子而繁殖后代, 称为无融合生殖。无融合生殖在至少35个科(尤其是Gramineae、Compositae、Rosaceae和Rutaceae)的300个物种中有报道[128-129]。拟南芥DYAD/SWITCH1(SWI1)基因突变体dyad产生的种子大多数为三倍体, 由未减数的雌配子和单倍体的雄配子融合形成, 是植物中首次发现单个基因突变可以导致功能性不完全减数分裂, 从而诱导产生不涉及同源重组的二倍体雌配子[130-131]。d′Erfurth等[132]获得了包含spo11-1rec8osd1三个基因突变的拟南芥“MiMe”(mitosis instead of meiosis), 由于其同时具有抑制同源配对的突变基因spo11、抑制姊妹染色单体分离的突变基因rec8和阻止进入减数分裂Ⅱ的突变基因osd1, 因此能够产生与亲本基因型相同的二倍体配子[127]。这些研究为人工诱导无融合生殖提供了可能, 这种技术的成功应用将对杂种优势的固定和利用产生重要影响[133-134]。但这一现象在主要作物中尚未发现, 而且由于遗传机制未知, 在作物中应用为时尚早。

3.5 自动加倍基因

一些植物能够通过不减数配子融合导致染色体数自然加倍, 未减数配子由减数分裂异常引起, 也称不减数细胞分裂(unreductional meiotic cell division, UMCD)[135]。不减数配子包括第1次分裂保留(first division restitution, FDR)配子、第2次分裂保留(second division restitution, SDR)配子、分裂间期保留(indeterminate meiotic restitution, IMR)配子和分裂后保留(post meiotic restitution, PMR)配子[136]。其中, FDR配子指同源染色体在减数分裂末期Ⅰ不移向两极, 而停留在赤道板上形成一个未减数的细胞核, 因此第1次分裂结束时其染色体数与性母细胞相同, 再经过正常的第2次分裂产生的不减数配子; 而SDR配子指同源染色体在减数第一次分裂时分离正常, 而第2次分裂时染色单体虽然分开但不能分向两极, 因此形成的未减数配子。FDR和SDR在雌雄配子发育中均可发生, 因而可以同时产生未减数的雌雄配子[135]。例如, Festuca-LoliumAlstroemeria-Lilium异源多倍体即通过FDR配子融合产生[136], 普通小麦和硬粒小麦均由种间天然杂交F1代自发产生的未减数配子融合形成[135]。Jauhar等[137]对7个硬粒小麦品种与玉米杂交产生的单倍体结实率进行分析, 发现Langdon(LDN)结实率最高, 且均为四倍体, 推测由未减数配子融合形成。Cai等[135]采用LDN、LDN单倍体和野生二粒小麦分别与玉米和节节麦杂交, 发现LDN和野生二粒小麦减数分裂正常, 而LDN单倍体产生FDR配子, 说明未减数配子形成可能具有单倍体依赖性。不减数配子现象在柑橘[138]、雀稗[139]、玉米[140]和杨树[141]中均有报道。

4 问题与展望 4.1 从染色体随机变异到定向诱变

物理、化学和遗传因子均可有效诱发染色体变异。有些因子诱发的染色体变异可能存在断裂重接热点, 绝大部分染色体变异随机产生, 发生在非同源染色体之间, 缺乏遗传代偿性, 因此除极少数小片段易位外, 大部分在生产上应用困难, 但为染色体生物学、基因组学、物理作图、基因定位与克隆等提供了宝贵遗传材料。分析发现, Gc诱发的染色体变异类型与物理、化学诱变类型相似, 可能存在相似的染色体变异机制。Friebe等[78]研究表明, Gc诱发的染色体变异源于双着丝粒染色体和环状染色体引发的断裂-融合-桥循环, 有趣的是, Riha等[142]在拟南芥AtTERT基因突变体中发现, 缺乏端粒的植株仅可存活10代, 且繁殖过程中TRF(terminal restriction fragment)以每代250~500 bp的速度减少, 在最后5代的细胞分裂后期形成染色体桥, 显示BFB现象, 同时发现其营养器官和生殖器官发育异常以至最后高度不育。我们的研究发现, zeblularine在处理当代可以诱发产生很多的环状染色体和多着丝粒染色体[43], 因此系列易位和缺失染色体的产生也与BFB有关。上述研究报道说明, 不同诱变因子可能存在类似的染色体变异机制, 为进一步发掘和克隆杀配子基因及阐明染色体变异机制提供了重要信息。

实践中发现一些综合性状优良的品种很难作为亲本衍生出新品种, 可能由于目标区段较高的重组率而导致有利基因簇不能总是连锁在一起传递, 抑制同源重组的基因突变可以降低同源染色体重组率, 提高亲型配子比例, 这对于以降低重组率为目的的反向育种(reverse breeding)具有重要价值[143-144], 有利于骨干亲本创造和杂种优势固定。例如, Couteau等[145]发现拟南芥突变体dmc1影响染色体重组而降低结实率; Grelon等[146]发现AtSPO11-1突变体同源重组减少, 几乎不能形成二价体, 导致染色体随机分离, 形成无效配子。同样, 由于倒位和易位杂合体具有降低重组率的效应, 因此, 诱致目标区段内的结构变异可以通过降低基因的重组而使有利基因组合得以高频率传递, 其中同源重组系统(homologous recombination, HR)或基因组编辑系统正在发挥重要作用。一些原核生物HR系统, 如Cre-Lox、FLP-FRT等在植物中可以表达[146], 其中Cre-Lox包含相对分子质量为38.5×103重组酶Cre和34 bp Lox位点, Cre通过与Lox位点13 bp的反向重复序列结合后催化2个Lox位点间8 bp间隔序列形成交叉结从而导致同源序列重组, 因此该系统可以成功用于基因敲除、外源DNA定向插入和染色体结构变异定向诱致[127, 147-148]。但是, Cre-Lox系统技术难度大、耗时长, 在实践中难以广泛应用。锌指核酸酶(zinc finger nucleases)和TALEN(transcription activator-like effector nucleases)系统成功用于拟南芥、水稻和玉米等基因定点突变[149-152], 但这些系统仍然存在载体构建、转化复杂和脱靶问题。近年来, 迅速发展的CRISPR/Cas(clustered regulatory interspaced short palindromic repeats/CRISPR associated system)系统由于仅需要长度为20 bp的sgRNA(single guide RNA)就可以引导单链介导的核酸内切酶识别特定的目标序列, 因此成为一种更加简单和经济的基因组编辑技术, 在包括植物在内的多种生物中得到大量应用[153-154]。CRISPR/Cas除成功用于目标基因敲除外, 还在动物和人类癌症细胞中成功用于诱导染色体倒位和缺失[155-156]。在作物中, CRISPR/Cas可以成功定向敲除水稻[157-158]、小麦[157]、玉米[159]单基因和水稻多基因[160]。虽然尚未见定向诱发植物染色体结构变异的报道, 但利用CRISPR/Cas9在人类癌症细胞和老鼠中成功诱导染色体倒位和缺失[155-156]的例子显示了植物染色体定向变异的实现已经为时不远。同源重组涉及DNA损伤修复与复制、端粒的稳定性以及减数分裂中的染色体分离等, 涉及高度同源序列的交换, 受cistrans元件的双重调控, 这些元件的突变可以增加或者降低同源重组效率, 为人工操作提供了可能, 但是目前对于重组需要的最小序列长度以及对重组伙伴序列同源程度的具体要求尚不完全清楚[161]。增加同源或部分同源重组频率可以创造更多的变异类型, 促进品种间或物种间基因的广泛交流, 而抑制同源重组可以产生更多的亲型配子, 对于杂种优势固定和骨干亲本培育具有重要价值, 因此有关问题的深入研究可以为植物育种提供更有效的工具。

人工染色体是染色体工程的重要研究方向。人工染色体是指利用染色体的关键因子构建或者利用物理、化学或生物途径诱致的小染色体, 包含必要的稳定传递的结构元件(着丝粒、复制起点和端粒), 可以作为新的载体系统转移和叠加多个外源基因[162]。目前, 构建人工染色体的方法有两种, Bottom up和Top down[162]。Bottom up指利用染色体结构关键元素直接构建, 如BAC(bacterial artificial chromosome)和YAC(yeast artificial chromosome)等[160]; 或者关键元素直接转化后形成, 如在玉米上通过直接转化关键元件获得了小染色体[163]。Top down指利用物理、化学或生物因素直接打断原先的正常染色体而形成小染色体, 在电离辐射、化学诱变和杀配子染色体诱导中均有报道[164]。端粒介导的染色体截断技术可以诱导小染色体, Nelson等[165]以四倍体拟南芥为模式转化2.6 kb TRA(telomere repeat array), 发现由于染色体截断而形成新端粒(De novo telomere formation, DNTF)的效率明显高于二倍体拟南芥和人类细胞。在玉米[166]、水稻[167]、大麦[168]中的转化试验证明, TRA的插入可以导致染色体截断而产生小染色体, 因此成为诱致小染色体的一种重要途径。小染色体是未来多基因转化的重要载体, 可以避免基因随机或定向插入对寄主正常染色体产生不良影响[169]。目前的2种诱致方法虽然均有成功的报道, 但是尚缺乏在多种植物尤其是农作物中的通用性, 因此需要继续探索其他有效的方法。小麦作为异源六倍体作物具有很好的遗传缓冲性, 因此采用二体附加系或四体等超倍体开展人工染色体的诱导相比于二倍体物种具有更多的优势, 诱致产生的小染色体可以通过回交的方法导入不同遗传背景, 因此便于利用。物理或化学诱变均可以产生大量的小染色体, 但是绝大部分不能够正常传递, 如何诱导稳定传递的小染色体值得深入研究, 同时随着染色体分拣技术的成熟, 小染色体诱致对于推动染色体基因组学研究也大有裨益。值得一提的是, 在zebularine诱变过程中, 我们也发现小染色体现象, 并正在对如何利用这些技术高效诱致小染色体进行研究。

4.2 染色体变异体的应用潜力

人工诱发的染色体结构变异包括3种类型:一是发生在部分同源染色体间的补偿性易位, 主要由ph1b和HR诱导产生; 二是发生在非同源染色体间的相互易位, 这种易位只是染色体臂或区段位置发生变化, 但遗传信息完整, 因此是补偿性的易位类型, 可以通过着丝粒断裂融合产生, 也可由物理或化学等因子诱发产生, 包括整臂和不同区段相互易位; 三是发生在非同源染色体间的非补偿易位, 主要由杀配子染色体、物理或化学诱变产生, 其中补偿性和部分非补偿性的小片段易位系由于在转移外源基因的同时没有破坏受体染色体遗传平衡性, 可以作为新种质用于作物遗传改良, 但是绝大部分染色体变异不能直接用于生产。染色体结构变异为染色体缺失作图、染色体生物学和染色体基因组学研究提供了重要的遗传工具(图 2)。

图 2 染色体变异诱致与应用模式图(以3对染色体为示例, 不代表具体物种) Figure 2 Induction and application ideogram of chromosome aberrations(three pairs of chromosomes as an example, not representing specific species)
4.2.1 作物遗传改良

小麦染色体变异应用最成功的例子即小麦-黑麦易位系T1BL · 1RS和小麦-簇毛麦易位系T6AL · 6VS, 在小麦生产上发挥了重要作用, 这些易位系在转移亲缘植物外源基因的同时, 由于易位导致重组率降低, 可以同时把小麦染色体上的有利基因组合传递下去, 因此这些易位系表现较高的遗传传递能力, 易于育种家的选择并加快新品种的选育。例如我国小麦品种的T1BL · 1RS大部分衍生自骨干亲本‘洛夫林10号’, 且确实在易位染色体上发现稳定传递的有利基因连锁区段[170]; T6AL · 6VS主要衍生自小麦-簇毛麦易位系92R137和92R149[171]; 小麦骨干亲本‘矮孟牛’包含相互易位T1BL · 7DS和T7DL · 1RS[172], 这种易位在其衍生品种中普遍存在, 很可能是2条相互易位染色体上的有利基因组合由于重组率降低而同时传递下去的原因, 为骨干亲本培育提供了参考信息。最近, 对我国栽培小麦品种染色体组成研究发现, 相互易位在栽培小麦中可能还存在很多其他类型[173], 说明在品种演化过程中具有重要作用, 值得进一步深入研究。随着育种目标的不断提升, 培育更多新型易位系以满足栽培作物高产、优质和高效的要求已成为染色体工程的研究重点, 而用于诱导易位的小麦亲本选择显得更加重要。过去基于小麦地方品种‘中国春’培育了大量异源易位系, 但绝大部分没有在生产中得到应用, 原因在于除了外源染色体区段上的负连锁外, ‘中国春’染色体上存在的不利基因也是主要因素之一, 因此选择生产上大面积推广或即将推广的品种(系)作为诱发易位的亲本可能更有利于综合最佳的性状组合, 值得引起关注。

4.2.2 染色体缺失作图与目标基因定位

人工诱致的系列缺失、易位和端体成为染色体物理作图的重要材料, 特别是对于具有复杂基因组的物种, 物理作图为基因组测序和目标基因的定位与克隆提供了便利, 但是直接利用缺失系进行的分子标记物理作图难于确定标记间的顺序和排列方式, 而基于辐射杂种的物理作图可以根据相邻标记的同时出现和缺失频率来估算不同标记的排列位置和顺序, 这种方式确定的物理位置与染色体序列图更一致[76]。因此, 辐射杂种作图在基因组序列contig的锚定和组装中具有重要的应用潜力[75], 特别是对于像小麦这样具有复杂基因组的物种。

4.2.3 染色体生物学研究

多种因子均可诱发产生环状和双着丝粒染色体, 从而诱发染色体BFB循环, 是缺失、端体和易位形成的主要方式。通过这种方式形成的系列端体、缺失通常涉及着丝粒和端粒序列的缺失和重新形成。Nasuda等[95]发现杀配子染色体诱致的大麦端体t7HS*和t7HS**缺少大麦着丝粒专化序列和已知的小麦着丝粒串联重复序列, 但可能通过形成新着丝粒以保证染色体在有丝分裂和减数分裂中正常传递。Tsujimoto等[79]对杀配子染色体诱致的1B缺失系分析发现, 在杀配子基因诱致的染色体断点, 新的端粒序列和原有的重复序列融合形成新的DNA序列。研究发现, 人类染色体存在许多易断位点, 影响染色体的稳定性[174]。在异源多倍体植物中, 富含SSR的区域常发现易位断点, 推测SSR序列有利于染色体重排[175]。目前采用不同方式产生了很多染色体变异, 但是否存在明显的断裂重接热点, 不同诱变方式的热点是否存在差异仍然不清楚。对zebularine诱发的小黑麦变异体分析发现, 约17.6%的断裂重接位点发生在重复序列pSc119.2附近[43], 为研究染色体断裂重接机制提供了很好的基础材料。

4.2.4 染色体基因组学研究

基于流式细胞学的染色体分拣和高通量测序技术已成为染色体基因组学研究的重要方法, 对小麦及其近缘植物等拥有巨大基因组的物种尤为重要。染色体工程培育的部分附加系或染色体诱变产生的系列端体、缺失或易位染色体, 由于其分子量与小麦染色体存在明显的差异, 为染色体分拣及染色体基因组学提供了极大便利。目前利用小麦的双端二体分拣测序了小麦染色体基因组序列[176], 其他物种的一些染色体和端体也成功进行了分拣和测序[177-180], 促进了外源染色体结构和功能研究。值得注意的是, 通过EMS诱致的目标基因突变体结合外显子捕获与测序, 可以加速外源目标基因的发掘和克隆[181]

4.2.5 特殊的遗传工具材料

长穗偃麦草染色体4Ag包含蓝粒基因, 该基因属于胚乳直感, 具有明显的剂量效应, 包含3条4Ag的胚乳为深蓝色, 2条的为中蓝色, 单条的为浅蓝色, 而不包含4Ag的则为白色, 据此可以确定个体的染色体组成[182], 为细胞遗传研究提供了重要的遗传工具。更为有趣的是, 单条4Ag导入隐性核不育系LZ突变体87(212)培育的不育基因纯合的单体附加系, 不但可以自交结实而且自交后代分离出3种颜色的种子, 深蓝色为二体附加系, 浅蓝色为单体附加系(可以作为隐性核不育系保持系), 而大部分白色种子为二体材料(可以作为不育系用于杂种生产), 从而使利用隐性核不育系生产杂交小麦成为可能[183]。同样的道理, 通过ph1b诱导小麦染色体1B和黑麦1R易位, 成功诱致出一个新的中间插入易位系, 将1B上的育性恢复基因易位掉, 可以实现对K型不育系的保持[184], 改变过去只能采用T1BL · 1RS易位系作为保持系的局限性, 为培育强优势杂交小麦提供了新的材料。

南京农业大学陈佩度教授、美国TX A & M Agrilife Research储成艮博士和河南农业大学牛吉山研究员在本文撰写过程中提出宝贵修改建议, 谨致谢意。由于篇幅和文献检索所限, 本文仅列举了部分作者的文献作为示例, 遗漏之处, 敬请海涵。

参考文献(References)
[1] Appels R, Morris R, Gill B S, et al. Chromosome Biology[M]. Boston/Dordrecht/London: Kluwer Academic Publishers, 1998, 9.
[2] Langie S A S, Koppen G, Desaulniers D, et al. Causes of genome instability:the effect of low dose chemical exposures in modern society[J]. Carcinogenesis, 2015, 36(S1): 61-88.
[3] Dudits D, Török K, Cseri A, et al. Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis[J]. Plant Physiology, 2016, 170(3): 1504-1523.
[4] Natarajan A T, Upadhya M D. Localized chromosome breakage induced by ethyl-methane-sulfonate and hydroxylamine in Vicia faba[J]. Chromosoma(Berl.), 1964, 15(2): 156-169.
[5] Wang T L, Uauy C, Robson F, et al. TILLING in extremis[J]. Plant Biotechnology Journal, 2012, 10(7): 761-772. DOI: 10.1111/j.1467-7652.2012.00708.x
[6] Borrill P, Adamski N, Uauy C. Genomics as the key to unlocking the polyploid potential of wheat[J]. New Phytologist, 2015, 208(4): 1008-1022. DOI: 10.1111/nph.13533
[7] Sidhu G, Mohan A, Zheng P, et al. Sequencing-based high throughput mutation detection in bread wheat[J]. BMC Genomics, 2015, 16: 962. DOI: 10.1186/s12864-015-2112-1
[8] Acevedo-Garcia J, Spencer D, Thieron H, et al. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach[J]. Plant Biotechnology Journal, 2016, 15(3): 367-378.
[9] Zhai S, Li G, Sun Y, et al. Genetic analysis of phytoene synthase 1(Psy1) gene function and regulation in common wheat[J]. BMC Plant Biology, 2016, 16: 228. DOI: 10.1186/s12870-016-0916-z
[10] Karimi-Ashtiyani R, Ishii T, Niessen M, et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants[J]. Proc Natl Acad Sci USA, 2015, 112(36): 11211-11216. DOI: 10.1073/pnas.1504333112
[11] Serrat X, Esteban R, Guibourt N, et al. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations[J]. Plant Methods, 2014, 10(1): 5. DOI: 10.1186/1746-4811-10-5
[12] Lu Y, Xing L, Xing S, et al. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat(Triticum aestivum L.)[J]. J Genet Genomics, 2015, 42(12): 685-698. DOI: 10.1016/j.jgg.2015.08.007
[13] Xu T, Bian N, Wen M, et al. Characterization of a common wheat(Triticum aestivum L.) high-tillering dwarf mutant[J]. Theor Appl Genet, 2017, 130(3): 483-494. DOI: 10.1007/s00122-016-2828-6
[14] Mishra A, Singh A, Sharma M, et al. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat(Triticum aestivum) and identification of candidate genes responsible for amylose variation[J]. BMC Plant Biol, 2016, 16: 217. DOI: 10.1186/s12870-016-0896-z
[15] Kihlman B A, Odmark G. Deoxyribonucleic acid synthesis and the production of chromosomal aberrations by streptonigrin, 8-ethoxycaffeine and 1, 3, 7, 9-tetramethyluric acid[J]. Mutation Research, 1965, 2(6): 494-505. DOI: 10.1016/0027-5107(65)90015-1
[16] Ramanna M S, Natarajan A T. Chromosome breakage induced by alkyl-alkane-sulfonates under different physical treatment conditions[J]. Chromosoma, 1966, 18(1): 44-59. DOI: 10.1007/BF00326442
[17] Natarajan A T, Ahnströn G. Heterochromatin and chromosome aberrations[J]. Chromosoma(Berl.), 1969, 28(1): 48-61.
[18] Andersson H C, Kihlman B A. Localization of chemically induced chromosomal aberrations in three different karyotypes of Vicia faba[J]. Hereditas, 1987, 107(1): 15-25.
[19] Mateos S, Piñero J, Ortiz T, et al. G2 effects of DNA-repair inhibitors on chromatid-type aberrations in root-tip cells treated with maleic hydrazide and mitomycin-C[J]. Mutation Research, 1989, 226(2): 115-120.
[20] Whittaker S G, Moser S F, Maloney D H, et al. The detection of mitotic and meiotic chromosome gain in the yeast Saccharomyces cerevisiae:effects of methyl benzimidazol-2-yl carbamate, methyl methanesulfonate, ethyl methanesulfonate, dimethyl sulfoxide, propionitrile and cyclophosphamide monohydrate[J]. Mutation Research, 1990, 242(3): 231-258. DOI: 10.1016/0165-1218(90)90089-K
[21] Kanaya N, Gill B S, Grover I S, et al. Vicia faba chromosomal aberration assay[J]. Mutation Research, 1994, 310(2): 231-247. DOI: 10.1016/0027-5107(94)90116-3
[22] Rank J, Nielsen M H. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate[J]. Mutation Research, 1997, 390(1/2): 121-127.
[23] Murín G, Mičieta K. Pre-replication recovery from methyl methanesulphonate induced chromosomal damage in Vicia faba seeds[J]. Biologia Plantarum, 1997, 39(4): 523-529. DOI: 10.1023/A:1000918512805
[24] 杨晓玲, 郭金耀. 秋水仙碱诱发玉米变异特性的追踪研究[J]. 遗传, 2003, 25(6): 700-702.
Yang X L, Guo J Y. Study on variation specificity of maize induced by colchicine[J]. Hereditas(Beijing), 2003, 25(6): 700-702. (in Chinese with English abstract)
[25] Peng Y, Wang Z, Cheng L, et al. Effect of phosphoric amide herbicide APM on the structure and protein composition of chromosome in Triticum durum[J]. Plant Production Science, 2003, 6(2): 134-138. DOI: 10.1626/pps.6.134
[26] Juchimiuk J, Hering B, Maluszynska J. Multicolour FISH in ananalysis of chromosome aberrations induced by N-nitroso-N-methylurea and maleic hydrazide in barley cells[J]. J Appl Genet, 2007, 48(2): 99-106. DOI: 10.1007/BF03194666
[27] 黄海泉, 江帆, 尹风英, 等. 甲基胺草磷诱导蚕豆染色体结构与蛋白质组分变化[J]. 农业环境科学学报, 2007, 26(5): 1806-1811.
Huang H Q, Jiang F, Yin F Y, et al. Variation of chromosome structure and protein composition in Vicia faba induced by amiprophose-methyl[J]. Journal of Agro-Environment Science, 2007, 26(5): 1806-1811. (in Chinese with English abstract)
[28] 刘艳阳, 梅鸿献, 崔承齐, 等. EMS、NaN360Co γ-射线处理对芝麻根尖的细胞学效应[J]. 河南农业科学, 2012, 41(12): 47-51.
Liu Y Y, Mei H X, Cui C Q, et al. Cytological effects induced by EMS, NaN3 and 60Co γ-ray on sesame seed[J]. Journal of Henan Agricultural Sciences, 2012, 41(12): 47-51. DOI: 10.3969/j.issn.1004-3268.2012.12.011 (in Chinese with English abstract)
[29] Kwasniewska J, Kwasniewski M. Comet-FISH for the evaluation of plant DNA damage after mutagenic treatments[J]. J Appl Genetics, 2013, 54(4): 407-415. DOI: 10.1007/s13353-013-0169-6
[30] Gautam N, Kumar G. Consequences of colchicine induced intermeiocyte connections in Helianthus annuus[J]. Caryologia, 2013, 66(1): 65-69. DOI: 10.1080/00087114.2013.787203
[31] 敬樊, 王亮明, 武军, 等. 利用甲基磺酸乙酯(EMS)诱导小麦-华山新麦草染色体易位的研究[J]. 农业生物技术学报, 2015, 23(5): 561-570.
Jing F, Wang L M, Wu J, et al. Study on inducing chromosome translocation of wheat(Triticum aestivum) -Psathyrostachys huashanica using ethylmethylsulfone(EMS)[J]. Journal of Agricultural Biotechnology, 2015, 23(5): 561-570. (in Chinese with English abstract)
[32] Temel A, Gozukirmizi N. Cytotoxic effects of metaphase-arresting methods in barley[J]. Cytology and Genetics, 2015, 49(6): 382-387. DOI: 10.3103/S0095452715060109
[33] Sega G A. A review of the genetic effects of ethyl methanesulfonate[J]. Mutation Research, 1984, 134: 113-142. DOI: 10.1016/0165-1110(84)90007-1
[34] Itani O A, Flibotte S, Duma K J, et al. Chromoanasynthetic genomic rearrangement identified in a N-ethyl-N-nitrosourea(ENU) mutagenesis screen in Caenorhabditis elegans[J]. Genes/Genomes/Genomics, 2016, 6: 351-356.
[35] Espada J, Esteller M. DNA methylation and the functional organization of the nuclear compartment[J]. Semin Cell Dev Biol, 2010, 21(2): 238-246. DOI: 10.1016/j.semcdb.2009.10.006
[36] Vorontsova M, Shaw P, Reader S, et al. Effect of 5-azacytidine and trichostatin A on somatic centromere association in wheat[J]. Genome, 2004, 47: 399-403. DOI: 10.1139/g03-138
[37] Baubec T, Pecinka A, Rozhon W, et al. Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine[J]. The Plant Journal, 2009, 57(3): 542-554. DOI: 10.1111/tpj.2009.57.issue-3
[38] Cheng J C, Matsen C B, Gonzales F A, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine[J]. J Natl Cancer Inst, 2003, 95(5): 399-409. DOI: 10.1093/jnci/95.5.399
[39] Cheng J C, Weisenberger D J, Gonzales F A, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells[J]. Mol Cell Biol, 2004, 24(3): 1270-1278. DOI: 10.1128/MCB.24.3.1270-1278.2004
[40] Cheng J C, Yoo C B, Weisenberger D J. Preferential response of cancer cells to zebularine[J]. Cancer Cell, 2004, 6(2): 151-158. DOI: 10.1016/j.ccr.2004.06.023
[41] Andrade A F, Borges K S, Suazo V K, et al. The DNA methyltransferase inhibitor zebularine exerts antitumor effects and reveals BATF2 as a poor prognostic marker for childhood medulloblastoma[J]. Invest New Drugs, 2016, 35(1): 26-36.
[42] Cho S W, Ishii T, Matsumoto N, et al. Effects of cytidine analogue zebularine on wheat mitotic chromosomes[J]. Chromosome Sci, 2011, 14: 23-28.
[43] Ma X, Wang Q, Wang Y, et al. Chromosome aberrations induced by zebularine in triticale[J]. Genome, 2016, 59(7): 485-492. DOI: 10.1139/gen-2016-0047
[44] Du P, Zhuang L, Wang Y, et al. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes[J]. Genome, 2017, 60(2): 93-103. DOI: 10.1139/gen-2016-0095
[45] Muller H J. Artificial transmutation of the gene[J]. Science, 1927, 66(1699): 84-87. DOI: 10.1126/science.66.1699.84
[46] Stadler L J. Mutations in barley induced by X-rays and radium[J]. Science, 1928, 68(1756): 186-187. DOI: 10.1126/science.68.1756.186
[47] Jiang J, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat[J]. Euphytica, 1994, 73(3): 199-212. DOI: 10.1007/BF00036700
[48] Chen P, Qi L, Zhou B, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theor Appl Genet, 1995, 91(6): 1125-1128.
[49] 刘文轩, 陈佩度, 刘大钧. 利用花粉辐射诱发普通小麦与大赖草染色体易位的研究[J]. 遗传学报, 2000, 27(1): 44-49.
Liu W X, Chen P D, Liu D J. Studies of the development of Triticum aestivum-Leymus racemosus translocastion lines by pollen inradiation[J]. Journal of Genetics and Genomics, 2000, 27(1): 44-49. (in Chinese with English abstract)
[50] Chen P, Liu W, Yuan J, et al. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium head blight[J]. Theor Appl Genet, 2005, 111(5): 941-948. DOI: 10.1007/s00122-005-0026-z
[51] Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid[J]. J Integr Plant Biol, 2007, 49(11): 1619-1626. DOI: 10.1111/jipb.2007.49.issue-11
[52] Cao Y P, Bie T D, Wang X E, et al. Induction and transmission of wheat-Haynaldia villosa chromosomal translocations[J]. J Genet Genomics, 2009, 36(5): 313-320. DOI: 10.1016/S1673-8527(08)60120-4
[53] 张伟. 簇毛麦染色体分子核型及染色体结构变异体库的构建[D]. 南京: 南京农业大学, 2012.
Zhang W. Construction of molecular karyotype and strcutural aberrance library of Haynaldia villosa chromosomes[D]. Nanjing: Nanjing Agricultural University, 2012(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-10307-1013282656.htm
[54] Zhang R, Cao Y, Wang X, et al. Development and characterization of a Triticum aestivum-H.villosa T5VS·5DL translocation line with soft grain texture[J]. Journal of Cereal Science, 2010, 51: 220-225. DOI: 10.1016/j.jcs.2009.12.001
[55] Zhang R, Sun B, Chen J, et al. Pm55, a developmental-stage and tissue-specifc powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat[J]. Theor Appl Genet, 2016, 129(10): 1975-1984. DOI: 10.1007/s00122-016-2753-8
[56] Zhang R Q, Zhang M Y, Wang X E, et al. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat[J]. Theor Appl Genet, 2014, 127(3): 523-533. DOI: 10.1007/s00122-013-2244-0
[57] Zhang R Q, Hou F, Feng Y G, et al. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits[J]. Theor Appl Genet, 2015, 128(12): 2415-2425. DOI: 10.1007/s00122-015-2596-8
[58] Chen S W, Chen P D, Wang X E. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line[J]. Sci China Ser C:Life Sci, 2008, 51(4): 346-352. DOI: 10.1007/s11427-008-0048-2
[59] Chen P, You C, Hu Y, et al. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat[J]. Mol Breeding, 2013, 31(2): 477-484. DOI: 10.1007/s11032-012-9804-x
[60] Zheng Q, Li B, Mu S M, et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat[J]. Genome, 2006, 49(9): 1109-1114. DOI: 10.1139/g06-073
[61] Pu J, Wang Q, Shen Y, et al. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations[J]. Theor Appl Genet, 2015, 128(7): 1319-1328. DOI: 10.1007/s00122-015-2508-y
[62] Zhuang L F, Sun L, Li A X, et al. Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai[J]. Mol Breed, 2011, 27(4): 455-465. DOI: 10.1007/s11032-010-9443-z
[63] Zhuang L, Liu P, Liu Z, et al. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat[J]. Mol Breed, 2015, 35(6): 133. DOI: 10.1007/s11032-015-0333-2
[64] Song L, Lu Y, Zhang J, et al. Cytological and molecular analysis of wheat-Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat[J]. Genome, 2016, 59(10): 840-850. DOI: 10.1139/gen-2016-0065
[65] Song L, Lu Y, Zhang J, et al. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background[J]. Theor Appl Genet, 2016, 129(5): 1023-1034. DOI: 10.1007/s00122-016-2680-8
[66] Li H, Lü M, Song L, et al. Production and identification of wheat-Agropyron cristatum 2P translocation lines[J]. PLoS ONE, 2016, 11(1): e0145928. DOI: 10.1371/journal.pone.0145928
[67] Li H, Jiang B, Wang J, et al. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P[J]. Theor Appl Genet, 2017, 130(1): 109-121. DOI: 10.1007/s00122-016-2797-9
[68] Goss S J, Harris H. New method for mapping genes in human chromosomes[J]. Nature, 1975, 255(5511): 680-684. DOI: 10.1038/255680a0
[69] Cox D R, Burmeister M, Price E R, et al. Radiation hybrid mapping:a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes[J]. Science, 1990, 250(4978): 245-250. DOI: 10.1126/science.2218528
[70] Kynast R G, Okagaki R J, Galatowitsch M W, et al. Dissecting the maize genome by using chromosome addition and radiation hybrid lines[J]. Proc Natl Acad Sci USA, 2004, 101(26): 9921-9926. DOI: 10.1073/pnas.0403421101
[71] Wardrop J, Snape J, Powell W, et al. Constructing plant radiation hybrid panels[J]. Plant J, 2002, 31(2): 223-228. DOI: 10.1046/j.1365-313X.2002.01351.x
[72] Wardrop J, Fuller J, Powell W, et al. Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags[J]. Theor Appl Genet, 2004, 108(2): 343-348. DOI: 10.1007/s00122-003-1434-6
[73] Gao W, Chen Z J, Yu J Z, et al. Wide cross whole genome radiation hybrid mapping of cotton(Gossypium hirsutum L.)[J]. Genetics, 2004, 167(3): 1317-1329. DOI: 10.1534/genetics.103.020479
[74] Kalavacharla V, Hossain K, Gu Y, et al. High-resolution radiation hybrid map of wheat chromosome 1D[J]. Genetics, 2006, 173(2): 1089-1099. DOI: 10.1534/genetics.106.056481
[75] Choulet F, Alberti A, Theil S, et al. Structural and functional partitioning of bread wheat chromosome 3B[J]. Science, 2014, 345(6194). DOI: 10.1126/science.1249721
[76] Tiwari V K, Heesacker A, Riera-Lizarazu O, et al. A whole-genome, radiation hybrid mapping resource of hexaploid wheat[J]. The Plant Journal, 2016, 86(2): 195-207. DOI: 10.1111/tpj.2016.86.issue-2
[77] Endo T R. The gametocidal chromosome as a tool for chromosome manipulation in wheat[J]. Chromosome Research, 2007, 15(1): 67-75. DOI: 10.1007/s10577-006-1100-3
[78] Friebe B, Kynast R G, Gill B S. Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat[J]. Chromosome Research, 2000, 8(6): 501-511. DOI: 10.1023/A:1009219722418
[79] Tsujimoto H, Yamada T, Sasakuma T. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage[J]. Proc Natl Acad Sci USA, 1997, 94(7): 3140-3144. DOI: 10.1073/pnas.94.7.3140
[80] Endo T R, Gill B S. The deletion stocks of common wheat[J]. J Hered, 1996, 87(4): 295-307. DOI: 10.1093/oxfordjournals.jhered.a023003
[81] 李集临, 徐香玲, 徐萍, 等. 利用中国春-山羊草2C二体附加系与中国春-偃麦草5E二体附加系杂交诱发染色体易位和缺失[J]. 遗传学报, 2003, 30(4): 345-349.
Li J L, Xu X L, Xu P, et al. Inducing chromosome translocation and deletious by Chinese Spring-Agilops 2C disomic addition×Chinese Spring-Elytriga 5E disomic addition[J]. Acta Genetica Sinica, 2003, 30(4): 345-349. (in Chinese with English abstract)
[82] 袁建华, 陈佩度, 刘大钧. 利用杀配子染色体创造普通小麦-大赖草异易位系[J]. 中国科学(C辑):生命科学, 2003, 33(2): 110-116, 193.
Yuan J H, Chen P D, Liu D J. Using gametocidal chromosome to create common wheat-Leymus racemosus translocation lines[J]. Science China(Series C):Life Science, 2003, 33(2): 110-116, 193. (in Chinese with English abstract)
[83] Qi L L, Echalier B, Chao S, et al. A chromosome bin map of 16000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat[J]. Genetics, 2004, 168(2): 701-712. DOI: 10.1534/genetics.104.034868
[84] Serizawa N, Nasuda S, Shi F, et al. Deletion-based physical mapping of barley chromosome 7H[J]. Theor Appl Genet, 2001, 103(6/7): 827-834.
[85] Nasuda S, Kikkawa Y, Ashida T, et al. Chromosomal assignment and deletion mapping of barley EST markers[J]. Genes Genet Syst, 2005, 80(5): 357-366. DOI: 10.1266/ggs.80.357
[86] Masoudi-Nejad A, Nasuda S, Bihoreau M T, et al. An alternative to radiation hybrid mapping for large-scale genome analysis in barley[J]. Mol Gen Genom, 2005, 274(6): 589-594. DOI: 10.1007/s00438-005-0052-1
[87] Ashida T, Nasuda S, Sato K, et al. Dissection of barley chromosome 5H in common wheat[J]. Genes Genet Syst, 2007, 82(2): 123-133. DOI: 10.1266/ggs.82.123
[88] Sakai K, Nasuda S, Sato K, et al. Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps[J]. Genes Genet Syst, 2009, 84(1): 25-34. DOI: 10.1266/ggs.84.25
[89] Sakata M, Nasuda S, Endo T R. Dissection of barley chromosome 4H in common wheat by the gametocidal system and cytological mapping of chromosome 4H with EST markers[J]. Genes Genet Syst, 2010, 85(1): 19-29. DOI: 10.1266/ggs.85.19
[90] Joshi G P, Nasuda S, Endo T R. Dissection and cytological mapping of barley chromosome 2H in the genetic background of common wheat[J]. Genes Genet Syst, 2011, 86(4): 231-248. DOI: 10.1266/ggs.86.231
[91] Joshi G P, Endo T R, Nasuda S. PCR and sequence analysis of barley chromosome 2H subjected to the gametocidal action of chromosome 2C[J]. Theor Appl Genet, 2013, 126(9): 2381-2390. DOI: 10.1007/s00122-013-2142-5
[92] Tsuchida M, Fukushima T, Nasuda S, et al. Dissection of rye chromosome 1R in common wheat[J]. Genes Genet Syst, 2008, 83(1): 43-53. DOI: 10.1266/ggs.83.43
[93] Gyawali Y P, Nasuda S, Endo T R. Cytological dissection and molecular characterization of chromosome 1R derived from 'Burgas 2' common wheat[J]. Genes Genet Syst, 2009, 84(6): 407-416. DOI: 10.1266/ggs.84.407
[94] Gyawali Y P, Nasuda S, Endo T R. A cytological map of the short arm of rye chromosome 1R constructed with 1R dissection stocks of common wheat and PCR-based markers[J]. Cytogenet Genome Res, 2010, 129(3): 224-233.
[95] Nasuda S, Hudakova S, Schubert I, et al. Stable barley chromosomes without centromeric repeats[J]. Proc Natl Acad Sci USA, 2005, 102(28): 9842-9847. DOI: 10.1073/pnas.0504235102
[96] Martinez-Perez E, Shaw P, Moore G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association[J]. Nature, 2001, 411(6834): 204-207. DOI: 10.1038/35075597
[97] Griffiths S, Sharp R, Foote T N, et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat[J]. Nature, 2006, 439(7077): 749-752. DOI: 10.1038/nature04434
[98] Dunford R P, Kurata N, Laurie D A, et al. Conservation of fine-scale DNA marker order in the genome of rice and the Triticeae[J]. Nucleic Acids Res, 1995, 23(14): 2724-2728. DOI: 10.1093/nar/23.14.2724
[99] Niu Z X, Klindworth D L, Friesen T L, et al. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering[J]. Genetics, 2011, 187(4): 1011-1021. DOI: 10.1534/genetics.110.123588
[100] Zhao R, Wang H, Xiao J, et al. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa[J]. Theor Appl Genet, 2013, 126(12): 2921-2930. DOI: 10.1007/s00122-013-2181-y
[101] Farkas A, Molnár I, Dulai S, et al. Increased micronutrient content(Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH[J]. Genome, 2014, 57(2): 61-67. DOI: 10.1139/gen-2013-0204
[102] Millet E, Manisterski J, Ben-Yehuda P, et al. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass(Aegilops sharonensis Eig) into bread wheat(Triticum aestivum L.)[J]. Genome, 2014, 57(6): 309-316. DOI: 10.1139/gen-2014-0004
[103] Rey M D, Calderón M C, Prieto P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley[J]. Front Plant Sci, 2015, 6: 160.
[104] Guo J, Zhang X, Hou Y, et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection[J]. Theor Appl Genet, 2015, 128(11): 2301-2316. DOI: 10.1007/s00122-015-2586-x
[105] Rey M D, Calderón M C, Rodrigo M J, et al. Novel bread wheat lines enriched in carotenoids carrying Hordeum chilense chromosome arms in the ph1b background[J]. PLoS ONE, 2015, 10(8): e0134598. DOI: 10.1371/journal.pone.0134598
[106] Danilova T V, Zhang G, Liu W, et al. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat[J]. Theor Appl Genet, 2017, 130(3): 549-556. DOI: 10.1007/s00122-016-2834-8
[107] Gill K S, Gill B S. A PCR-based screening assay of Ph1, the chromosome pairing regulator gene of wheat[J]. Crop Sci, 1996, 36(3): 719-722. DOI: 10.2135/cropsci1996.0011183X003600030033x
[108] Segal G, Liu B, Vega J M, et al. Identification of a chromosome-specific probe that maps within the Ph1 deletion in common and durum[J]. Theor Appl Genet, 1997, 94(8): 968-970. DOI: 10.1007/s001220050502
[109] Qu L J, Foote T, Roberts M, et al. A simple PCR-based method for scoring the ph1b deletion in wheat[J]. Theor Appl Genet, 1998, 96(3): 371-375.
[110] 王新望, 赖菁茹, 陈梁鸿, 等. 中国春ph1b突变体的分子鉴定[J]. 中国农业科学, 1998, 31(5): 31-34.
Wang X W, Lai J R, Chen L H, et al. Molecular identification for Chinese Spring ph1b mutant[J]. Scientia Agric Sincia, 1998, 31(5): 31-34. (in Chinese with English abstract)
[111] Roberts M A, Reader S M, Dalgliesh C, et al. Induction and characterization of Ph1 wheat mutants[J]. Genetics, 1999, 153(4): 1909-1918.
[112] Wang X, Lai J, Liu G, et al. Development of a SCAR marker for the Ph1 locus in common wheat and its application[J]. Crop Sci, 2002, 42(4): 1365-1368. DOI: 10.2135/cropsci2002.1365
[113] Qi L L, Friebe B, Zhang P, et al. Homoeologous recombination, chromosome engineering and crop improvement[J]. Chromosome Res, 2007, 15(1): 3-19. DOI: 10.1007/s10577-006-1108-8
[114] Talbert P B, Masuelli R, Tyagi A P, et al. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant[J]. The Plant Cell, 2002, 14(5): 1053-1066. DOI: 10.1105/tpc.010425
[115] Henikoff S, Ahmad K, Malik H S. The centromere paradox:stable inheritance with rapidly evolving DNA[J]. Science, 2001, 293(5532): 1098-1102. DOI: 10.1126/science.1062939
[116] Lermontova I, Sandmann M, Mascher M, et al. Centromeric chromatin and its dynamics in plants[J]. The Plant Journal, 2015, 83(1): 4-17. DOI: 10.1111/tpj.2015.83.issue-1
[117] Comai L, Maheshwari S, Marimuthu M P A. Plant centromeres[J]. Current Opinion in Plant Biology, 2017, 36: 158-167. DOI: 10.1016/j.pbi.2017.03.003
[118] Laurie D A, Bennett M D. The timing of chromosome elimination in hexaploid wheat×maize crosses[J]. Genome, 1989, 32(6): 953-961. DOI: 10.1139/g89-537
[119] Mochida K, Tsujimoto H, Sasakuma T. Confocal analysis of chromosome behavior in wheat×maize zygotes[J]. Genome, 2004, 47: 199-205. DOI: 10.1139/g03-123
[120] Jin W W, Melo J R, Nagaki K, et al. Maize centromeres:organization and functional adaptation in the genetic background of oat[J]. The Plant Cell, 2004, 16(3): 571-581. DOI: 10.1105/tpc.018937
[121] Sanei M, Pickering R, Kumke K, et al. Loss of centromeric histone H3(CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids[J]. Proc Natl Acad Sci USA, 2011, 108(33): E498-E505. DOI: 10.1073/pnas.1103190108
[122] Ishii T, Karimi-Ashtiyani R, Houben A. Haploidization via chromosome elimination:means and mechanisms[J]. Annu Rev Plant Biol, 2016, 67(1): 421-438. DOI: 10.1146/annurev-arplant-043014-114714
[123] Comai L, Henikoff S. TILLING:practical single-nucleotide mutation discovery[J]. The Plant Journal, 2006, 45(4): 684-694. DOI: 10.1111/tpj.2006.45.issue-4
[124] Ravi M, Chan S W L. Haploid plants produced by centromere-mediated genome elimination[J]. Nature, 2010, 464(7288): 615-618. DOI: 10.1038/nature08842
[125] Ravi M, Shibata F, Ramahi J S, et al. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana[J]. PLoS Genet, 2011, 7(6): e1002121. DOI: 10.1371/journal.pgen.1002121
[126] Tan E H, Henry I M, Ravi M, et al. Catastrophic chromosomal restructuring during genome elimination in plants[J]. eLife, 2015, 4: e06516.
[127] Chan S W L. Chromosome engineering:power tools for plant genetics[J]. Trends in Biotechnology, 2010, 28(12): 605-610. DOI: 10.1016/j.tibtech.2010.09.002
[128] Koltunow A M. Apomixis:embryo sacs and embryos formed without meiosis or fertilization in ovules[J]. The Plant Cell, 1993, 5(10): 1425-1437. DOI: 10.1105/tpc.5.10.1425
[129] Bicknell R A, Koltunow A M. Understanding apomixis:recent advances and remaining conundrums[J]. The Plant Cell, 2004, 16: S228-S245. DOI: 10.1105/tpc.017921
[130] Ravi M, Marimuthu M P A, Siddiqi I. Gamete formation without meiosis in Arabidopsis[J]. Nature, 2008, 451(7182): 1121-1124. DOI: 10.1038/nature06557
[131] Mercier R, Armstrong S J, Horlow C, et al. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis[J]. Development, 2003, 130(14): 3309-3318.
[132] d'Erfurth I, Jolivet S, Froger N, et al. Turning meiosis into mitosis[J]. PLoS Biol, 2009, 7(6): e1000124. DOI: 10.1371/journal.pbio.1000124
[133] Koltunow A M, Grossniklaus U. Apomixis:a developmental perspective[J]. Annu Rev Plant Biol, 2003, 54: 547-574. DOI: 10.1146/annurev.arplant.54.110901.160842
[134] Ozias-Akins P. Apomixis:developmental characteristics and genetics[J]. Critical Reviews in Plant Sciences, 2006, 25(2): 199-214. DOI: 10.1080/07352680600563926
[135] Cai X, Xu S S, Zhu X. Mechanism of haploidy-dependent unreductional meiotic cell division in polyploid wheat[J]. Chromosoma, 2010, 119(3): 275-285. DOI: 10.1007/s00412-010-0256-y
[136] Ramanna M S, Jacobsen E. Relevance of sexual polyploidization for crop improvement:a review[J]. Euphytica, 2003, 133(1): 3-18. DOI: 10.1023/A:1025600824483
[137] Jauhar P P, Dogramacı-Altuntepe M, Peterson T S, et al. Seedset on synthetic haploids of durum wheat:cytological and molecular investigations[J]. Crop Sci, 2000, 40(6): 1742-1749. DOI: 10.2135/cropsci2000.4061742x
[138] Honsho C, Yamamura E, Tsuruta K, et al. Unreduced 2n pollen production in 'Nishiuchi Konatsu' Hyuganatsu as inferred by pollen characteristics and progeny ploidy level[J]. J Japan Soc Hort Sci, 2012, 81(1): 19-26. DOI: 10.2503/jjshs1.81.19
[139] Filho R A B, Santos A C, Souza F H, et al. Complete asynapsis resulting in 2n pollen formation in Paspalum jesuiticum Parodi(Poaceae)[J]. Genet Mol Res, 2014, 13(1): 255-261. DOI: 10.4238/2014.January.17.9
[140] Sugihara N, Higashigawa T, Aramoto D, et al. Haploid plants carrying a sodium azide-induced mutation(fdr1) produce fertile pollen grains due to first division restitution(FDR) in maize(Zea mays L.)[J]. Theor Appl Genet, 2013, 126(12): 2931-2941. DOI: 10.1007/s00122-013-2183-9
[141] Dong C B, Suo Y J, Kang X Y. Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies[J]. Can J For Res, 2014, 44(7): 692-699. DOI: 10.1139/cjfr-2013-0360
[142] Riha K, McKnight T D, Griffing L R, et al. Living with genome instability:plant responses to telomere dysfunction[J]. Science, 2001, 291(5509): 1797-1800. DOI: 10.1126/science.1057110
[143] Masson J E, Paszkowski J. Arabidopsis thaliana mutants altered in homologous recombination[J]. Proc Natl Acad Sci USA, 1997, 94(21): 11731-11735. DOI: 10.1073/pnas.94.21.11731
[144] Dirks R, van Dun K, de Snoo C B, et al. Reverse breeding:a novel breeding approach based on engineered meiosis[J]. Plant Biotechnol J, 2009, 7: 837-845. DOI: 10.1111/pbi.2009.7.issue-9
[145] Couteau F, Belzile F, Horlow C, et al. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis[J]. The Plant Cell, 1999, 11(9): 1623-1634. DOI: 10.1105/tpc.11.9.1623
[146] Grelon M, Vezon D, Gendrot G, et al. AtSPO11-1 is necessary for efficient meiotic recombination in plants[J]. EMBO J, 2001, 20(3): 589-600. DOI: 10.1093/emboj/20.3.589
[147] Ow D W. Recombinase-directed plant transformation for the post-genomic era[J]. Plant Mol Biol, 2002, 48(1/2): 183-200. DOI: 10.1023/A:1013718106742
[148] Gilbertson L. Cre-lox recombination:creative tools for plant biotechnology[J]. Trends in Biotechnology, 2003, 21(12): 550-555. DOI: 10.1016/j.tibtech.2003.09.011
[149] Shukla V K, Doyon Y, Miller J C, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature, 2009, 459(7245): 437-441. DOI: 10.1038/nature07992
[150] Townsend J A, Wright D A, Winfrey R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245): 442-445. DOI: 10.1038/nature07845
[151] Zhang F, Maeder M L, Unger-Wallace E, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proc Natl Acad Sci USA, 2010, 107(26): 12028-12033. DOI: 10.1073/pnas.0914991107
[152] Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat Biotechnol, 2012, 30(5): 390-392. DOI: 10.1038/nbt.2199
[153] Belhaj K, Chaparro-Garcia A, Kamoun S, et al. Editing plant genomes with CRISPR/Cas9[J]. Current Opinion in Biotechnology, 2015, 32: 76-84. DOI: 10.1016/j.copbio.2014.11.007
[154] Liu X, Xie C, Si H, et al. CRISPR/Cas9-mediated genome editing in plants[J]. Methods, 2017, 121/122: 94-102. DOI: 10.1016/j.ymeth.2017.03.009
[155] Maddalo D, Manchado E, Concepcion C P, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system[J]. Nature, 2014, 516(7531): 423-427. DOI: 10.1038/nature13902
[156] Li Y, Park A I, Mou H, et al. A versatile reporter system for CRISPR-mediated chromosomal rearrangements[J]. Genome Biology, 2015, 16(1): 111. DOI: 10.1186/s13059-015-0680-7
[157] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(8): 686-688. DOI: 10.1038/nbt.2650
[158] Sun Y, Zhang X, Wu C, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant, 2016, 9: 628-631. DOI: 10.1016/j.molp.2016.01.001
[159] Liang Z, Zhang K, Chen K, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J Genet Genomics, 2014, 41: 63-68. DOI: 10.1016/j.jgg.2013.12.001
[160] Ma X, Zhang Q, Zhu Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8: 1274-1284. DOI: 10.1016/j.molp.2015.04.007
[161] Lieberman-Lazarovich M, Levy A A. Homologous recombination in plants: an antireview[M]//Birchler J A. Plant Chromosome Engineering(Methods and Protocols). New York: Humana Press, 2011: 51-65.
[162] Gaeta R T, Masonbrink R E, Krishnaswamy L, et al. Synthetic chromosome platforms in plants[J]. Annu Rev Plant Biol, 2012, 63(1): 307-330. DOI: 10.1146/annurev-arplant-042110-103924
[163] Yu W, Han F, Gao Z, et al. Construction and behavior of engineered minichromosomes in maize[J]. Proc Natl Acad Sci USA, 2007, 104(21): 8924-8929. DOI: 10.1073/pnas.0700932104
[164] Gaeta R T, Krishnaswamy L. Engineered plant minichromosomes[M]//Birchler J A. Plant Chromosome Engineering(Methods and Protocols). New York: Humana Press, 2011: 131-146.
[165] Nelson A D, Lamb J C, Kobrossly P S, et al. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis[J]. The Plant Cell, 2011, 23(6): 2263-2272. DOI: 10.1105/tpc.111.086017
[166] Yu W, Lamb J C, Han F, et al. Telomere-mediated chromosomal truncation in maize[J]. Proc Natl Acad Sci USA, 2006, 103(46): 17331-17336. DOI: 10.1073/pnas.0605750103
[167] Xu C, Cheng Z, Yu W. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation[J]. The Plant Journal, 2012, 70(6): 1070-1079. DOI: 10.1111/tpj.2012.70.issue-6
[168] Kapusi E, Ma L, Teo C H, et al. Telomere-mediated truncation of barley chromosomes[J]. Chromosoma, 2012, 121(2): 181-190. DOI: 10.1007/s00412-011-0351-8
[169] Yu W, Yau Y Y, Birchler J A. Plant artificial chromosome technology and its potential application in genetic engineering[J]. Plant Biotechnology Journal, 2016, 14(5): 1175-1182. DOI: 10.1111/pbi.2016.14.issue-5
[170] 徐鑫, 李小军, 李秀全, 等. 小麦骨干亲本'洛夫林10号'1BL/1RS在衍生品种中的遗传分析[J]. 麦类作物学报, 2010, 30(2): 221-226.
Xu X, Li X J, Li X Q, et al. Inheritance of 1BL/1RS of founder parent 'Lovrin 10' in its progeny[J]. Journal of Triticeae Crops, 2010, 30(2): 221-226. DOI: 10.7606/j.issn.1009-1041.2010.02.007 (in Chinese with English abstract)
[171] Cao A, Xing L, Wang X, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat[J]. Proc Natl Acad Sci USA, 2011, 108(19): 7727-7732. DOI: 10.1073/pnas.1016981108
[172] Qi Z J, Chen P D, Liu D J, et al. A new secondary reciprocal translocation discovered in Chinese wheat[J]. Euphytica, 2004, 137(3): 333-338. DOI: 10.1023/B:EUPH.0000040454.11647.59
[173] 王丹蕊. 基于寡核苷酸探针套painting的'中国春'非整倍体高清核型及应用[D]. 南京: 南京农业大学, 2017.
Wang D R. Development and application of high resolution karyotypes of 'Chinese Spring' aneuploids[D]. Nanjing: Nanjing Agricultural University, 2017(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zuowxb201711002
[174] Durkin S G, Glover T W. Chromosome fragile sites[J]. Annu Rev Genet, 2007, 41: 169-192. DOI: 10.1146/annurev.genet.41.042007.165900
[175] Molnár I, Cifuentes M, Schneider A, et al. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats[J]. Annals of Botany, 2011, 107(1): 65-76. DOI: 10.1093/aob/mcq215
[176] The International Wheat Genome Sequencing Consortium(IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum) genome[J]. Science, 2014, 345(6194). DOI: 10.1126/science.1251788
[177] Mayer K F X, Taudien S, Martis M, et al. Gene content and virtual gene order of barley chromosome 1H[J]. Plant Physiol, 2009, 151(2): 496-505. DOI: 10.1104/pp.109.142612
[178] Mayer K F X, Martis M, Hedley P E, et al. Unlocking the barley genome by chromosomal and comparative genomics[J]. The Plant Cell, 2011, 23(4): 1249-1263. DOI: 10.1105/tpc.110.082537
[179] Martis M M, Zhou R, Haseneyer G, et al. Reticulate evolution of the rye genome[J]. The Plant Cell, 2013, 25(10): 3685-3698. DOI: 10.1105/tpc.113.114553
[180] Tiwari V K, Wang S, Danilova T, et al. Exploring the tertiary gene pool of bread wheat:sequence assembly and analysis of chromosome 5Mg of Aegilops geniculate[J]. The Plant Journal, 2015, 84(4): 733-746. DOI: 10.1111/tpj.13036
[181] Steuernagel B, Periyannan S K, Hernández-Pinzón I, et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture[J]. Nat Biotechnol, 2016, 34(6): 652-655. DOI: 10.1038/nbt.3543
[182] Zheng Q, Li B, Li H, et al. Utilization of blue-grained character in wheat breeding derived from Thinopyrum poticum[J]. J Genet Genomics, 2009, 36(9): 575-580. DOI: 10.1016/S1673-8527(08)60149-6
[183] Zhou K, Wang S, Feng Y, et al. The 4E-ms system of producing hybrid wheat[J]. Crop Sci, 2006, 46(1): 250-255. DOI: 10.2135/cropsci2005.0029
[184] Hohn C E, Lukaszewski A J. Engineering the 1BS chromosome arm in wheat to remove the Rfmulti locus restoring male fertility in cytoplasms of Aegilops kotschyi, Ae. uniaristata and Ae. mutica[J]. Theor Appl Genet, 2016, 129(9): 1769-1774. DOI: 10.1007/s00122-016-2738-7