南京农业大学学报  2017, Vol. 40 Issue (4): 565-572   PDF    
http://dx.doi.org/10.7685/janu.201701036
0

文章信息

麻浩, 王爽, 周亚丽
MA Hao, WANG Shuang, ZHOU Yali
植物中钙依赖蛋白激酶的研究进展
Research progress of calcium-dependent protein kinases in plants
南京农业大学学报, 2017, 40(4): 565-572
Journal of Nanjing Agricultural University, 2017, 40(4): 565-572.
http://dx.doi.org/10.7685/janu.201701036

文章历史

收稿日期: 2017-01-19
植物中钙依赖蛋白激酶的研究进展
麻浩 , 王爽, 周亚丽   
南京农业大学作物遗传与种质创新国家重点实验室, 江苏 南京 210095
摘要:钙是植物必需的大量元素之一,同时钙离子(Ca2+)是细胞信号转导的第二信使。钙依赖蛋白激酶(calcium-dependent protein kinase,CDPK)作为Ca2+的感受器普遍存在于植物和部分原生动物中,是植物特有的一类丝氨酸/苏氨酸型蛋白激酶,参与了多种Ca2+介导的信号通路,在植物发育信号和逆境信号转导中具有重要作用。本文概述了钙依赖蛋白激酶在植物体内的分布、结构、底物、功能以及大豆CDPK的研究进展,旨在为今后培育抗逆植物品种提供参考依据。
关键词植物   钙依赖蛋白激酶   发育信号   逆境信号   研究进展   
Research progress of calcium-dependent protein kinases in plants
MA Hao , WANG Shuang, ZHOU Yali    
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
Abstract: Ca2+ is one of the necessary elements for the plants, and plays the role of the second messenger in plant signal transduction. As the calcium ion sensor, the calcium-dependent protein kinase(CDPK)in plant has important effects. CDPKs have been identified throughout the plants and some protozoans. They can be classified into one kind of Ser/Thr kinases in plants. CDPK plays an important role in mediating the signal transductions of growth and stresses. This review highlights recent advances on the distribution, structure, substrate and function of CDPK in plant, as well as the research progress of GmCDPK[Glycine max(L.)Merr.]. The purpose of this study is to provide reference for the future breeding and selection of plant varieties with resistance to different kinds of stresses.
Key words: plant    calcium-dependent protein kinase(CDPK)    development signaling    stress signaling    research advance   

钙是植物必需的大量元素之一, 可以稳定细胞膜结构, 维持细胞壁结构, 对植物代谢中产生的酸进行中和消除过量有机酸对细胞的毒害, 提高植物的抗病害能力。同时, 钙离子(Ca2+)是植物细胞信号转导中的第二信使。真核生物中发现的蛋白激酶很多, 与逆境信号传递关系最密切的主要有:分裂原激活蛋白激酶(mitogen-activated protein kinase, MAPK)、钙依赖蛋白激酶(calcium-dependent protein kinase, CDPK)、受体蛋白激酶(receptor protein kinase, RPK)、核糖体蛋白激酶(ribosomal protein kinase)、转录调控蛋白激酶(transcription regulation protein kinase)。其中, 钙依赖蛋白激酶由Hetherington等[1]于1982年在豌豆(Pisum sativum L.)中首先报道, 目前是植物中研究较多的一类丝氨酸/苏氨酸蛋白激酶, 分布于植物和一些原生生物中[2], 在细菌、真菌、酵母、线虫和动物中尚未发现[3-5]

目前, 植物中许多CDPK的基因已被克隆, 如:在拟南芥(Arabidopsis thaliana)基因组中发现了34个CDPK基因[3, 6]; 水稻(Oryza sativa)基因组中存在31个CDPK基因[7-8]; 玉米(Zea mays L.)基因组中克隆出40个CDPK基因[9]; 小麦(Triticum aestivum L.)基因组中鉴定出20个CDPK基因[10]; 毛果杨(Populus trichocarpa)中有30个CDPK基因[11]; 番茄(Lycopersicon esculentum Mill.)中发现了29个CDPK基因[12]

1 钙依赖蛋白激酶在植物体内的分布和结构 1.1 钙依赖蛋白激酶的分布

CDPK在植物体内分布广泛, 包括根、茎、叶、花、花粉、果实和种子等[13-18]; 同时在胚细胞、花粉细胞、分生细胞、保卫细胞和木质部细胞中也发现有CDPK存在[17, 19]。植物CDPK以可溶性和膜结合两种形式存在, 分布几乎涉及到细胞核、细胞骨架和所有的细胞器(如:线粒体、叶绿体、液泡、内质网、过氧化物酶体和油体等)[13, 15, 20-33]

1.2 钙依赖蛋白激酶的结构

植物中CDPK以单肽链形式存在, 从蛋白质的N端到C端存在4个结构域:可变区、催化区、连接区和调控区[2, 4-5, 34], 典型的CDPK结构如图 1[35]所示。在分子进化角度上, 早期植物种属古老的CDPK基因可能来自于编码Ca2+/CaM蛋白激酶催化区和自抑制区的基因和编码CaM基因的融合, 这可能是CDPK结构特征的根源所在。

图 1 典型钙依赖蛋白激酶(CDPK)结构[35] Figure 1 Typical calcium-dependent protein kinase(CDPK)structure[35]

可变区:植物CDPK的N末端由20~200个氨基酸残基组成的序列称为可变区。不同种属的CDPK蛋白该区域在氨基酸水平上残基数变化很大, 同源性很低[36-37]

催化区:催化区具有典型的丝氨酸/苏氨酸蛋白激酶的催化保守序列, 由300多个氨基酸残基组成。不同种属的CDPK蛋白该区域同源性可达80%以上, 此区域的活性部位同源性达到100%[34, 37-38]

连接区:连接区是CDPK结构域中最为保守的区域, 由20~30个氨基酸组成[34, 37]。当无Ca2+或Ca2+低于某一浓度时, 该区域与催化区结合, 抑制激酶活性; 当Ca2+高于某一浓度时, 该区域解除对蛋白激酶结构域的抑制, 使其恢复激酶活性[4], 因此又称为自抑制区[39]

调控区:调控区是Ca2+结合的结构域。该区域保守性很低, 不同的CDPK调控区有很大的差异[37, 40], 大多数CDPK含有4个与Ca2+结合的保守的EF手型结构(EF hand structure), 通过该手型结构使CDPK在不依赖于CaM的条件下与Ca2+高度亲和[2, 39, 41]。但有些CDPK却只有3个EF手型结构, 如:拟南芥的AtCPK7、AtCPK8、AtCPK10和AtCPK14等[35], AtCPK13仅有2个EF手型结构, 而AtCPK25只有1个EF手型结构[4, 35]

2 钙依赖蛋白激酶的功能

Ca2植物细胞中的第二信使, 通过其下游CDPK的感受和转导进而引起细胞内的生物化学反应, 从而调控植物对多种非生物逆境信号的响应(图 2)。

图 2 非生物胁迫中CDPK的信号网络[6] Figure 2 CDPK signaling network in abiotic stress responses[6]
2.1 钙依赖蛋白激酶参与调节激素反应

CDPK可作为调节激素反应的钙效应器, 脱落酸(ABA)、生长素(IAA)、赤霉素(GA)、油菜素内酯(BR)、细胞分裂素(CK)和茉莉酸(JA)等均可诱导CDPK的表达量发生改变[42-43]

CDPK/Ca2+介导的ABA信号通道中, AtCPK 10参与干旱条件下拟南芥气孔的调节[44]; AtCPK 4AtCPK11AtCPK12是拟南芥的种子萌发过程中的调控因子[45-47]; 在水稻中, OsCPK 4的表达受到ABA的诱导[31]; OsDi 19-4作为OsCDPK14的下游基因, 正向调节水稻ABA应答基因的表达[32]; OsCPK 21在ABA信号通道中起正调控作用[48]; 玉米ZmCPK 11参与了ABA诱导的抗氧化防御反应过程, 并且ZmCPK 11位于ZmMPK5的上游, 同时参与组织伤害应答反应[30, 49]。在IAA胁迫下, 绿豆(Vigna radiata)CDPK的转录明显增加[50]; 生长素还可以使胚发生期的苜蓿(Medicago sativa L.)CDPK转录增加[51]。Zhang等[52]发现GA处理可诱导烟草NtCPK 4转录水平提高; GA处理还可以诱导水稻幼苗OsCDPK 13转录水平的提高, 而ABA和BR却抑制该蛋白的活性[43, 53]

2.2 钙依赖蛋白激酶参与调节植物对环境胁迫的应答

逆境胁迫是诱导CDPK表达的因素之一, 研究表明CDPKs参与调节了多种植物对环境胁迫的应答反应, 干旱、高温、冷害、盐害、光照等多种环境因子都能引起CDPK基因的差异表达和其mRNA的特异性积累[53-56]

在拟南芥中, 干旱和高盐胁迫下AtCDPK 1AtCDPK2对应的mRNA迅速表达[54], AtCPK 6参与盐害和干旱相关的保卫细胞的甲基茉莉酸信号的正调控[57], AtCPK8与CATALASE3(CAT3) 互作并通过磷酸化CAT3第261位丝氨酸残基来调节CAT3的活性, 从而调节植物体内活性氧的平衡, 提高植物的抗旱性[58-59]; AtCPK 23在干旱和盐害胁迫中起负调控因子作用[60]; AtCPK 27的表达受到NaCl的诱导并有可能正向调节盐胁迫信号转导过程[33]。在水稻中, OsCPK 4的表达受到高盐和干旱的诱导[31]; OsCDPK 7 基因的超量表达参与在干旱、冷害和盐胁迫下的信号转导[61]; OsCPK 9可通过促进气孔关闭而提高植物的抗旱性[62]; OsCPK 12通过调节OsAPx2OsAPx8OsrbohI的转录水平来提高植物的耐盐能力[63]; OsCPK 17改变水稻对冷胁迫的适应性, 但是不影响关键冷胁迫诱导基因的表达[64]; 过表达OsCPK 21基因可以提高水稻的耐盐性[48]; OsCDPK 25受热激诱导上调表达[18]。在小麦中, TaCDPK 1TaCDPK5参与小麦对低磷的响应[65]; 在聚乙二醇、NaCl、4 ℃和H2O2处理下, TaCPK 7的表达量明显提高[66]。有研究发现, 在玉米中, ZmCPK 1在低温胁迫下上调表达, 而ZmCPK 25则下调表达[67]; 用ABA和NaCl处理玉米后ZmCPK 4下调表达, ZmCPK4过表达的拟南芥对ABA的敏感程度和抗旱性均有所提高[29]; 机械损伤3和6 h以后, 在玉米受伤叶片和其邻近叶片中ZmCPK 11积累表达[68]。在烟草(Nicotiana tabacum L.)中, NtCDPK 1在机械损伤处理后2 h转录开始, 11 h时转录水平下降, 28 h后转录停止[43, 55, 69]; Romeis等[70]发现干旱可以诱导NtCDPK 2NtCDPK3的表达; NtCPK4在NaCl处理30 min后达到最高水平, 在处理2 h后表达量恢复到初始水平[52]; 干旱和盐害可以影响NtCDPK 12的表达[71]。在番茄中, LeCDPK 1的表达水平在受伤的叶片中4 h时达到最高, 在临近叶片8~12 h达到最高, 而在远端的叶片需18 h才可达到最大值, 该基因表达量的提高与番茄中的可溶性CDPK的含量和活性的增加有关[72-73]; 在高温胁迫下, 番茄LeCPK 2能使番茄免受高温胁迫的伤害[74]。在大麦(Hordeum vulgare L.)中, 营养生长阶段的干旱胁迫条件下, HvCPK 7HvCPK8HvCPK2相对表达显著增加[75]

这些研究说明, CDPK在植物适应逆境过程中起到至关重要的作用, 然而其参与植物产生防御反应和防御信号转导的机制还不清楚。

2.3 钙依赖蛋白激酶参与植株生长和发育的调控

植物生长发育的过程绝大多数都要受到Ca2+的调节[76]。CDPK的组织特异性表达说明CDPK参与了植物的早期发育阶段, 如胚发生、种子发育和萌发[69]

CDPK在植物体中并不决定器官的形成, 但可能具有调控植物器官正常发育的作用。有研究表明胡萝卜(Daucus carota L. var. sativa Hoffm.)中的Ca2+能够提高胚形成的频率, 而缺失钙离子会阻碍体细胞胚的形成。非生物压力例如氧化和低渗压力能够导致细胞质Ca2+的浓度增加, 并且可以引起细胞周期进展的延迟[77]

CDPK在种子形成和萌发过程中也具有重要的调节作用[69]。SPK是在未成熟的水稻种子胚乳中特异表达的一种CDPK, 对水稻储藏物的生物合成非常重要, 将SPK沉默后, 水稻积累存储产物(如淀粉)的能力下降; 另外, 由于不能利用蔗糖, 种子变得极为松软。这一结果表明, SPK是一种蔗糖合酶激酶, 为存储产物的生物合成提供底物, 参与了存储产物的生物合成途径[78]。在蓖麻(Ricinus communis L.)种子早期发育过程中, RcCDPK 2的表达量先上升后下降[79]

CDPK也参与块茎的发育。在马铃薯(Solanum tuberosum L.)中, StCDPK 1StCDPK3在块茎发育的不同阶段存在着时空差异性表达情况:StCDPK3仅在早期伸长的块茎中表达, 而StCDPK1则在块茎顶端的膨胀处表达[80]

3 钙依赖蛋白激酶的底物

越来越多的CDPK底物通过体外磷酸化反应[20]、蛋白互作[22]和保守序列分析[81]被鉴定出来(表 1)[4, 82-83], 如:转录因子、热激蛋白、蛋白磷酸酶和离子通道蛋白等, 这些底物通过与CDPK的互作将Ca2+信号级联放大并向下游传导, 进而对相关基因表达、酶代谢、细胞骨架动态变化以及离子和水分的跨膜运输等进行调节, 使植物在生长发育、应对抵抗非生物胁迫和生物胁迫等方面产生相应的变化[3], 如:Milla等[84]和Curran等[85]先后发现AtCPK4、AtCPK10、AtCPK11和AtCPK16拥有共同底物AtDi19, 同时AtCPK10还可以与HSP1互作[44]; 而AtCPK4、AtCPK11、AtCPK12和AtCPK32都可以与ABF4互作[45-47]; AtCPK8的直接作用底物是拟南芥过氧化氢酶CAT3[58]; AtCPK12以蛋白磷酸酶ABI2作为底物[47]; 阴离子通道蛋白SLAC1是AtCPK21和AtCPK23共同的下游底物[25, 27]

表 1 已知的潜在CDPK底物[4, 82-83] Table 1 Known potential substrates of CDPK

许多研究已经鉴定出一些与CDPK的作用底物相应的潜在磷酸化基序, 目前已知的基序主要分为:1) 经典磷酸化基序:Φ-5-X-R-3-X-X-[ST0]-。其中:Φ为疏水性氨基酸(下同); X为任何氨基酸(下同); R为碱性氨基酸(下同)。2) ACA2磷酸化基序:[R-9-R-8-X-R-6]-Φ-5-X-X-X-X-S0-X-R+2-。3) ACS磷酸化基序:Φ-3-R-2-Φ-1-S0-Φ+1-x-K+3-R+4[4, 85-86]

4 大豆钙依赖蛋白激酶研究进展

Harmon等[86]于1987年在大豆中第1次分离、纯化和鉴定出CDPK蛋白。随后, Harper等[34]对该蛋白进行蛋白酶水解纯化并进行测序, 根据蛋白测序结果设计简并引物, 从大豆基因组中扩增出长度为151 bp的DNA片段, 进而通过杂交探针从大豆cDNA文库中筛选出第1个编码大豆CDPK蛋白的基因——GmCDPKSK 5。随后, Lee等[87]从大豆中克隆出2个CDPK同系物GmCDPKβGmCDPKγ基因。Tang等[88]克隆了3个大豆种子GmCDPKSeedaGmCDPKSeedbGmCDPKSeedc基因。迄今, 大豆中共报道了GmCDPKSeedaGmCDPKSeedbGmCDPKSeedcGmCDPKSK 5GmCDPKβGmCDPKγ等6个CDPK基因。Lee等[89]在对不同CDPK同系物的底物特性的研究中发现, 不同的同系物受Ca2+活化所需的Ca2+浓度也不同, 大豆SK5、β、γ磷酸化syntide-2所需Ca2+K0.5(米氏常数)分别为0.06、0.4、1.0 μmol · L-1[17]。赵弘巍等[90]研究发现大豆叶片质膜上相对分子质量为57×103的钙依赖蛋白激酶具有较强的体外自磷酸化活性, 且人工诱导衰老处理可明显促进其体外自磷酸化水平, 同时外源6-BA预处理可有效抑制其体外自磷酸化水平, 说明该激酶可能参与外源细胞分裂素对大豆叶片衰老的调控过程。Liu等[91]发现在大豆体内GmCDPKSK5和GmCDPKγ可以通过调节GmSerat2;1的磷酸化参与抵御氧化胁迫。Wang等[92]和王爽等[93]研究发现, 在高温高湿胁迫下, 种子田间劣变抗性品种‘湘豆3号’和种子田间劣变不抗品种‘宁镇1号’在种子活力形成时期的种子中钙依赖蛋白激酶CDPK受高温高湿胁迫诱导在品种间呈显著差异积累。进一步研究发现, GmCDPKSK 5在发育种子中呈组织特异性高表达, 而且GmCDPKSK5在高种子活力品种活力形成时期响应高温高湿胁迫呈显著上调表达, 而在低种子活力品种中呈下调表达, 说明其与高温高湿胁迫下春大豆种子活力的形成相关[93]。通过构建高温高湿胁迫下春大豆种质cDNA膜蛋白酵母双杂交文库, 以GmCDPKSK 5 cDNA克隆为诱饵对文库进行筛选和回转验证, 获得了6个与之互作的蛋白:1个LEA蛋白、1个翻译控制肿瘤蛋白、1个种子成熟蛋白、1个微粒体油酸脱氢酶以及2个未知功能蛋白[94]

5 展望

CDPK在参与植物激素应答和响应逆境胁迫机制方面取得了很大进展, 但仍有很多方面需要进行深入的研究。植物体内存在一套非常完善的抵御胁迫的应答机制, 同一刺激能引发不同信号的传递途径, 同时各途径之间存在相互作用, 所以研究CDPK参与不同信号转导以及蛋白激酶之间的相互关系, 对于揭示植物逆境信息传递的机制有重要意义。

今后, 本实验室将在前期研究的基础上, 以GmCDPKSK 5为对象, 在大豆种子活力形成关键时期(R6~R7期)进一步对高温高湿胁迫下与GmCDPKSK5互作的关键蛋白及其互作方式, 高、低种子活力春大豆种质种子钙信号特征及其对GmCDPKSK 5表达影响, GmCDPKSK5与互作蛋白受钙信号调控的方式及GmCDPKSK 5参与种子活力形成的机制等方面进行深入的研究, 以期揭示GmCDPKSK5参与田间高温高湿胁迫下春大豆种子活力形成的机制。

参考文献(References)
[1] Hetherington A, Trewavas A. Calcium-dependent protein kinase in pea shoot membranes[J]. FEBS Letters, 1982, 145(1): 67–71. DOI: 10.1016/0014-5793(82)81208-8
[2] Harmon A C, Gribskov M, Gubrium E, et al. The CDPK superfamily of protein kinases[J]. New Phytol, 2001, 151(1): 175–183. DOI: 10.1046/j.1469-8137.2001.00171.x
[3] Harmon A C, Gribskov M, Harper J F. CDPKs:a kinase for every Ca2+ signal?[J]. Trends Plant Sci, 2000, 5(4): 154–159. DOI: 10.1016/S1360-1385(00)01577-6
[4] Cheng S H, Willmann M R, Chen H C, et al. Calcium signaling through protein kinases:the Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiol, 2002, 129(2): 469–485. DOI: 10.1104/pp.005645
[5] Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol, 2003, 132(2): 666–680. DOI: 10.1104/pp.102.011999
[6] Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J]. Trends Plant Sci, 2013, 18(1): 30–40. DOI: 10.1016/j.tplants.2012.08.008
[7] Asano T, Tanaka N, Yang G X, et al. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families:comprehensive analysis of the CDPKs gene family in rice[J]. Plant Cell Physiol, 2005, 46(2): 356–366. DOI: 10.1093/pcp/pci035
[8] Ray S, Agarwal P, Arora R, et al. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice(Oryza sativa ssp.indica)[J]. Mol Genet Genomics, 2007, 278(5): 493–505. DOI: 10.1007/s00438-007-0267-4
[9] Kong X, Lü W, Jiang S, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize[J]. BMC Genomics, 2013, 14: 433. DOI: 10.1186/1471-2164-14-433
[10] Li A L, Zhu Y F, Tan X M, et al. Evolutionary and functional study of the CDPK gene family in wheat(Triticum aestivum L.)[J]. Plant Mol Biol, 2008, 66(4): 429–443. DOI: 10.1007/s11103-007-9281-5
[11] Zuo R, Hu R, Chai G, et al. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar(Populus trichocarpa)[J]. Mol Biol Rep, 2013, 40(3): 2645–2662. DOI: 10.1007/s11033-012-2351-z
[12] Hu Z, Lü X, Xia X, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in tomato[J]. Front Plant Sci, 2016, 7. DOI: 10.3389/fpls.2016.00469
[13] Stone J M, Walker J C. Plant protein kinase families and signal transduction[J]. Plant Physiol, 1995, 108(2): 451–457. DOI: 10.1104/pp.108.2.451
[14] Camoni L, Fullone A M R, Marra B M, et al. The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase[J]. Physiol Plant, 1998, 104(4): 549–555. DOI: 10.1034/j.1399-3054.1998.1040405.x
[15] Schenk P W, Snaar-Jagalska B E. Signal perception and transduction:the role of protein kinases[J]. Biochim Biophys Acta, 1999, 1449(1): 1–24. DOI: 10.1016/S0167-4889(98)00178-5
[16] 梁小娥, 张大鹏, 贾文锁. 苹果和葡萄果实蛋白激酶特性分析[J]. 植物生理学报, 2000, 26(3): 257–262.
Liang X E, Zhang D P, Jia W S. Analysis of protein kinase characteristics in developing apple and grape fruits[J]. Acta Phytophysiologica Sinica, 2000, 26(3): 257–262. (in Chinese with English abstract)
[17] 刘贯山, 陈珈. 钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用[J]. 植物学通报, 2003, 20(2): 160–167.
Liu G S, Chen J. Roles of calcium-dependent protein kinases(CDPKs)in plant calcium signal transduction[J]. Chinese Bulletin of Botany, 2003, 20(2): 160–167. (in Chinese with English abstract)
[18] Wan B, Lin Y J, Mou T M. Expression of rice Ca2+-dependent protein kinases(CDPKs)genes under different environmental stresses[J]. FEBS Letters, 2007, 581(6): 1179–1189. DOI: 10.1016/j.febslet.2007.02.030
[19] 刘贯山. 蚕豆叶片表皮钙依赖蛋白激酶(CDPK)基因克隆和表达分析[D]. 北京: 中国农业大学, 2004.
Liu G S. Cloning and expression of a novel gene encoding CDPK in Vicia faba and identification of the phosphorylation site of V-ATPase subunit A in Zea mays[D]. Beijing:China Agricultural University, 2004(in Chinese with English abstract).
[20] Roberts D M, Harmon A C. Calcium-modulated proteins:targets of intracellular calcium signals in higher plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 375–414. DOI: 10.1146/annurev.pp.43.060192.002111
[21] Grabski S E, Busch B, Schindler M. Regulation of actin tension in plant cells by kinases and phosphatases[J]. Plant Physiol, 1998, 116(1): 279–290. DOI: 10.1104/pp.116.1.279
[22] Patharkar O R, Cushman J C. A stress-induced calcium-dependent protein kinase from Mesombryanthemum crystallinum phosphorylates a two-component pseudo-response regulator[J]. Plant J, 2000, 24(5): 679–691. DOI: 10.1046/j.1365-313x.2000.00912.x
[23] Chen S, Chen J, Wang C X. Existence and characteristics of tonoplast-bound protein kinase in the cell of maize root[J]. Acta Bot Sin, 2002, 44(6): 661–666.
[24] Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases[J]. Annu Rev Plant Biol, 2004, 55(4): 263–288.
[25] Geiger D, Scherzer S, Mumm P, et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities[J]. Proc Natl Acad Sci USA, 2010, 107(17): 8023–8028. DOI: 10.1073/pnas.0912030107
[26] Zhao R, Sun H L, Mei C, et al. The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth[J]. New Phytol, 2011, 192(1): 61–73. DOI: 10.1111/j.1469-8137.2011.03793.x
[27] Franz S, Ehlert B, Liese A, et al. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana[J]. Mol Plant, 2011, 4(1): 83–96. DOI: 10.1093/mp/ssq064
[28] Chen J, Xue B, Xia X, et al. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance[J]. Biochem Biophys Res Comm, 2013, 441(3): 630–636. DOI: 10.1016/j.bbrc.2013.10.103
[29] Jiang S, Zhang D, Wang L, et al. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2013, 71(2): 112–120.
[30] Ding Y F, Cao J, Ni L, et al. ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize[J]. J Exp Bot, 2013, 64(4): 871–884. DOI: 10.1093/jxb/ers366
[31] Campo S, Baldrich P, Messeguer J, et al. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation[J]. Plant Physiol, 2014, 165(2): 688–704. DOI: 10.1104/pp.113.230268
[32] Wang L, Yu C, Xu S, et al. OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice[J]. Plant Cell Environ, 2016, 39(12): 2740–2753. DOI: 10.1111/pce.v39.12
[33] Zhao R, Sun H L, Zhao N, et al. The Arabidopsis Ca2+-dependent protein kinase CPK27 is required for plant response to salt-stress[J]. Gene, 2015, 563(2): 203–214. DOI: 10.1016/j.gene.2015.03.024
[34] Harper J F, Sussman M R, Schaller G E, et al. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin[J]. Science, 1991, 252(5008): 951–954. DOI: 10.1126/science.1852075
[35] Klimecka M, Muszynska G. Structure and functions of plant calcium-dependent protein kinases[J]. Acta Biochim Pol, 2007, 54(2): 219–233.
[36] Breviario D, Morello L, Giani S. Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases[J]. Plant Mol Biol, 1995, 27(5): 953–967. DOI: 10.1007/BF00037023
[37] Hrabak E M, Dickmann L J, Satterlee J S, et al. Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana[J]. Plant Mol Biol, 1996, 31(2): 405–412. DOI: 10.1007/BF00021802
[38] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996, 274(5294): 1900–1902. DOI: 10.1126/science.274.5294.1900
[39] Weljie A M, Clarke T E, Juffer A H, et al. Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean[J]. Proteins, 2000, 39(4): 343–357. DOI: 10.1002/(ISSN)1097-0134
[40] Mori I C, Murata Y, Yang Y, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure[J]. PLoS Biol, 2006, 4(10): 1749–1762.
[41] 王娇娇, 韩胜芳, 李小娟, 等. 钙依赖蛋白激酶(CDPKs)介导植物信号转导的分子基础[J]. 草业学报, 2009, 18(3): 241–250.
Wang J J, Han S F, Li X J, et al. Molecular basis of signal transduction mediated by calcium-dependent protein kinases(CDPKs)in plants[J]. Acta Prataculturae Sinica, 2009, 18(3): 241–250. DOI: 10.11686/cyxb20090333(in Chinese with English abstract)
[42] Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells[J]. New Phytol, 2001, 151(1): 7–33. DOI: 10.1046/j.1469-8137.2001.00173.x
[43] Ludwig A A, Romeis T, Jones J D. CDPK-mediated signalling pathways:specificity and cross-talk[J]. J Exp Bot, 2004, 55(395): 181–188.
[44] Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress[J]. Plant Physiol, 2010, 154(3): 1232–1243. DOI: 10.1104/pp.110.157545
[45] Choi H I, Park H J, Park J H, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid responsive gene expression, and modulates its activity[J]. Plant Physiol, 2005, 139(4): 1750–1761. DOI: 10.1104/pp.105.069757
[46] Zhu S Y, Yu X C, Wang X J, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis[J]. Plant Cell, 2007, 19(10): 3019–3036. DOI: 10.1105/tpc.107.050666
[47] Zhao R, Wang X F, Zhang D P. CPK12:a Ca2+-dependent protein kinase balancer in abscisic acid signaling[J]. Plant Signal Behav, 2011, 6(11): 1687–1690. DOI: 10.4161/psb.6.11.17954
[48] Asano T, Hakata M, Nakamura H, et al. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice[J]. Plant Mol Biol, 2011, 75(1/2): 179–191.
[49] Szczegielniak J, Borkiewicz L, Szurmak B, et al. Maize calcium-dependent protein kinase(ZmCPK 1):local and systemic response to wounding, regulation by touch and components of jasmonate signaling[J]. Physiol Plant, 2012, 146(1): 1–14. DOI: 10.1111/ppl.2012.146.issue-1
[50] Botella J R, Arteca J M, Somodevilla M, et al. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean(Vigna radiata)[J]. Plant Mol Biol, 1996, 30(6): 1129–1137. DOI: 10.1007/BF00019547
[51] Davletova S, Mészáros T, Miskolczi P, et al. Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells[J]. J Exp Bot, 2001, 52(355): 215–221. DOI: 10.1093/jxb/52.355.215
[52] Zhang M, Liang S, Lu Y T. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase[J]. Biochim Biophys Acta, 2005, 1729(3): 174–185. DOI: 10.1016/j.bbaexp.2005.04.006
[53] Yang G, Shen S, Yang S, et al. OsCDPK13, a calcium-dependent protein kinase from rice, is induced in response to cold and gibberellin[J]. Plant Physiol Biochem, 2003, 41(4): 369–374. DOI: 10.1016/S0981-9428(03)00032-9
[54] Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J]. Mol Gen Genet, 1994, 244(4): 331–340.
[55] Yoon G M, Cho H S, Ha H J, et al. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein[J]. Plant Mol Biol, 1999, 39(5): 991–1001. DOI: 10.1023/A:1006170512542
[56] Saijo Y, Kinoshita N, Ishiyama K, et al. A Ca2+-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles[J]. Plant Cell Physiol, 2001, 42(11): 1228–1233. DOI: 10.1093/pcp/pce158
[57] Xu J, Tian Y S, Peng R H, et al. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta, 2010, 231(6): 1251–1260. DOI: 10.1007/s00425-010-1122-0
[58] Zou J J, Li X D, Ratnasekera D, et al. Arabidopsis calcium-dependent protein kinase8 and catalase3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress[J]. Plant Cell, 2015, 27(5): 1445–1460. DOI: 10.1105/tpc.15.00144
[59] 刘亚茹, 吕丽莎, 程瑾, 等. CDPKs在植物适应非生物胁迫过程中的调节作用[J]. 植物生理学报, 2015, 51(9): 1387–1394.
Liu Y R, Lü L X, Cheng J, et al. Mechanism of CDPKs in plant adaptation to abiotic stress[J]. Plant Physiology Journal, 2015, 51(9): 1387–1394. (in Chinese with English abstract)
[60] Ma S Y, Wu W H. AtCPK23 functions in Arabidopsis responses to drought and salt stresses[J]. Plant Mol Biol, 2007, 65(4): 511–518. DOI: 10.1007/s11103-007-9187-2
[61] Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant J, 2000, 23(3): 319–327. DOI: 10.1046/j.1365-313x.2000.00787.x
[62] Wei S, Hu W, Deng X, et al. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility[J]. BMC Plant Biol, 2014, 14(1): 133. DOI: 10.1186/1471-2229-14-133
[63] Asano T, Hayashi N, Kobayashi M, et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance[J]. Plant J, 2012, 69(1): 26–36. DOI: 10.1111/tpj.2011.69.issue-1
[64] Almadanim M C, Alexandre B M, Rosa M T, et al. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response[J]. Plant Cell Environ, 2017. DOI: 10.1111/pce.12916
[65] 龙素霞. 小麦CDPK基因分子特征、表达和TaCDPK1遗传转化[D]. 保定: 河北农业大学, 2009.
Long S X. The molecular characterization, expression pattern of wheat CDPKs and genetic transformation of TaCDPK1[D]. Baoding:Agricultural University of Hebei, 2009(in Chinese with English abstract). http://www.doc88.com/p-3367115537674.html
[66] Geng S F, Zhao Y L, Tang L C, et al. Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species:a case study in wheat(Triticum aestivum L.)[J]. Gene, 2011, 475(2): 94–103. DOI: 10.1016/j.gene.2010.12.015
[67] Weckwerth P, Ehlert B, Romeis T. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling[J]. Plant Cell Environ, 2015, 38(3): 544–558. DOI: 10.1111/pce.2015.38.issue-3
[68] Szczegielniak J, Klimecka M, Liwosz A, et al. A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase[J]. Plant Physiol, 2005, 139(4): 1970–1983. DOI: 10.1104/pp.105.066472
[69] Anil V S, Rao K S. Purification and characterization of a Ca2+-dependent protein kinase from sandalwood(Santalum album L.):evidence for Ca2+-induced conformational changes[J]. Phytochemistry, 2001, 58(2): 203–212. DOI: 10.1016/S0031-9422(01)00231-X
[70] Romeis T, Ludwing A A, Martin R, et al. Calcium-dependent protein kinases play an essential role in a plant defence response[J]. EMBO J, 2001, 20(20): 5556–5567. DOI: 10.1093/emboj/20.20.5556
[71] Chen S, Liu G S, Wang Y Y, et al. Cloning of a calcium-dependent protein kinase gene NtCDPK12, and its induced expression by high-salt and drought in Nicotiana tabacum[J]. Agric Sci China, 2011, 10(12): 1851–1860. DOI: 10.1016/S1671-2927(11)60185-5
[72] Chang W J, Su H S, Li W J, et al. Expression profiling of a novel calcium-dependent protein kinase gene, LeCPK2, from tomato(Solanum lycopersicum)under heat and pathogen-related hormones[J]. Biosci Biotechnol Biochem, 2009, 73(11): 2427–2431. DOI: 10.1271/bbb.90385
[73] Chico J M, Raíces M, Téllez-Iñón M T, et al. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants[J]. Plant Physiol, 2002, 128(1): 256–270. DOI: 10.1104/pp.010649
[74] 畅文军, 付桂, 陈鑫, 等. 番茄钙依赖性蛋白激酶基因LeCPK2在热(光)胁迫中的功能鉴定[J]. 基因组学与应用生物学, 2011, 30(4): 338–345.
Chang W J, Fu G, Chen X, et al. Functional characterization of a tomato calcium-dependent protein kinase gene, LeCPK2, involved in heat(light)stress[J]. Genomics and Applied Biology, 2011, 30(4): 338–345. (in Chinese with English abstract)
[75] Fedorowicz-Strońska O, Koczyk G, Kaczmarek M, et al. Genome-wide identification, characterisation and expression profiles of calcium-dependent protein kinase genes in barley(Hordeum vulgare L.)[J]. J Appl Genet, 2017, 58(1): 11–22. DOI: 10.1007/s13353-016-0357-2
[76] Hepler P K, Vidali L, Cheung A Y. Polarized cell growth in higher plants[J]. Annu Rev Cell Dev Biol, 2001, 17: 159–187. DOI: 10.1146/annurev.cellbio.17.1.159
[77] Sano T, Higaki T, Handa K, et al. Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses[J]. FEBS Letters, 2006, 580(2): 597–602. DOI: 10.1016/j.febslet.2005.12.074
[78] Asano T, Kunieda N, Omura Y, et al. Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development:phosphorylation of sucrose synthase is a possible factor[J]. Plant Cell, 2002, 14: 619–628. DOI: 10.1105/tpc.010454
[79] Fedosejevs E T, Gerdis S A, Ying S, et al. The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds[J]. Biochem J, 2016, 473(20): 3667–3682. DOI: 10.1042/BCJ20160531
[80] Santin F, Bhogale S, Fantino E, et al. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development[J]. Physiol Plant, 2017, 159(2): 244–261. DOI: 10.1111/ppl.2017.159.issue-2
[81] Huang J Z, Hardin S C, Huber S C. Identification of a novel phosphorylation motif for CDPKs:phosphorylation of synthetic peptides lacking basic residues at P-3/P-4[J]. Arch Biochem Biophys, 2001, 393(1): 61–66. DOI: 10.1006/abbi.2001.2476
[82] 曹敏. 盐芥ThCDPK9基因功能研究[D]. 济南: 山东师范大学, 2009.
Cao M. The functional study of Thellungiella halophila CDPK9[D]. Jinan:Shandong Normal University, 2009(in Chinese with English abstract).
[83] 张丽. 烟草钙依赖蛋白激酶基因分析与作用底物筛选[D]. 北京: 中国农业科学院, 2012.
Zhang L. Gene analysis and substrate screening of tobacco calcium-dependent protein kinases[D]. Beijing:Chinese Academy of Agricultural Sciences, 2012(in Chinese with English abstract).
[84] Milla R M A, Uno Y, Chang I F, et al. A novel yeast two-hybrid approach to identify CDPK substrates:characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein[J]. FEBS Letters, 2006, 580(3): 904–911. DOI: 10.1016/j.febslet.2006.01.013
[85] Curran A, Chang I F, Chang C L, et al. Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates[J]. Front Plant Sci, 2011, 2(12): 1085–1091.
[86] Harmon A C, Putnam-Evans C, Cormier M J. A calcium-dependent but calmodulin-independent protein kinase from soybean[J]. Plant Physiol, 1987, 83(4): 830–837. DOI: 10.1104/pp.83.4.830
[87] Lee J Y, Roberts D M, Harmon A C. Isolation of two new CDPK isoforms(Accession Nos.U69173 and U69174) from soybean(Glycine max L.)[J]. Plant Physiol, 1997, 115: 314–321.
[88] Tang G Q, Novitzky W P, Carol G H, et al. Oleate desaturase enzymes of soybean:evidence of regulation through differential stability and phosphorylation[J]. Plant J, 2005, 44(3): 433–446. DOI: 10.1111/tpj.2005.44.issue-3
[89] Lee J Y, Yoo B C, Harmon A C. Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean[J]. Biochemistry, 1998, 37(19): 6801–6809. DOI: 10.1021/bi980062q
[90] 赵弘巍, 宋爽, 朱亮基, 等. 大豆叶片57 kD钙依赖蛋白激酶自磷酸化性质的研究[J]. 南开大学学报(自然科学版), 2002, 35(4): 16–19.
Zhao H W, Song S, Zhu L J, et al. Study on the autophosphorylation characteristics of a 57 kD CDPK from soybean primaryleaf[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2002, 35(4): 16–19. (in Chinese with English abstract)
[91] Liu F L, Yoo B C, Lee J Y, et al. Calcium-regulated phosphorylation of soybean serine acetyl transferase in response to oxidative stress[J]. J Biol Chem, 2006, 281(37): 27405–27415. DOI: 10.1074/jbc.M604548200
[92] Wang L Q, Ma H, Song L R, et al. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress[J]. J Proteomics, 2012, 75(7): 2109–2127. DOI: 10.1016/j.jprot.2012.01.007
[93] 王爽, 牛娟, 陶源, 等. 2个大豆CDPK蛋白基因的分离、表达分析和亚细胞定位[J/OL]. 中国科技论文在线, 201308-34.
Wang S, Niu J, Tao Y, et al. Isolation, expression and subcellular localization of the two CDPK protein genes in soybean[Glycine max(L.)Merr.][J/OL]. Sciencepaper Online, 201308-34(in Chinese with English abstract).
[94] 王爽. 高温高湿下大豆钙依赖蛋白激酶基因在种子活力中的功能分析[D]. 南京: 南京农业大学, 2016.
Wang S. Function analysis of soybean[Glycine max(L.)Merr.]CDPK genes on seed vigor under high temperature and humidity[D]. Nanjing:Nanjing Agricultural University, 2016(in Chinese with English abstract).