南京农业大学学报  2017, Vol. 40 Issue (6): 1111-1118   PDF    
http://dx.doi.org/10.7685/jnau.201708018
0

文章信息

张莉莉, 王远孝, 孔一力, 周根来, 王超, 钟翔, 王恬
ZHANG Lili, WANG Yuanxiao, KONG Yili, ZHOU Genlai, WANG Chao, ZHONG Xiang, WANG Tian
精氨酸对子宫内发育迟缓仔猪抗氧化功能和精氨酸代谢的影响
Effects of supplement of arginine on anti-oxidation and arginine metabolism in intrauterine growth retardation piglets
南京农业大学学报, 2017, 40(6): 1111-1118
Journal of Nanjing Agricultural University, 2017, 40(6): 1111-1118.
http://dx.doi.org/10.7685/jnau.201708018

文章历史

收稿日期: 2017-08-15
精氨酸对子宫内发育迟缓仔猪抗氧化功能和精氨酸代谢的影响
张莉莉, 王远孝, 孔一力, 周根来, 王超, 钟翔, 王恬    
南京农业大学动物科技学院, 江苏 南京 210095
摘要[目的]本文旨在研究精氨酸对子宫内发育迟缓(IUGR)仔猪抗氧化功能和精氨酸代谢的影响。[方法]选择6头胎次和体况相近的妊娠母猪,分娩后,分别从每头母猪所产仔猪中挑选1头正常初生体质量(NBM)新生仔猪和2头IUGR新生仔猪,即6头NBM新生仔猪和12头IUGR新生仔猪。所有IUGR仔猪随机分成2组,分别饲喂基础人工乳(IUGR组,n=6)和添加6 g·L-1精氨酸(Arg)的基础人工乳(IUGR+Arg组,n=6),所有NBM仔猪饲喂基础人工乳(NBM组,n=6),试验期7 d。[结果]与IUGR组相比,日粮补充Arg均显著降低IUGR仔猪背最长肌和空肠黏膜丙二醛(MDA)含量(P < 0.05);显著提高空肠黏膜总抗氧化能力(T-AOC)和谷胱甘肽过氧化物酶(GPx)活性(P < 0.05);显著提高血清一氧化氮(NO)水平、总NO合酶(TNOS)、诱导型NO合酶(iNOS)、结构型NO合酶(cNOS)活性,空肠黏膜NO水平、TNOS和cNOS活性,以及空肠黏膜与血清中Arg水平和Arg代谢相关氨基酸(Arg、Cit和Pro)水平。[结论]在早期断奶IUGR仔猪日粮中添加精氨酸具有增强IUGR仔猪抗氧化功能和促进精氨酸代谢的作用。
关键词精氨酸   子宫内发育迟缓   抗氧化   精氨酸代谢   仔猪   
Effects of supplement of arginine on anti-oxidation and arginine metabolism in intrauterine growth retardation piglets
ZHANG Lili, WANG Yuanxiao, KONG Yili, ZHOU Genlai, WANG Chao, ZHONG Xiang, WANG Tian    
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Abstract: [Objectives] The paper aims to evaluate the effect of supplement of arginine (Arg) on anti-oxidation and arginine metabolism in intrauterine growth retardation (IUGR) piglets. [Methods] Six pregnant sows with the similar parity and body condition were selected, and after parturition, six normal body mass (NBM)piglets and twelve IUGR piglets were selected according to birth weight. All piglets were weaned at 7 d of age, and assigned equally to three groups:six NBM (NBM group) and six IUGR piglets (IUGR group) fed control diet, and six IUGR piglets fed control diet supplemented with 0.6% Arg (IUGR+Arg group) for 7 days. [Results] Compared with IUGR group, the diets supplemented with Arg decreased markedly (P < 0.05) the content of MDA in longissimus dorsi muscle and jejunum mucosa, significantly (P < 0.05) increased T-AOC and the activity of GPx in jejunum mucosa, serum concentration of NO and the activities of TNOS, iNOS, cNOS, the concentration of NO and the activities of TNOS, cNOS in jejunum mucosal, and the serum and mucosal concentrations of Arg, Cit, and Pro in IUGR+Arg group piglets. [Conclusions] Arg plays important roles in promoting antioxidant function and arginine metabolism in IUGR piglets.
Key words: arginine    intrauterine growth retardation    anti-oxidation    arginine metabolism    piglet   

胎儿子宫内发育迟缓(intrauterine growth retardation, IUGR)是胎儿在母体子宫内发育障碍的总称, 表现为后代生长没有达到遗传潜能, 其特征是胎儿出生时低体质量或极低体质量[1-2]。通常, 初生体质量低于平均初生体质量2个标准差既可以认定为IUGR[3]。IUGR对新生动物成活率、器官组织发育(胃肠道、大脑、肾脏、肝脏、心血管系统、肌肉组织)、出生后生长、机体组成、饲料利用率、肉品质、繁殖性能以及运动机能均产生不良影响[2, 4-11], 对养猪生产危害巨大。因此, 对IUGR仔猪进行适当营养调控, 促进其生长发育具有重要实际意义。

精氨酸在自然界中有2种异构体存在:D-精氨酸(D-Arg)和L-精氨酸(L-Arg), 动物体内具有重要的营养生理作用的是L-Arg(以下简称Arg)。Arg可参与机体代谢, 产生一氧化氮(NO)和多胺代谢产物, 在动物体内发挥多种营养生理效应[12]。对成年动物来说, Arg是非必需氨基酸, 但Arg是维持幼年动物最佳生长和氮平衡的必需氨基酸, 其在猪乳和人乳汁中含量较少[13-14], 母乳及配方乳中Arg不足会阻碍仔猪最佳生产性能发挥[15]。因此, Arg营养在动物生产中是一个非常值得关注的问题。

已有研究表明, IUGR仔猪的抗氧化功能均低于正常猪[10, 16-18], 氨基酸代谢能力也低于正常仔猪[19], 而饲粮添加Arg可缓解断奶仔猪的氧化应激[20], 提高断奶仔猪血清Arg代谢相关氨基酸的水平[21], 但是有关Arg对IUGR仔猪抗氧化功能和精氨酸代谢的研究尚不多见。本试验以自然发生的IUGR仔猪为研究对象, 探讨超早期断奶后饲喂精氨酸对仔猪抗氧化功能和精氨酸代谢的影响, 研究结果可为IUGR仔猪出生后的早期营养调控提供依据。

1 材料与方法 1.1 试验动物及分组

按妊娠胎次(3~4次)和妊娠期相近母猪分娩后的仔猪(杜长大三元杂交猪)体质量选择试验动物。IUGR和正常体质量仔猪的选择参照本实验室及文献[5, 22]的方法, 以初生体质量低于群体2个标准差(SD)的仔猪为IUGR仔猪, 而初生体质量在群体1个SD范围内的仔猪为正常仔猪(NBM)。

在新生仔猪中选取6头NBM仔猪[NBM组, n=6, 体质量(1.57±0.13)kg]和12头IUGR仔猪[体质量(0.93±0.12)kg], 公母各半。NBM仔猪寄养于同1头母猪栏内, IUGR仔猪随机寄养于2头母猪栏内。各母猪体况和泌乳状况接近, 仔猪哺乳至7日龄时断奶, 其后饲喂基础人工乳。所有IUGR仔猪随机分成2组, 分别饲喂基础人工乳(IUGR组, n=6)和基础人工乳+6 g·L-1 Arg(IUGR+Arg组, n=6), 2组IUGR猪7日龄时体质量分别为(2.09±0.33)kg和(2.18±0.41)kg, 差异不显著(P>0.05), 符合随机分组原则。

1.2 代乳粉配制

基础代乳粉配制根据Yao等[23]的方法配制, 在基础代乳粉的基础上, 添加质量分数为6%的Arg制作Arg代乳粉。各代乳粉等能等氮, 营养含量和原料具体组成见表 1。试验所用L-丙氨酸和Arg购自日本Ajinomoto公司。将1 kg基础代乳粉与4 L温水混合, 制成人工乳[23]

表 1 各人工代乳粉的组成及营养含量 Table 1 Composition and nutrients content of milk replacer powders
成分
Ingredient
含量/% Content
基础日粮
Basal
基础日粮+L-Arg
Basal and L-Arg
日粮组成Diet composition
    乳清蛋白浓缩物(34%粗蛋白)
    Whey protein concentrate
    [34% crude protein(CP)]
60.0060.00
    乳脂粉(11% CP) Milk fat powder26.0026.00
    α-酪蛋白α-casein6.206.20
    乳糖Lactose3.603.60
    葡萄糖Glucose0.421.05
    乳酸钙(13% Ca) Calcium lactate1.001.00
    磷酸二氢钙(22% P)
    Calcium dihydrogenphoshate
1.001.00
    复合维生素1) Vitamin mixture0.150.15
    复合矿物质2) Mineral mixture0.200.20
    L-丙氨酸L-Ala1.230.00
    L-精氨酸L-Arg0.000.60
    大豆卵磷脂Soy lecithin0.000.00
    L-蛋氨酸L-met0.100.10
    L-赖氨酸盐酸盐L-lysine-HCl0.100.10
营养水平Nutrient levels3)
    粗蛋白/% Crude protein(CP)25.9425.92
    总能/(MJ·kg-1) Gross energy17.7717.78
    消化能/(MJ·kg-1)
    Digestible energy(DE)
14.3814.38
    钙/% Calcium(Ca)0.900.91
    总磷/% Total phosphorus0.680.69
    有效磷/% Available phosphorus0.420.43
    赖氨酸/% Lys1.591.58
    蛋氨酸/% Met0.530.54
    L-精氨酸/% L-Arg0.591.12
    磷脂酰胆碱/%
    Phosphatidylcholine(PC)
0.030.03
    注:1)复合维生素为代乳粉提供(mg·kg-1):维生素E醋酸酯, 16;维生素A醋酸酯, 0.76;维生素D3, 0.055;维生素K3, 0.50;维生素B1, 1.5;维生素B2, 4.0;维生素B3, 12;维生素B6, 2.0;维生素B12, 0.02;烟酸, 20;氯化胆碱, 600;叶酸, 0.30;生物素, 0.08。2)复合矿物质为代乳粉提供(mg·kg-1):Cu, 10;Fe, 100;Zn, 100;Mn, 5.0;I, 0.2;Se, 0.30。3)除消化能为计算值外, 其他营养指标均为测定值。氨基酸和PC测定采用HPLC法。
    Note:1) Provide the following (mg·kg-1 powder diet) :all-rac-α-tocopheryl acetate, 16;retinyl acetate, 0.76;cholecalciferol, 0.055;menadione sodium bisulfate, 0.50;thiamin, 1.5;riboflavin, 4.0;pantothenic acid, 12;pyridoxine, 2.0;vitamin B12, 0.02;niacin, 20;choline chloride, 600;folic acid, 0.30;biotin, 0.08. 2) Provide the following (mg·kg-1 powder diet) :Cu, 10;Fe, 100;Zn, 100;Mn, 5.0;I, 0.2;Se, 0.30. 3) The data of nutrient levels were measured values except DE values.
1.3 饲养管理

通过奶瓶灌喂仔猪人工乳, 仔猪每kg体质量每次饲喂75 mL, 每隔4 h饲喂1次(每天6次)[23]。所有仔猪饲养在保温箱内(1.5 m×0.5 m, 33 ℃), 自由饮水, 仔猪免疫接种、疾病预防和消毒按常规方法进行。试验期为7 d。

1.4 样品采集

试验猪14 d时空腹称体质量, 各组随机选取4头仔猪, 前腔静脉采血6~10 mL, 静置2 h, 在4 ℃下以3 000 r·min-1离心15 min, 取血清, 置于-20 ℃冰箱中保存备用。仔猪颈部肌肉注射戊巴比妥钠(50 mg·kg-1)麻醉致死, 迅速剖开腹腔, 取出空肠, 剔除肠道表面肠系膜和淋巴结, 挤净食糜后用灭菌的载玻片刮取黏膜[6], 于液氮中保存。宰后迅速在胸腰结合处取背最长肌样于液氮中保存备用。

1.5 测定指标和方法 1.5.1 背最长肌和肠道黏膜抗氧化及氧化相关指标测定

取背最长肌和空肠黏膜制备100 g·L-1组织匀浆液。匀浆上清液中总蛋白含量采用考马斯亮蓝法测定, 总抗氧化能力(T-AOC)的测定参照Ahmad等[24]的方法, GSH过氧化物酶(GPx)活性采用2-硝基苯甲酸法测定[25], 超氧化物歧化酶(SOD)活性采用黄嘌呤氧化酶法测定[26], 丙二醛(MDA)含量采用硫代巴比妥酸法测定[27]。以上指标均严格按照产品说明书进行操作, 测定试剂盒购自南京建成生物工程研究所。

1.5.2 血清和小肠黏膜NO含量和NOS活性测定

取血清和空肠黏膜组织匀浆上清液, 测定NO含量和NO合酶(NOS)活性。NO测定采用硝酸还原酶法, 利用硝酸还原酶特异性将NO3-还原为NO2-, 通过显色深浅测定其浓度的高低[28]。NOS测定根据NOS催化L-Arg和分子氧反应生成NO测定, 通过在反应体系中不加或加入抑制剂, 可分别检测总NO合酶(TNOS)、诱导型NO合酶(iNOS)活性, 结构型NO合酶(cNOS)活性由TNOS减去iNOS得出[28]。所用测定试剂盒均购自南京建成生物工程研究所。

1.5.3 血清和肠道黏膜中游离氨基酸测定

取200 μL血清置于具塞尖底塑料离心管中, 加500 μmol·L-1正亮氨酸(Nle)内标溶液40 μL(0.1 mol·mL-1盐酸溶液配制)和1 mL蛋白沉淀剂(0.5 mL三氟乙酸-100 mL甲醇), 振荡, 以12 000 r·min-1离心5 min, 取上清液200 μL, 加入异硫氰酸苯酯-乙腈溶液100 μL(25 μL PITC-2 mL乙腈)和三乙胺-乙腈溶液100 μL(1.4 mL三乙胺-8.6 mL乙腈), 混匀, 室温下静置1 h, 加入正己烷400 μL, 振荡, 放置10 min, 取下层溶液5 μL进样。记录色谱图, 内标法定量。参照Wu等[29]和Bidlingmeyer等[30]的方法进行测定, 用Agilent HP 1100型高效液相色谱仪(Santa Clara, CA USA), 反相色谱柱为Hypersil ODS C18(200 mm×2.1 mm, 5 μm, Thermo, USA)。用0.1 mol·mL-1盐酸溶液配制成各氨基酸浓度为1 mmol·L-1的混合标准液, 色氨酸(Trp)、内标Nle、衍生化试剂异硫氰酸苯酯和三乙胺均购自Agela公司。

肠道黏膜样品处理根据Bertolo等[31]方法, 取100 mg黏膜组织, 加入40 μL正亮氨酸内标溶液(500 μmol·L-1)、10 mL三氟乙酸和100 mL甲醇混合, 振荡, 以12 000 r·min-1离心5 min, 取上清液, 加入异硫氰酸苯酯进行柱前衍生化, 进行反相高效液相色谱分析, 记录色谱图, 内标法以峰面积定量, 计算氨基酸含量[29-30]。所用高效液相色谱仪、反相色谱柱及氨基酸标准品、试剂及色谱条件同上。

1.6 数据统计与分析

试验数据采用Excel 2013进行初步整理, 用SPSS 18.0软件进行统计分析, 采用单因子方差(One-way ANOVA)分析进行差异显著性检验, 并采用Duncan′s法进行多重比较。结果以平均数±标准误(x±SE)表示。

2 结果与分析 2.1 精氨酸对IUGR仔猪背最长肌抗氧化水平的影响

表 2可见:IUGR猪背最长肌MDA含量比NBM组高102.71%, 差异显著(P < 0.05);与IUGR组相比, IUGR+Arg组MDA含量降低了47.54%, 差异显著(P < 0.05);NBM、IUGR和IUGR+Arg组间背最长肌T-AOC水平无显著差异(P>0.05)。

表 2 日粮添加Arg对仔猪背最长肌抗氧化水平的影响 Table 2 Effects of diet supplemented with Arg on antioxidation in longissimus dorsi muscle of piglets
指标ItemsNBMIUGRIUGR+Arg
丙二醛含量/(nmol·mg-1)MDA content2.21±0.23b4.48±1.62a2.35±0.42b
总抗氧化能力/(U·mg-1)T-AOC1.19±0.731.41±0.681.36±0.35
    注:1) NBM:NBM组, 正常出生体质量仔猪饲喂基础日粮Piglets with normal birth mass fed with control diet; IUGR:IUGR组, IUGR仔猪饲喂基础日粮IUGR piglets fed with control diet; IUGR+Arg:IUGR+Arg组, IUGR仔猪饲喂添加精氨酸的基础日粮IUGR piglets fed with control diet supplemented with Arg.
    2)同行数据肩注不同小写字母表示差异显著(P < 0.05)。In the same row, values with different lowercase letter superscripts mean significant difference at 0.05 level.下表同此。The same as in the following tables.
2.2 精氨酸对IUGR仔猪空肠黏膜抗氧化水平的影响

表 3可见:与NBM组相比, 14 d IUGR猪空肠道黏膜T-AOC和GPx活性分别降低了31.91%和30.74%, 差异均显著(P < 0.05), 而MDA含量升高了54.02%(P < 0.05), SOD活性无显著差异(P>0.05);IUGR猪补充Arg后, T-AOC和GPx活性分别比IUGR对照猪提高了28.13%和59.24%, 差异均显著(P < 0.05), 而MDA含量降低了32.84%(P < 0.05), 2组间SOD活性无显著差异(P>0.05)。IUGR+Arg组与NBM组间T-AOC、GPx活性、MDA含量和SOD活性均无显著差异(P>0.05)。

表 3 日粮添加Arg对仔猪肠道黏膜抗氧化特性的影响 Table 3 Effects of diet supplemented with Arg on mucosal antioxidation of piglets
指标ItemsNBMIUGRIUGR+Arg
丙二醛含量/(nmol·mg-1)MDA content2.61±0.25b4.02±0.38a2.70±0.28b
总抗氧化能力/(U·mg-1)T-AOC2.35±0.18a1.60±0.15b2.05±0.08a
谷胱甘肽过氧化物酶活性/(U·mg-1)GPx activity30.32±1.36a21.00±2.27b33.44±2.64a
超氧化物歧化酶活性/(U·mg-1)SOD activity75.26±1.9767.56±2.3276.63±6.96
2.3 精氨酸对IUGR仔猪血清和肠黏膜NO含量的影响

表 4可见:与NBM组相比, IUGR组猪血清和肠黏膜NO含量分别降低了23.83%和52.16%, 差异均显著(P < 0.05)。IUGR猪日粮中补充Arg后, 血清和肠黏膜NO含量分别比IUGR组猪提高了43.30%和77.71%, 差异均显著(P < 0.05), 而与NBM组均无显著差异(P>0.05)。

表 4 日粮添加Arg对猪血清和肠道黏膜NO含量的影响 Table 4 Effects of diet supplemented with Arg on NO content in serum and jejunal mucosa of piglets
指标ItemsNBMIUGRIUGR+Arg
血清NO含量/(μmol·L-1)NO content in serm145.08±4.47a110.51±4.44b158.36±5.72a
肠道黏膜NO含量/(μmol·g-1)NO content in jejunal mucosa3.47±0.42a1.66±0.25b2.95±0.23a
2.4 精氨酸对IUGR仔猪血清和肠黏膜NOS活性的影响

表 5可见:与NBM组相比, IUGR组猪血清TNOS和cNOS活性分别降低了25.26%和62.11%, 差异均显著(P < 0.05), 而2组间iNOS活性无显著差异(P>0.05)。IUGR猪日粮中补充Arg后, 血清TNOS、iNOS和cNOS活性分别比IUGR组猪提高了42.18%、28.02%和139.46%, 差异均显著(P < 0.05)。与NBM组相比, IUGR组猪肠黏膜TNOS、iNOS和cNOS活性分别降低了14.98%、15.17%和14.70%, 但差异均不显著(P>0.05)。IUGR猪日粮中补充Arg后, 肠黏膜TNOS和cNOS活性分别比IUGR组猪提高了28.36%和50.29%, 差异均显著(P < 0.05);日粮中Arg的添加对IUGR猪肠黏膜iNOS活性没有显著影响(P>0.05)。IUGR+Arg组与NBM组间血清和肠黏膜中这3种酶活性均无显著差异(P>0.05)。

表 5 日粮添加Arg对猪血清和肠道黏膜NO合酶(NOS)活性的影响 Table 5 Effects of diet supplemented with Arg on NOS activity in serum and jejunal mucosa of piglets
指标ItemsNBMIUGRIUGR+Arg
血清Serm
    总NO合酶活性/(U·mL-1)TNOS activity15.48±0.55a11.57±0.93b16.45±1.68a
    诱导型NOS活性/(U·mL-1)iNOS activity11.60±0.31ab10.10±0.64b12.93±0.96a
    结构型NOS活性/(U·mL-1)cNOS activity3.88±0.37a1.47±0.29b3.52±1.51a
肠道黏膜Jejunal mucosa
    总NO合酶活性/(U·g-1)TNOS activity784.52±39.24ab666.97±20.62b856.09±48.24a
    诱导型NOS活性/(U·g-1)iNOS activity474.25±36.75402.30±22.59458.31±18.58
    结构型NOS活性/(U·g-1)cNOS activity310.27±16.16ab264.67±6.04b397.78±53.98a
2.5 精氨酸对IUGR仔猪血清游离氨基酸水平的影响

表 6可见:与NBM组相比, IUGR猪血清Leu、Lys、Arg、Cit、Orn、Pro和Gly水平分别降低了10.12%、7.39%、21.20%、11.59%、24.86%、16.20%和4.48%, 差异显著(P < 0.05)。其他氨基酸, 2组间差异不显著(P>0.05)

表 6 日粮添加Arg对猪血清游离氨基酸水平的影响 Table 6 Effects of diet supplemented with Arg on serum free amino acids level of piglets
μmol·L-1
氨基酸种类Kinds of amino acidsNBMIUGRIUGR+Arg
Arg153.3±9.2a120.8±6.7b160.2±16.0a
Asp14.1±2.612.5±1.814.6±2.6
Glu152.6±8.8140.8±10.6152.1±7.9
Gln514.1±8.3500.9±11.1516.9±6.0
Cit90.6±1.6a80.1±5.1b88.2±3.4a
Orn92.5±1.7a69.5±1.2c82.8±7.4b
Pro543.1±40.7a455.1±41.0b543.7±10.5a
His98.9±9.787.3±14.399.7±9.0
Ile126.7±14.8107.6±11.8126.9±6.9
Leu179.8±13.7a161.6±6.7b186.6±6.8a
Lys228.7±14.7a211.8±7.4b229.3±0.7a
Met78.6±7.267.5±7.275.9±12.3
Phe86.0±5.1ab76.8±7.9b88.6±4.2a
Thr251.9±20.2241.2±35.9255.3±15.6
Trp43.7±5.242.0±5.440.5±7.5
Val301.5±5.1312.1±9.6302.5±2.8
Ala704.3±13.5692.9±15.6699.9±14.3
Asn101.2±1.696.5±9.4100.9±6.3
Cys70.1±5.968.0±8.874.7±5.0
Gly920.4±6.1a879.1±25.9b917.7±10.3a
Ser244.6±19.6245.9±21.1244.5±11.5
Tyr172.3±3.0160.8±11.2168.7±4.2

与IUGR组相比, IUGR+Arg组猪血清Leu、Lys、Phe、Arg、Cit、Orn、Pro和Gly水平分别提高15.47%、8.26%、15.36%、32.62%、10.11%、19.14%、19.47%和4.39%, 差异显著(P < 0.05);与NBM组相比, IUGR+Arg组猪血清Orn水平降低了10.49%, 差异显著(P < 0.05), 而其他氨基酸水平无显著差异(P>0.05)。

2.6 精氨酸对IUGR仔猪肠黏膜游离氨基酸水平的影响

表 7可见:与NBM组相比, IUGR组猪肠道黏膜中游离Arg、Cit、Orn和Pro含量分别降低7.32%、17.06%、10.43%和7.73%, 差异显著(P < 0.05)。IUGR猪日粮中补充Arg后, Arg、Cit和Pro水平显著高于IUGR对照仔猪(P < 0.05), Orn水平也有升高趋势, 但差异不显著(P>0.05), 这4种氨基酸水平与NBM猪相比, 差异均不显著(P>0.05)。

表 7 日粮添加Arg对猪肠道黏膜游离氨基酸水平的影响 Table 7 Effects of diet supplemented with Arg on mucosal free amino acids level in pigletsnmol·g-1
μmol·L-1
氨基酸种类Kinds of amino acidsNBMIUGRIUGR+Arg
Arg2 151.18±16.64a1 993.73±13.11b2 202.13±24.56a
Asp516.08±163.81513.28±21.28539.55±4.45
Glu7 480.00±57.957 389.98±201.787 508.75±149.82
Gln2 084.08±62.602 007.25±52.502 107.98±50.56
Cit494.55±13.02a410.20±4.83b499.68±9.65a
Orn169.08±2.70a151.45±3.80b161.78±5.82ab
Pro5 545.60±103.20a5 117.20±46.29b5 610.00±180.88a
His606.03±19.18585.73±25.74593.88±15.66
Ile1 349.28±53.791 256.43±55.511 331.50±38.15
Leu1 350.25±38.111 273.83±42.331 340.20±36.90
Lys869.25±19.66814.23±37.44849.6±30.45
Met1 973.10±25.191 921.35±29.572 002.7±36.18
Phe745.83±19.68701.88±12.63734.78±21.74
Thr1 120.40±35.751 090.08±38.161 133.15±31.00
Try196.10±7.37183.63±10.21189.90±4.29
Val2 936.28±50.472 883.63±48.303 016.20±46.66
Ala8 164.93±391.828 050.45±336.798 177.13±168.59
Asn4 089.60±81.103 866.08±103.363 990.68±105.70
Cys3 108.35±69.623 052.93±95.813 226.20±112.48
Gly5 705.85±76.945 583.38±245.285 821.05±180.64
Ser3 136.20±49.833 225.10±55.433 136.23±89.25
Tyr3 987.18±73.363 858.55±119.724 062.83±66.38
3 讨论 3.1 精氨酸对IUGR仔猪抗氧化功能的影响

本试验结果表明:IUGR仔猪的背最长肌和空肠黏膜的MDA含量均显著高于正常仔猪, 空肠黏膜的T-AOC和GPx活性均显著低于正常仔猪, 表明IUGR仔猪的抗氧化能力显著低于正常仔猪。研究发现, 发育未成熟的早产儿机体氧自由基活性较高, 会损害体内的大分子物质, 如DNA、蛋白质、多不饱和脂肪酸及碳水化合物等, 这种氧化损伤会导致蛋白的二级、三级结构发生改变, 并证实了IUGR新生儿氧化应激损伤严重[32]。由此可见, IUGR会降低机体抗氧化能力。已有研究报道IUGR仔猪的抗氧化功能均低于正常猪[10, 16-18]。本试验结果与之一致, 但在日粮中添加Arg后, IUGR仔猪的背最长肌和空肠黏膜的MDA含量均显著降低, 黏膜的T-AOC和GPx活性均显著提高, 表明Arg具有提高IUGR仔猪抗氧化功能的作用。Wascher等[33]报道, 添加精氨酸减弱了大鼠超氧化物的释放和铜诱导的脂质过氧化作用。另有研究表明, 饲粮添加Arg可通过提高血浆谷胱甘肽过氧化物酶和超氧化物歧化酶水平以及降低肝脏IL-6和TNF-α mRNA水平, 缓解断奶仔猪的氧化应激[20]。也有研究表明, 日粮添加精氨酸可减少生长育肥猪血浆和肌肉组织中羟自由基含量, 增加血浆中总抗氧化能力和GSH含量, 并且增强肌肉组织中总抗氧化能力[34], 本试验结果也与之一致。同时, Arg的添加也增加了血清、肠黏膜NO含量和TNOS活性。有研究表明, 生理水平的精氨酸和一氧化氮具有抗氧化功能[35]L-Arg浓度增加刺激NO生物合成, 导致氧化应激降低[36]。也有研究表明, L-Arg补充有效地减少了氧化应激与抗氧化防御能力之间的不平衡, 并且这种调节可能通过L-Arg/NO途径介导[37]

3.2 精氨酸对IUGR仔猪精氨酸代谢的影响

本试验结果表明, IUGR导致14日龄猪小肠黏膜中Arg代谢相关氨基酸(Arg、Cit、Orn和Pro)水平显著下降, 这与在血清中的结果一致, 提示IUGR猪小肠合成Arg能力降低。补充Arg后, 14日龄IUGR猪黏膜中Arg水平和Arg代谢相关氨基酸(Arg、Cit和Pro)水平均显著升高。同时14日龄IUGR猪血清中Arg水平和Arg代谢相关氨基酸(Arg、Cit、Orn和Pro)水平也均显著升高。Wu等[21]对断奶仔猪研究发现, 补充Arg可显著提高血清Arg、Orn、Cit和Pro水平。也有研究表明, 给7~21 d龄人工乳喂养的仔猪补充含0.2%和0.4%的Arg时, 可剂量依赖性地增加血浆中Arg的浓度, 降低血浆中氨的水平, 改善氮代谢, 增加体质量[38], 本研究结果与以上结果均一致。小肠是Arg代谢的重要场所[39]。新生哺乳动物体内Arg合成主要位于肠细胞[12]。Arg在小肠内可由谷氨酰胺和Pro合成。在新生哺乳动物体内, 肠细胞中合成的Cit大部分被直接转化成Arg[29, 40-41]。吡咯酸-5-羧酸合成酶(Δ1-pyrroline-5-carboxylate synthetase, P5C合成酶)和N-乙酰谷氨酸合成酶(N-acetylglutamate synthetase, NAG合成酶)是肠道Cit合成的关键性限制酶[12]。口服的Arg约40%首先在肠道内被分解利用[42-43]。Arg进入细胞后, 经酶作用降解, 产生NO、Orn、多胺和Pro[12]。本试验结果表明补充Arg可缓解IUGR猪肠道内源Arg合成不足, 发挥肠内营养作用。另外, 补充Arg后, IUGR仔猪血清和猪黏膜中NOS活性和NO含量均显著提高。Arg代谢产生的NO, 在动物体内发挥多种营养生理效应[12]。因此, 通过日粮补饲Arg, 可有效增加Arg供应, 促进IUGR仔猪生长发育。

参考文献(References)
[1] Rosenberg A. The IUGR newborn[J]. Seminars in Perinatology, 2008, 32(3): 219–224. DOI: 10.1053/j.semperi.2007.11.003
[2] Wu G, Bazer F W, Wallace J M, et al. Board-invited review:intrauterine growth retardation:implications for the animal sciences[J]. Journal of Animal Science, 2006, 84(9): 2316–2337. DOI: 10.2527/jas.2006-156
[3] Gardosi J. Intrauterine growth restriction:new standards for assessing adverse outcome[J]. Best Practice Research Clinical Obstetrics Gynaecology, 2009, 23(6): 741–749. DOI: 10.1016/j.bpobgyn.2009.09.001
[4] Bauer R, Walter B, Ihring W, et al. Altered renal function in growth-restricted newborn piglets[J]. Pediatric Nephrology, 2000, 14(8): 735–739.
[5] Wang T, Huo Y, Shi F, et al. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs[J]. Neonatology, 2005, 88(1): 66–72. DOI: 10.1159/000084645
[6] Zhong X, Wang T, Zhang X, et al. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets[J]. Cell Stress and Chaperones, 2010, 15(3): 335–342. DOI: 10.1007/s12192-009-0148-3
[7] Zhang H, Li Y, Su W, et al. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status[J]. Molecular Nutrition and Food Research, 2016.
[8] 李博, 李伟, 张昊, 等. 日粮高胆碱水平对宫内发育迟缓猪背最长肌糖酵解的影响[J]. 南京农业大学学报, 2015, 38(2): 324–329.
Li B, Li W, Zhang H, et al. Effects of high dietary concentrations of choline on longissimus dorsimuscle glycolysis in intrauterine growth retardation pigs[J]. Journal of Nanjing Agricultural University, 2015, 38(2): 324–329. DOI: 10.7685/j.issn.1000-2030.2015.02.022 (in Chinese with English abstract)
[9] 何进田, 董丽, 张莉莉, 等. 三丁酸甘油酯对宫内发育迟缓哺乳仔猪肝脏发育和免疫功能的影响[J]. 南京农业大学学报, 2015, 38(5): 838–843.
He J T, Dong L, Zhang L L, et al. Effects of tributyrin on the development and immune function ofthe liver in the intrauterine growth restricted suckling piglets[J]. Journal of Nanjing Agricultural University, 2015, 38(5): 838–843. DOI: 10.7685/j.issn.1000-2030.2015.02.020 (in Chinese with English abstract)
[10] 黄强, 徐稳, 何进田, 等. 日粮补充亮氨酸对超早期断奶宫内发育迟缓仔猪内源消化酶活性及胰腺抗氧化能力的影响[J]. 南京农业大学学报, 2017, 40(1): 123–129.
Huang Q, Xu W, He J T, et al. Effects of dietary leucine supplementation on activities of endogenousdigestive enzymes and pancreas antioxidant capacity in intrauterinegrowth retardation early weaning pigs[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 123–129. DOI: 10.7685/jnau.201511032 (in Chinese with English abstract)
[11] Zhang L, Zhang H, Li Y, et al. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets[J]. Archives of Animal Nutrition, 2017, 71(3): 231. DOI: 10.1080/1745039X.2017.1312812
[12] Wu G, Morris S M, J r. Arginine metabolism:nitric oxide and beyond[J]. Biochemical Journal, 1998, 336: 1–17. DOI: 10.1042/bj3360001
[13] Davis T A, Nguyen H V, Garcia-Bravo R, et al. Amino acid composition of human milk is not unique[J]. Journal of Nutrition, 1994, 124(7): 1126–1132.
[14] Wu G, Knabe D A. Free and protein-bound amino acids in sow's colostrum and milk[J]. Journal of Nutrition, 1994, 124(3): 415–424.
[15] Wu G, Knabe D A, Kim S W. Arginine nutrition in neonatal pigs[J]. Journal of Nutrition, 2004, 134(10): 2783S.
[16] 李博, 李伟, 张昊, 等. 宫内发育迟缓对哺乳仔猪生长性能和肝脏氧化及抗氧化指标的影响[J]. 动物营养学报, 2014, 26(9): 2822–2827.
Li B, Li W, Zhang H, et al. Effects of intrauterine growth retardation on growth performance and hepatic oxidation and antioxidative parameters of suckling piglets[J]. Chinese Journal of Animal Nutrition, 2014, 26(9): 2822–2827. (in Chinese with English abstract)
[17] 何进田, 董丽, 白凯文, 等. 三丁酸甘油酯对宫内发育迟缓哺乳仔猪肝脏抗氧化和线粒体功能的影响[J]. 食品科学, 2016, 37(3): 191–196.
He J T, Dong L, Bai K W, et al. Effect of tributyrin on liver antioxidant capacity and mitochondrial function of piglets with intrauterine growth retardation during sucking period[J]. Food Science, 2016, 37(3): 191–196. DOI: 10.7506/spkx1002-6630-201603035 (in Chinese with English abstract)
[18] 苏伟鹏, 徐稳, 张昊, 等. 日粮亮氨酸水平与宫内发育迟缓对断奶仔猪肝脏抗氧化功能的影响[J]. 食品工业科技, 2016, 37(19): 345–351.
Su W P, Xu W, Zhang H, et al. Effect of dietary concentrations of leucine and intrauterine growthretardation on antioxidant function in the liver of weaned piglets[J]. Science and Technology of Food Industry, 2016, 37(19): 345–351. (in Chinese with English abstract)
[19] 徐稳. 日粮补充亮氨酸调控IUGR仔猪蛋白质代谢及胰岛素信号通络相关基因的机制研究[D]. 南京: 南京农业大学, 2017
Xu W. The effects of leucine regulation on protein metabolism and insulin signaling pathway genes in IUGR piglets[D]. Nanjing:Nanjing Agricultural University, 2017(in Chinese with English abstract).
[20] Zheng P, Yu B, He J, et al. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets[J]. British Journal of Nutrition, 2013, 109(12): 2253–2260. DOI: 10.1017/S0007114512004321
[21] Wu X, Ruan Z, Gao Y, et al. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet[J]. Amino Acids, 2010, 39(3): 831. DOI: 10.1007/s00726-010-0538-y
[22] Wang Y, Zhang L, Zhou G, et al. Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets[J]. British Journal of Nutrition, 2012, 5: 1–11.
[23] Yao K, Yin Y L, Chu W, et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs[J]. The Journal of Nutrition, 2008, 138(5): 867–872.
[24] Ahmad H, Tian J, Wang J, et al. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7111–7120. DOI: 10.1021/jf3017207
[25] Hafeman D G, Sunde R A, Hoekstra W G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat[J]. Journal of Nutrition, 1974, 104(5): 580–587.
[26] Sun Y, Oberley L W, Li Y. A simple method for clinical assay of superoxide dismutase[J]. Clinical Chemistry, 1988, 34(3): 497–500.
[27] Placer Z A, Cushman L L, Johnson B C. Estimation of product of lipid peroxidation(malonyl dialdehyde)in biochemical systems[J]. Analytical Biochemistry, 1966, 16(2): 359. DOI: 10.1016/0003-2697(66)90167-9
[28] Cheng X, Liu F L, Zhang J, et al. EGb761 protects motoneurons against avulsion-induced oxidative stress in rats[J]. Journal of Brachial Plexus and Peripheral Nerve Injurory, 2010, 5(1): 1–7.
[29] Wu G, Knabe D A. Arginine synthesis in enterocytes of neonatal pigs[J]. American Journal of Physiology, 1995, 269: 621–629.
[30] Bidlingmeyer B A, Cohen S A, Tarvin T L. Rapid analysis of amino acids using pre-column derivatization[J]. J Chromatogr, 1984, 336(1): 93–104. DOI: 10.1016/S0378-4347(00)85133-6
[31] Bertolo R F P, Pencharz P B, Ball R O. Organ and plasma amino acid concentrations are profoundly different in piglets fed identical diets via gastric, central venous or portal venous routes[J]. Journal of Nutrition, 2000, 130(5): 1261–1266.
[32] Kamath U, Rao G, Kamath S U, et al. Maternal and fetal indicators of oxidative stress during intrauterine growth retardation(IUGR)[J]. Indian Journal of Clinical Biochemistry, 2006, 21(1): 111–115. DOI: 10.1007/BF02913077
[33] Wascher T C, Posch K, Wallner S. Vascular effects of L-arginine:anything beyond a substrate for the NO-synthase[J]. Biochemical and Biophysical Research Communications, 1997, 234: 35–38. DOI: 10.1006/bbrc.1997.9994
[34] Ma X, Lin Y, Jiang Z, et al. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs[J]. Amino Acids, 2008, 38(1): 95–102.
[35] Wu G, Meininger C J. Nitric oxide and vascular insulin resistance[J]. Biofactors, 2009, 35(1): 21–27. DOI: 10.1002/biof.v35:1
[36] Jabecka A, Ast J, Bogdaski P, et al. Oral L-arginine supplementation in patients with mild arterial hypertension and its effect on plasma level of asymmetric dimethylarginine, L-citruline, L-arginine and antioxidant status[J]. European Review for Medical and Pharmacological Sciences, 2012, 16(12): 1665–1674.
[37] Shan L, Wang B, Gao G, et al. L-arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats[J]. Journal of Applied Physiology, 2013, 115(8): 1146. DOI: 10.1152/japplphysiol.00225.2013
[38] Kim S W, McPherson R L, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young pigs[J]. Journal of Nutrition, 2004, 134(3): 625–630.
[39] Windmueller H G, Spaeth A E. Source and fate of circulating citrulline[J]. American Journal of Physiology, 1981, 241(6): E473–E480.
[40] 欧德渊, 万洁妤, 李秀富, 等. 精氨酸对孕鼠子宫及其胎盘肥大细胞和组胺含量的影响[J]. 畜牧与兽医, 2015, 47(3): 88–90.
Ou D Y, Wan J Y, Li X F, et al. Effects of arginine on mast cells and histamine content in uterus and placenta of pregnant rats[J]. Animal Husbandry and Veterinary Medicine, 2015, 47(3): 88–90. (in Chinese with English abstract)
[41] Wu G. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs[J]. American Journal of Physiology, 1997, 272: 1382–1390.
[42] Wu G, Bazer F W, Cudd T A, et al. Pharmacokinetics and safety of arginine supplementation in animals[J]. Journal of Nutrition, 2007, 137(Suppl 2): 1673–1680.
[43] Castillo L, Chapman T E, Yu Y M, et al. Dietary arginine uptake by the splanchnic region in adult humans[J]. American Journal of Physiology, 1993, 265: 532–539.