林业科学  2019, Vol. 55 Issue (5): 142-151   PDF    
DOI: 10.11707/j.1001-7488.20190516
0

文章信息

林元震.
Lin Yuanzhen.
林木基因型与环境互作的研究方法及其应用
Research Methodologies for Genotype by Environment Interactions in Forest Trees and Their Applications
林业科学, 2019, 55(5): 142-151.
Scientia Silvae Sinicae, 2019, 55(5): 142-151.
DOI: 10.11707/j.1001-7488.20190516

文章历史

收稿日期:2018-11-05
修回日期:2018-11-28

作者相关文章

林元震

林木基因型与环境互作的研究方法及其应用
林元震     
华南农业大学林学与风景园林学院 广东省森林植物种质创新与利用重点实验室 广州 510642
摘要: 我国是全球第一大木材进口国和第二大木材消费国,木材对外依存度已连续多年超过50%。然而,我国每公顷森林年均生长量约为林业发达国家水平的一半,这说明我国林木育种水平与林业发达国家相比仍有较大差距。因此,加强林木的规模化试验与精准遗传评估,通过林木良种的精确选育与推广对提高我国人工林的生产力水平具有重要意义。基因型与环境互作是林木规模化试验与精准遗传评估的重要环节之一。基因型与环境互作(G×E)是指基因型的相对表现在不同环境下缺乏稳定性,表现为不同环境下基因型排序变化或基因型间差别不恒定。现有研究证实,林木G×E很普遍且通常很大,要找到具有广泛适应性的优良基因型往往较困难。由于G×E会减小遗传力和遗传增益,因此了解G×E效应及其驱动环境因子,对育种设计、良种选育和种苗配置至关重要。本文归纳了目前研究G×E的主流分析方法(包括因子分析法、BLUP-GGE联合分析法)和遗传力的估算方法,也比较了这些G×E分析方法(包括稳定性分析、B型遗传相关、AMMI分析、GGE双标法、因子分析法和BLUP-GGE联合分析法)的优缺点,其次综述了全球重要经济树种(湿地松、火炬松、欧洲云杉、巨桉、辐射松、花旗松,等)近年来在生长性状(胸径、树高、材积,等)、形质性状(通直度、分枝角度、分枝大小,等)和材性性状(木材密度、弹性模量,等)的G×E研究进展,进而讨论了林木G×E的环境驱动因子及其应对策略,最后针对林木G×E研究新方法开发、加强多性状的G×E分析以及将基因组选择融入G×E分析方面对未来研究方向提出建议:1)新的林木遗传分析模型与G×E分析的联合应用;2)林木多环境、多性状的G×E的模式和幅度;3)特定环境的林木基因组育种值的精准估计。
关键词:基因型与环境互作    G× E驱动因素    遗传相关    遗传力    遗传增益    
Research Methodologies for Genotype by Environment Interactions in Forest Trees and Their Applications
Lin Yuanzhen     
Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architecture, South China Agricultural University Guangzhou 510642
Abstract: China is the largest wood importer and the second largest wood consumer in the world, and its dependence on external supply has exceeded 50% for several years. However, the average annual growth of forest per hectare in China is about half of that in the developed countries in forestry, which indicates that there is still larger gap in tree breeding in China, compared with the developed countries in forestry. Therefore, strengthening the large-scale experiments and accurate genetic evaluation of forest trees has great significance in improving the productivity of China's plantation forests through the precise selection and breeding of tree varieties. Genotype by environment interaction is one of the important contents of large-scale experiments and accurate genetic evaluation of forest trees. Genotype by environment interaction (G×E) refers to a lack of consistency in the relative performance of genotypes among different environments, and represents differences in genotype rankings or differences in performance inconstant among environments. Existing studies have confirmed that G×E is very common and often large in forest trees, and it is usually difficult to find consistently superior genotypes with broad adaptation. Since G×E can reduce heritability and genetic gain, understanding the G×E effects and their environmental drivers is vital to mating design, species/variety selection and genotype deployment. The paper reviews the current main analytical method for identifying G×E(including factor analytic method and BLUP-GGE joint analysis) and estimating heritability, and compares the strength and weakness of these analytical method (including stability analysis, type-B genetic correlation, AMMI, GGE biplot, factor analytic method and BLUP-GGE joint analysis), and also reviews the progress of G×E studies on growth traits (such as diameter at breast height, height and volume), form traits (such as stem straightness, branch angle and branch size) and wood properties (such as wood density and modulus of elasticity) in forest species (such as Pinus elliottii, Pinus taeda, Picea abies, Eucalyptus grandis, Pinus radiata and Pseudotsuga menziesii) of global economic importance. Moreover, the paper discusses the environmental drivers that cause G×E and strategies for dealing with G×E in tree breeding. Finally, the future research of G×E is proposed, alongside development of new analytical method, focusing on multi-variate model of G×E and integration of genomic selection with G×E. New genetic analysis model for forest trees should be adopted into G×E studies. The patterns and magnitude of G×E should be focused on multi-variate model for multi-environment trials. Accurate estimation of environment-specific genomic breeding values of forest trees should be performed.
Key words: genotype by environment interaction    G×E drivers    genetic correlation    heritability    genetic gain    

林木表型(P)受基因型(G)、环境(E)及其互作(G×E)控制。基因型指不同树种,或同一树种的不同种源、家系或无性系。环境指种植地点,或地点内的具体环境因子,比如土壤、海拔、气候及栽培措施等(White et al., 2007)。当基因型的相对表现在环境间发生变化时,即存在G×E。因此,在一个环境中表现优良的基因型可能在另一个环境中表现较差(Falconer et al., 1996)。此外,G×E可能会导致难以预测基因型在一些特定环境下的表现。由此可见,研究和了解G×E对林木育种设计、种苗配置及良种选育至关重要。

林木G×E主要有2种类型(White et al., 2007):1)秩次效应(rank-change interaction),即基因型在不同环境中的排名不同;2)尺度效应(scale-effect interaction),即基因型间差别在不同环境中发生变化,但基因型排序没有变化。因此,需要确定G×E的模式和尺度,以估计林分的最佳遗传增益(Muir et al., 1992)。由于研究人员主要关注基因型的评估和选择,所以对秩次效应通常更感兴趣。对于林木,几乎所有重要商业树种中都报道了显著的G×E,比如湿地松(Pinus elliottii)(Hodge et al., 1992)、火炬松(Pinus taeda)(McKeand et al., 1997)、欧洲云杉(Picea abies)(Costa et al., 2000)、巨桉(Eucalyptus grandis)(Osorio et al., 2001)、辐射松(Pinus radiata)(Wu et al., 2005)、杂交杨(Populus trichocarpa × P. deltoides)(Rae et al., 2008)、花旗松(Pseudotsuga menziesii)(Dungey et al., 2012)、杉木(Cunninghamia lanceolata)(Bian et al., 2014)和日本落叶松(Larix kaempferi)(Diao et al., 2016)。

现有研究证实,林木G×E通常很大,要找到具有广泛适应性的优良基因型往往较困难。所以,林业研究者为避免G×E,要么选择对环境变化不敏感的稳定基因型,要么选择适应特定环境的基因型。同时,对G×E模式和幅度的认识有助于提高林分的遗传增益。比如多地点的因子分析模型,能很好地捕获G×E的模式和幅度,并据此做到在合适的地点使用合适的基因型,从而提高了生产林分的遗传增益(Cullis et al., 2014)。因此,G×E分析已成为近年来林木育种领域的研究热点。

本文归纳了目前研究G×E的主流分析方法以及在G×E情况下的遗传力估算方法,并综述了近年来重要商业树种中G×E研究现状,讨论了G×E的驱动环境因子及其应对策略,最后针对当前林木G×E的存在问题,提出未来林木G×E研究的关键问题和研究重点。

1 估计G×E互作的分析方法

已经提出了一些分析方法,用于测量林木性状G×E的程度,包括稳定性分析(Finlay et al., 1963)、B型遗传相关(Burdon,1977)、AMMI分析(Gauch,1992)、GGE双标法(Yan et al., 2000)、因子分析法(Cullis et al., 2014)和BLUP-GGE联合分析法(程玲等,2018)。所有这些方法都可用线性模型来实现。下文将主要介绍比较新颖的因子分析法和BLUP-GGE联合分析法,并归纳了各种G×E研究方法的优缺点。

1.1 因子分析法

在多环境试验中,因子分析(factor analytic,FA)模型是基于使用主成分分析的特征向量(Smith et al., 2001),并扩展为容纳加性效应和非加性效应(Cullis et al., 2014)。FA模型旨在确定导致变量间相关的共同因子,降低对应于G×E的地点间变异的维度(Cullis et al., 2014)。因子数称为模型阶数,阶数k的FA模型表示为FAk

假设线性混合模型如下:

$ \mathit{\boldsymbol{y}} = \mathit{\boldsymbol{X\beta }} + \mathit{\boldsymbol{Zu}} + \mathit{\boldsymbol{e}}, $

式中:y是观测表型向量;β是固定效应向量;u是随机加性效应向量,u~N(0,G$ \otimes $A),G是加性遗传方差协方差矩阵,A是加性相关矩阵,$ \otimes $表示克罗内克积;e是误差效应向量;XZ是与βu相关的设计矩阵。

对于s个试验、m个基因型的加性遗传效应,FAk模型可建模为u=(Λ$ \otimes $Im)f +δ(Cullis et al., 2014),其中Λs×k的载荷矩阵,Imm×m的单位矩阵,fmk×1的分值向量,δms×1的遗传回归误差向量。Var(u)=(ΛΛ′+Ψ)$ \otimes $Im,假定Var(f)=Imk,Var(δ)=ψ$ \otimes $Im,其中ψs×s对角矩阵(对角元素为每个环境的特殊方差),随机效应fδ的向量为零均值的多元高斯独立分布。ΛΨ可以用REML法估计。

1.2 BLUP-GGE联合分析法

虽然GGE方法有图示G×E的优点,但其要求数据平衡、环境同质和仅限固定效应模型,极大限制了在林业上的应用。合理的空间分析模型可以消除试验设计因子并提高遗传评估的准确性,因此,空间分析已成为林木遗传评估的常规方法(Dutkowski,2005)。最近,本课题组提出了BLUP-GGE联合分析法(程玲等,2018),具体为对试验数据采用空间分析与因子分析相结合的统计模型获取每个地点下每个基因型的BLUP值,之后再对BLUP值进行GGE双标分析。

获取BLUP的统计模型为:

$ y_{i j k}=\mu+S_{i}+S G_{i(j)}+e_{i j k}, $

式中:yijk为表型值;μ为总体均值; Si为第i个地点固定效应;SGi(j)为第i个地点与第j个基因型的随机交互效应;eijk为误差。使用上述的因子分析法(Cullis et al., 2014)拟合SGi(j)效应,对误差eijk采用常规的空间分析(Dutkowski,2005)。对后续的BLUP值进行GGE双标分析,方法同常规的GGE双标法(Yan et al., 2000)。

1.3 林木G×E研究方法的比较

表 1归纳了当前林木G×E研究方法的优缺点。稳定性分析是最早的研究方法,优点比较有限,仅能确定跨多个环境的稳定基因型。B型遗传相关代表了多种环境下基因型排序变化的模式,能估算地点间的遗传相关,并据此对试验地进行归类,但不能用于大量环境试验的分析。AMMI分析法和GGE双标法都将主效应和互作效应作为固定效应,并假定残差方差为独立同分布(Piepho,1995);通过绘制每个基因型和环境的互作效应的主成分得分,使用双标图来提供结果的解释,能确定稳定式和互作式的最优基因型(Yan et al., 2000);缺点是不能估算遗传参数。因子分析模型可为所有试验地间的遗传相关估计提供可靠、简约的全局方法(Cullis et al., 2014Smith et al., 2015),对育种群体选择和生产群体配置的决策非常有用,是当前分析林木G×E的国际主流方法,但其在G×E的可视化方面比较薄弱。本课题组提出的BLUP-GGE联合分析法(程玲等,2018),综合了空间分析、因子分析方法以及GGE双标法的优点,能有效估算遗传参数,也能确定稳定式和互作式的最优基因型,还能有效地可视化G×E。综上,稳定性分析、AMMI分析法和GGE双标法不能使用线性混合模型估算育种值等遗传参数,B型遗传相关分析法对大量环境试验数据的分析能力有限,所以从分析结果的可靠性和全面性考虑,笔者认为因子分析方法和BLUP-GGE联合分析法更适用于林木的多环境试验分析。

表 1 林木G×E研究方法的比较 Tab.1 Comparison of analytical methodology for G×E in forest trees
2 G×E下遗传力的估算方法

假设多地点分析的线性模型为:

$ y_{i j k}=\mu+S_{i}+S G_{i(j)}+e_{i j k}, $

式中:yijk为表型值; μ为总体均值; Si为第i个地点固定效应;SGi(j)为第i个地点与第j个基因型的随机交互效应;eijk为误差。

跨多地点的遗传力(Isik et al., 2017)计算如下:

$ h^{2}=\frac{\delta_{\mathrm{g}}^{2}}{\delta_{\mathrm{g}}^{2}+\delta_{\mathrm{ge}}^{2}+\delta_{\mathrm{e}}^{2}}, $

式中:h2为遗传力,δg2为基因型方差,δge2为基因型与环境互作方差,δe2为误差方差。

强G×E可在2个方面降低跨地点的遗传力。第一,分母中的大G×E方差直接降低了遗传力;第二,G×E也降低了多地点中遗传方差的估计值,进一步降低了遗传力。例如,在7个地点的联合分析中,平均年增量的单株遗传力为0.08,而其在每2个地点中的单株遗传力都大于0.20(Sierra-Lucero et al., 2003)。此外,G×E也会增加单地点遗传力的估计值。当G×E存在时,单地点的遗传力将被高估,因为一部分G×E方差被划入加性遗传方差,并且当这部分G×E足够大时,会导致遗传力和遗传增益高达60%~100%的高估偏差(Li et al., 2017)。

实际中,跨多地点的遗传力计算可能会比较复杂,Isik等(2017)以火炬松混合授粉为例,列举了不同情况下家系遗传力的估算方法,如表 2所示。

表 2 火炬松混合授粉子代家系遗传力的估算 Tab.2 Estimation of family heritability of loblolly pine polymix mating progeny
3 林木G×E的研究现状

已有各种重要经济树种G×E研究的报道,大多数研究分析了生长性状和形质性状的G×E,也对木材密度等材性性状的G×E做了一些调查。Robertson(1959)认为,当遗传相关≥0.8时,G×E比较弱;Shelbourne(1972)提出,当G×E互作方差达到遗传方差的50%以上时,G×E互作才会对选择的遗传增益有重要影响。

3.1 生长性状的G×E

一般来说,林木生长性状的遗传力比较低,意味着基因型与环境之间的G×E往往比较强。以辐射松的胸径性状为例,澳大利亚10个地点的双列杂交试验结果显示,胸径的G×E互作方差与遗传方差的比值大于0.50,地点间的遗传相关为0.39(Wu et al., 2005)。Ivković等(2015)报道,辐射松20个控制授粉试验中,胸径的成对遗传相关范围为-0.51~0.98,其中近一半的遗传相关值与完全相关系数1显著不同,平均值为0.35。有趣的是,Baltunis and Brawner(2010)报道,辐射松无性系的胸径在澳大利亚的试验地点间存在强G×E,而在新西兰则没有。大量研究证实,辐射松的胸径性状在不同遗传材料、不同试验地点上的遗传相关差异比较大(Wu et al., 2005Ding et al., 2008Gapare et al., 2010Raymond,2011Cullis et al., 2014Ivković et al., 2015),反映了辐射松的胸径性状通常存在较强的G×E。相似的胸径性状G×E在火炬松(Zapata-Valenzuela,2012)、湿地松(Hodge et al., 1992)、花旗松(Dungey et al., 2012)、欧洲云杉(Costa et al., 2000)、蓝桉(Eucalyptus globulus)(Costa et al., 2006)、杂交杨(Populus tremuloides × P. tremula)(Li et al., 1997)、杉木(Bian et al., 2014; Zheng et al., 2016)和日本落叶松(Diao et al., 2016)中也有报道。此外,也有研究报道了其他生长性状的B型遗传相关,比如材积的值域为0.27~0.84(火炬松,Sierra-Lucero et al., 2003;火炬松和湿地松,Roth et al., 2007),树高的值域为0.18~0.95(火炬松,Paul et al., 1997;辐射松,Gwaze et al., 2001)。上述研究表明,对于林木,生长性状往往存在较强的G×E。

对于生长性状,在湿地松(Dieters et al., 1995)、火炬松(Gwaze et al., 2001)、花旗松(Zas et al., 2003)、杉木(Bian et al., 2014Zheng et al., 2016)和日本落叶松(Diao et al., 2016)中均发现地点间的B型遗传相关随树龄增长而增加,表明G×E效应似乎随树龄下降,因此早期生长数据对成熟期的G×E评估可能不可靠。Lin等(2013)在辐射松不同种植密度试验下发现胸径与种植密度的互作方差(G×E)与遗传方差的比值在早期随着树龄增长而增加,到10年生时达到峰值,而后随着树龄增长而降低,这也进一步说明G×E主要存在于辐射松的生长早期阶段。

3.2 形质性状的G×E

干形通常是林木育种计划中的重要性状之一,例如通直度和分枝性状与林木在轮伐期的价格息息相关(Ivković et al., 2006)。形质性状的G×E程度在不同研究中差异较大。目前报道的形质性状的G×E研究主要来自辐射松,且多数研究报道中形质性状的G×E水平低,包括通直度(Johnson et al., 1990Pederick,1990Carson,1991Gapare et al., 2012a)、分枝角度(Gapare et al., 2012a)、分枝大小(Pederick,1990Gapare et al., 2012a)和分枝习性(Johnson et al., 1990Carson,1991)。然而在澳大利亚和新西兰的部分地区中,辐射松的分枝大小和分枝数(Wu et al., 2005)以及通直度(Baltunis et al., 2010)的G×E水平高。此外,Gwaze等(2001)发现火炬松通直度在津巴布韦的G×E水平高,Suontama等(2015)也报道了杏仁桉(Eucalyptus regnans)分枝性状在新西兰的G×E水平高。不过,Dungey等(2012)发现花旗松的通直度在种源与地点的互作上水平高,但在种源内家系与地点的互作上水平低。

3.3 材性性状的G×E

与木材材性相关的性状往往遗传力比较高,因此G×E水平通常较低,例如,木材密度(火炬松,Jett et al., 1991;蓝桉,Muneri et al., 2000;花旗松,Johnson et al., 2006;辐射松,Gapare et al., 20102012b)、弹性模量(花旗松,Dungey et al., 2012;辐射松,Gapare et al., 2012b)和树脂管道性状(火炬松,Westbrook et al., 2014),这些性状的B型遗传相关或地点间遗传相关基本上都大于0.80。然而,巨尾桉(Eucalyptus grandis×E. urophylla)无性系木材基本密度在巴西4个地点的G×E都显著(Lima et al., 2000)。Lin等(2014)报道辐射松除了心材密度的B型遗传相关显著外,而边材密度和木材基本密度G×E则水平低,说明G×E可能在辐射松的早期材性性状中显著。

上述不同性状的B型遗传相关或地点间遗传相关虽然统计上显著,但其可能并未反映G×E的真实幅度,因此合理的试验设计对估算遗传参数至关重要。比如,幼苗群体配置缺乏随机性会导致家系间遗传方差变大(Baltunis et al., 2007)。此外,地点间遗传相关的估计不精确往往与试验地点间共同亲本数量较少有关(Raymond,2011)。

4 林木G×E的环境驱动因子

确定哪些环境因子是G×E的关键驱动因子,对林木育种和种苗配置很重要。这将有助于确定试验环境,以对候选基因型进行测定和评估。Kang(2002)发现,当环境因子对于一些基因型处于次优水平时,则G×E往往反映了基因型间的胁迫响应差异。胁迫可能是生物胁迫(例如病菌或害虫),也可能是非生物胁迫(例如温度、盐度、水分或养分的过量或缺乏)。对于给定的一组基因型,环境越多样化,G×E的幅度可能越大(Li et al., 2015)。G×E可能与亚种或个体基因型对夏季水分胁迫和光胁迫的不同适应性有关,也可能与生物因子的敏感性差异有关(Costa et al., 2006)。

学者们已对辐射松开展了各种研究,以确定环境因子在G×E驱动中的作用。Wu和Matheson(2005)报道,辐射松的G×E互作强是由于2个高海拔地区的大量积雪。Raymond(2011)对辐射松胸径生长的G×E研究发现,海拔是G×E的主要驱动因子。Gapare等(2015)报道最低温度是新西兰辐射松种源试验和子代试验胸径G×E的关键驱动因子。

对于白云杉(Picea glauca),高纬度的种源与旱夏冷冬的地点,高海拔的种源与降水量大、生长季节较短的地点,对树高和胸径的G×E贡献最大(Rweyongeza,2011)。春季或秋季低于3.2 ℃的日均温度,解释了欧洲云杉树高G×E的27.8%,且与FA模型中的第1个因子中等相关,表明春季或秋季霜冻天气可能是欧洲云杉树高G×E的主要驱动因子(Chen et al., 2017)。

此外,与降雨及其季节性有密切关系的叶表病害等生物因子,也是林木胸径和材积G×E的潜在驱动因素。花旗松由落叶病引起的G×E就是一个很好的例子,因为落叶病在较高温度下更普遍,并且在宿主树种群体的地点间可以有完全不同的病害表现和生长差异(Dungey et al., 2012)。

5 林木G×E的应对策略

众所周知,G×E对林木育种者的主要影响是使育种计划复杂化。G×E会影响选择的遗传增益,因为它降低了跨多地点的总遗传力。Sierra-Lucero等(2003)发现,区域1中选择的火炬松家系在区域2中配置,导致每公顷材积年均增量减少4%~8%。因此,学者们提出了2种主要策略来应对林木的G×E:1)选择跨多地点稳定的基因型;2)选择每个地点最适应的基因型以最大化遗传增益(Raymond,2011)。

当没有发现G×E的明显来源时,第1种策略是适用的。该策略旨在选择适应性广的基因型,以获得稳产与高产。澳大利亚(Ding et al., 2008)、新西兰(Carson,1991)的辐射松和美国的火炬松(Paul et al., 1997)的G×E研究推荐使用这种策略。国内的学者也多数使用这种策略(顾万春,1991王军辉等,2000李志新等,2013刘宇等,2015)。这种方法需排除与环境互作最强的基因型,所以育种者需使用合理的试验环境以揭示互作式和稳定式的基因型。

第2个策略是通过遗传方差和环境方差的分析和解释来利用G×E(Raymond,2011)。该策略能在各地点内最大化遗传增益,但需要建立独立的育种群体和生产群体,从而产生成本、管理和亲本控制等问题(Li et al., 2017)。当种植环境数量大且气候、地理区域以及土壤类型不同时,这种策略可能难以实现。因此,一般做法是将类似环境区域化,通常用于北半球的树种。例如,瑞典的欧洲赤松(Pinus sylvestris),根据纬度温度梯度建立了育种区和种子区,这些区域内的生长性状G×E非常低(Hannrup et al., 2008)。虽然区域化可以获得额外增益,但土地利用、多个种子园的运营以及子代测定的后续成本也将成比例增加(Carson,1991)。

6 问题与展望 6.1 新的林木遗传分析模型与G×E分析的联合应用

当前G×E的统计方法主要是基于线性模型或线性混合模型,普通线性模型无法估算方差分量、育种值等群体遗传参数,因此以线性混合模型为基础的因子分析法(Cullis et al., 2014)将成为今后G×E的主流方法。然而因子分析法在结果可视化方面不如GGE方法,于是本课题组提出了BLUP-GGE联合分析法(程玲等,2018),囊括了空间分析、因子分析和GGE分析。即便如此,上述的因子分析法和BLUP-GGE联合分析法,并未考虑林木自身因遗传因素造成的竞争效应。Cappa等(2015)提出了可拟合空间效应与竞争效应的林木单株混合模型,能提高林木遗传评估的准确性,但模型涵盖的遗传竞争效应为单一值。最近,笔者提出了基于空间效应与竞争效应的林木新单株混合模型,可同时拟合不同的遗传竞争效应和异质的空间效应(林元震等,2017)。所以,今后有必要开展林木遗传新模型与G×E分析的联合研究,以进一步提高G×E分析的准确性和可靠性。

6.2 多环境、多性状的G×E的模式和幅度

本文综述了研究G×E的统计方法,主要是关于单性状。然而,育种研究人员在选择和改良多性状时,必须考虑G×E。B型遗传相关或因子分析法易扩展到多环境的多性状。对于多性状,可能会出现G×E的复杂表现:不同性状可能表现出不同的G×E模式;性状间的遗传相关和表型相关的矩阵在环境间可以不同,是另一种形式的G×E。由于林业生产目标的多方向性,对林木多环境的多性状的G×E研究将是未来的趋势和热点。

6.3 特定环境的林木基因组育种值的精准估计

近年来,许多研究探索将基因组选择作为林木育种选择的主要手段(Grattapaglia et al., 2011; Isik et al., 2016)。基因组选择的主要优点是选择可以在林木幼龄进行,例如在6月龄前,只需一些叶片,就可提取DNA进行基因分型。这意味着将大大缩短育种周期,并且能增加每单位时间的预期遗传增益(Isik,2014)。学者们已经对几种林木研究了基因组选择中的G×E。在辐射松中发现,当某个性状存在G×E互作时,所观测性状的SNP效应在环境间会发生变化,它们与性状的关联在一个环境中可能显著,但在其他环境中不显著(Li et al., 2016)。当使用一个桉树群体的数据集建立模型来预测另一群体的表型时,基因组选择的准确度会大幅度下降(Resende et al., 2012)。在加拿大西海岸种植的白云杉杂种(Picea glauca×Picea engelmannii)中,在预测不同地点的表型时,多地点模型(含有G×E拟合项)的基因组选择准确性高于单地点模型(El-Dien et al., 2015)。因此林木育种者需要收集基因分型数据,也需要在更广泛的多环境下开展遗传测定,并尽可能地在测定的所有季节和所有年份中收集气候、地理和土壤等环境方面的数据。在林木G×E中使用基因组选择时,如何精准估计特定环境的林木基因组育种值,将是在各地点最大化遗传增益的关键环节。

参考文献(References)
程玲, 张心菲, 张鑫鑫, 等. 2018. 基于BLUP和GGE双标图的林木多地点试验分析. 西北农林科技大学学报:自然科学版, 46(3): 87-93.
(Cheng L, Zhang X F, Zhang X X, et al. 2018. Forestry multi-environment trial analysis based on BLUP and GGE biplot. Journal of Northwest A&F University:Natural Science Edition, 46(3): 87-93. [in Chinese])
顾万春. 1991. 刺槐无性系G×E互作的研究-遗传稳定性和生长适应性的评价. 林业科学研究, 4(6): 623-628.
(Gu W C. 1991. Study on G×E interaction of Robinia pseudoacacia clones-evaluation of genetic stability and growth adaptation. Forest Research, 4(6): 623-628. [in Chinese])
李志新, 赵曦阳, 杨成君, 等. 2013. 转TaLEA基因小黑杨株系变异及生长稳定性分析. 北京林业大学学报, 35(2): 57-62.
(Li Z X, Zhao X Y, Yang C J, et al. 2013. Variation and growth adaptability analysis of transgenic Populus simonii×P. nigra lines carrying TaLEA gene. Journal of Beijing Forestry University, 35(2): 57-62. [in Chinese])
林元震, 张卫华, 程玲, 等. 2017. 基于空间效应与竞争效应的林木遗传分析模型. 华南农业大学学报, 38(5): 74-80.
(Lin Y Z, Zhang W H, Cheng L, et al. 2017. Genetic analysis model of forest based on space and competition effects. Journal of South China Agricultural University, 38(5): 74-80. [in Chinese])
刘宇, 徐焕文, 李志新, 等. 2015. 白桦杂交子代家系生长变异及稳定性分析. 植物研究, 35(6): 937-944.
(Liu Y, Xu H W, Li Z X, et al. 2015. Growth variation and stability analysis of birch crossbreed families. Bulletin of Botanical Research, 35(6): 937-944. [in Chinese])
王军辉, 顾万春, 李斌, 等. 2000. 桤木优良种源/家系的选择研究-生长的适应性和遗传稳定性分析. 林业科学, 36(3): 59-66.
(Wang J H, Gu W C, Li B, et al. 2000. Study on selection of Alnus cremastogyne provenance/family-analysis of growth adaptation and genetic stability. Scientia Silvae Sinicae, 36(3): 59-66. DOI:10.3321/j.issn:1001-7488.2000.03.010 [in Chinese])
Baltunis B S, Brawner J T. 2010. Clonal stability in Pinus radiata across New Zealand and Australia 1:Growth and form traits. New Forests, 40(3): 305-322. DOI:10.1007/s11056-010-9201-4
Baltunis B S, Huber D A, White T L, et al. 2007. Genetic analysis of early field growth of loblolly pine clones and seedlings from the same full-sib families. Canadian Journal of Forest Research, 37(1): 195-205. DOI:10.1139/x06-203
Bian L M, Shi J S, Zheng R H, et al. 2014. Genetic parameters and genotype-environment interactions of Chinese fir. Canadian Journal of Forest Research, 44(6): 582-592. DOI:10.1139/cjfr-2013-0427
Burdon R D. 1977. Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silvae Genetica, 26(5/6): 168-175.
Cappa E P, Muñoz F, Sanchez L, et al. 2015. A novel individual-tree mixed model to account for competition and environmental heterogeneity:a Bayesian approach. Tree Genetics & Genomes, 11(6): 120-134.
Carson S D. 1991. Genotype×environment interaction and optimal number of progeny test sites for improving Pinus radiata in New Zealand. New Zealand Journal of Forest Science, 21(1): 32-49.
Chen Z Q, Karlsson B, Wu H X. 2017. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden. Tree Genetics & Genomes, 13(1): 25-38.
Costa S J, Borralho N M, Wellendorf H. 2000. Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.) Karst. Silvae Genetica, 49(1): 29-36.
Costa S J, Potts B, Dutkowski G. 2006. Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genetics & Genomes, 2(2): 61-75.
Cullis B R, Jefferson P, Thompson R, et al. 2014. Factor analytic and reduced animal models for the investigation of additive genotype-by-environment interaction in outcrossing plant species with application to a Pinus radiata breeding programme. Theoretical and Applied Genetics, 217(10): 2193-2210.
Cullis B R, Smith A B, Coombes N E. 2006. On the design of early generation variety trials with correlated data. Journal of Agricultural, Biological, and Environmental Statistics, 11(4): 381-393. DOI:10.1198/108571106X154443
Diao S, Hou Y M, Xie Y H, et al. 2016. Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genetics, 17(1): 104-115. DOI:10.1186/s12863-016-0400-7
Dieters M J, White T L, Hodge G R. 1995. Genetic parameter estimates for volume from full-sib tests of slash pine (Pinus elliottii). Canadian Journal of Forest Research, 25(8): 1397-1408. DOI:10.1139/x95-152
Ding M, Tier B, Yan W, et al. 2008. Application of GGE biplot analysis to evaluate genotype (G), environment (E) and G×E interaction on Pinus radiata:a case study. New Zealand Journal of Forest Science, 38(1): 132-142.
Dungey H S, Low C B, Lee J, et al. 2012. Developing breeding and deployment options for Douglas-fir in New Zealand:breeding for future forest conditions. Silvae Genetica, 61(3): 104-115.
Dutkowski G. 2005. Improved models for the prediction of breeding values in trees. Tasmania: PhD thesis of University of Tasmania.
El-Dien O G, Ratcliffe B, Klápště J, et al. 2015. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics, 16(1): 1-16. DOI:10.1186/1471-2164-16-1
Falconer D S, Mackay T F. 1996. Introduction to quantitative genetics. England: Longmans Group Limited.
Finlay W K, Wilkinson G N. 1963. The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research, 14(6): 742-754. DOI:10.1071/AR9630742
Gapare W J, Ivković M, Baltunis B S, et al. 2010. Genetic stability of wood density and diameter in Pinus radiata D. Don. plantation estate across Australia. Tree Genetics & Genomes, 6(1): 113-125.
Gapare W J, Ivković M, Dutkowski G W, et al. 2012a. Genetic parameters and provenance variation of Pinus radiata D. Don. 'Eldridge collection' in Australia 1:growth and form traits. Tree Genetics & Genomes, 8(2): 391-407.
Gapare W J, Ivković M, Dillon S K, et al. 2012b. Genetic parameters and provenance variation of Pinus radiata D. Don. 'Eldridge collection' in Australia 2:wood properties. Tree Genetics & Genomes, 8(4): 895-910.
Gapare W J, Ivković M, Liepe K, et al. 2015. Drivers of genotype by environment interaction in radiata pine as indicated by multivariate regression trees. Forest Ecology and Management, 353: 21-29. DOI:10.1016/j.foreco.2015.05.027
Gauch H G. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Amsterdam: Elsevier.
Grattapaglia D, Resende M D. 2011. Genomic selection in forest tree breeding. Tree Genetics & Genomes, 7(2): 241-255.
Gwaze D P, Wolliams J A, Kanowski P J, et al. 2001. Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe. Silvae Genetica, 50(3): 135-140.
Hannrup B, Jansson G, Danell Ö. 2008. Genotype by environment interaction in Pinus sylvestris L. in southern Sweden. Silvae Genetica, 57(6): 306-311.
Hodge G R, White T L. 1992. Genetic parameters for growth traits at different ages in slash pine and some implications for breeding. Silvae Genetica, 41(4/5): 252-262.
Holland J B, Nyquist W E, Cervantes-Martinez C T. 2003. Estimating and interpreting heritability for plant breeding:An update. Plant Breeding Reviews, 22: 9-111.
Isik F, Bartholomé J, Farjat A, et al. 2016. Genomic selection in maritime pine. Plant Science, 242: 108-119. DOI:10.1016/j.plantsci.2015.08.006
Isik F, Holland J, Maltecca C. 2017. Genetic data analysis for plant and animal breeding. Switzerland: Springer International Publishing.
Isik F. 2014. Genomic selection in forest tree breeding:the concept and an outlook to the future. New Forests, 45(3): 379-401. DOI:10.1007/s11056-014-9422-z
Ivković M, Gapare W J, Yang H X, et al. 2015. Pattern of genotype by environment interaction for radiata pine in southern Australia. Annals of Forest Science, 72(3): 391-401. DOI:10.1007/s13595-014-0437-6
Ivković M, Wu H X, McRae T A, et al. 2006. Developing breeding objectives for radiata pine structural wood production 1:Bioeconomic model and economic weights. Canadian Journal of Forest Research, 36(11): 2920-2931. DOI:10.1139/x06-161
Jett J B, McKeand S E, Weir R J. 1991. Stability of juvenile wood specific gravity of loblolly pine in diverse geographic areas. Canadian Journal of Forest Research, 21(7): 1080-1085. DOI:10.1139/x91-148
Johnson G R, Burdon R D. 1990. Family-site interaction in Pinus radiata:implications for progeny testing strategy and regionalised breeding in New Zealand. Silvae Genetica, 39(2): 55-62.
Johnson G R, Gartner B L. 2006. Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Genetics & Genomes, 3(1): 25-33.
Kang M S. 2002. Quantitative genetics, genomics and plant breeding. Cambridge: CAB International.
Li B, Wu R. 1997. Heterosis and genotype×environment interactions of juvenile aspens in two contrasting sites. Canadian Journal of Forest Research, 27(10): 1525-1537.
Li Y, Suontama M, Burdon R D, et al. 2017. Genotype by environment interactions in forest tree breeding:review of methodology and perspectives on research and application. Tree Genetics & Genomes, 13(3): 60-77.
Li Y, Xue J, Clinton P W, et al. 2015. Genetic parameters and clone by environment interactions for growth and foliar nutrient concentrations in radiata pine on 14 widely diverse New Zealand sites. Tree Genetics & Genomes, 11(1): 1-16.
Li Y, Wilcox P, Telfer E, et al. 2016. Association of single nucleotide polymorphisms with form traits in radiata pine in the presence of genotype by environment interactions. Tree Genetics & Genomes, 12(4): 63-74.
Lima J T, Breese M C, Cahalan C M. 2000. Genotype-environment interaction in wood basic density of Eucalyptus clones. Wood Science and Technology, 34(3): 197-206. DOI:10.1007/s002260000041
Lin Y Z, Yang H X, Ivkovic M, et al. 2013. Effect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth. Forest Ecology and Management, 304(4): 204-211.
Lin Y Z, Yang H X, Ivkovic M, et al. 2014. Effect of genotype by spacing interaction on radiata pine wood density. Australian Forestry, 77(3/4): 203-211.
McKeand S E, Eriksson G, Roberds J H. 1997. Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine. Theoretical and Applied Genetics, 94(8): 1015-1022. DOI:10.1007/s001220050509
Muir W, Nyquist W E, Xu S. 1992. Alternative partitioning of the genotype-by-environment interaction. Theoretical and Applied Genetics, 84(1/2): 193-200.
Muneri A, Raymond C A. 2000. Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus. Forest Genetics, 7(4): 317-328.
Osorio L F, White T L, Huber D A. 2001. Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silvae Genetica, 50(1): 30-37.
Paul A D, Foster G S, Caldwell T, et al. 1997. Trends in genetic and environmental parameters for height, diameter, and volume in a multilocation clonal study with loblolly pine. Forest Science, 43(1): 87-98.
Pederick L A. 1990. Family×site interaction in Pinus radiata in Victoria, Australia, and implications for breeding strategy. Silvae Genetica, 39(3/4): 134-140.
Piepho H P. 1995. Robustness of statistical tests for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trials. Theoretical and Applied Genetics, 90(3/4): 438-443.
Rae A M, Pinel M P, Bastien C, et al. 2008. QTL for yield in bioenergy Populus:identifying G×E interactions from growth at three contrasting sites. Tree Genetics & Genomes, 4(1): 97-112.
Raymond C A. 2011. Genotype by environment interactions for Pinus radiata in New South Wales, Australia. Tree Genetics & Genomes, 7(4): 819-833.
Resende M F, Muñoz P, Acosta J J, et al. 2012. Accelerating the domestication of trees using genomic selection:accuracy of prediction models across ages and environments. New Phytologist, 193(3): 617-624. DOI:10.1111/j.1469-8137.2011.03895.x
Robertson A. 1959. The sampling variance of the genetic correlation coefficient. Biometrics, 15(3): 469-485. DOI:10.2307/2527750
Roth B E, Jokela E J, Martin T A, et al. 2007. Genotype×environment interactions in selected loblolly and slash pine plantations in the southeastern United States. Forest Ecology and Management, 238(1-3): 175-188. DOI:10.1016/j.foreco.2006.10.010
Rweyongeza D M. 2011. Pattern of genotype-environment interaction in Picea glauca(Moench) Voss in Alberta, Canada. Annals of Forest Science, 68(2): 245-253. DOI:10.1007/s13595-011-0032-z
Shelbourne C J. 1972. Genotype-environment interaction: its study and its implications in forest tree improvement//The IUFRO Genetics and SABRAO Joint Symposium, Tokyo, Japan, 1-28.
Sierra-Lucero V, Huber D A, McKeand S E, et al. 2003. Genotype-by-environment interaction and deployment considerations for families from Florida provenances of loblolly pine. Forest Genetics, 10(2): 85-92.
Smith A B, Ganesalingam A, Kuchel H, et al. 2015. Factor analytic mixed models for the provision of grower information from national crop variety testing programs. Theoretical and Applied Genetics, 128(1): 55-72. DOI:10.1007/s00122-014-2412-x
Smith A, Cullis B, Thompson R. 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics, 57(4): 1138-1147. DOI:10.1111/j.0006-341X.2001.01138.x
Suontama M, Low C B, Stovold G T, et al. 2015. Genetic parameters and genetic gains across three breeding cycles for growth and form traits of Eucalyptus regnans in New Zealand. Tree Genetics & Genomes, 11(6): 1-14.
Westbrook J W, Walker A R, Neves L G, et al. 2014. Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations. New Phytologist, 205(2): 627-641.
White T L, Adams W T, Neale D B. 2007. Forest Genetics. Cambridge: CAB International.
Wu H X, Matheson A C. 2005. Genotype by environment interactions in an Australia-wide radiata pine diallel mating experiment:implications for regionalized breeding. Forest Science, 51(1): 29-40.
Yan W, Hunt L A, Sheng Q, et al. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3): 597-605. DOI:10.2135/cropsci2000.403597x
Zapata-Valenzuela J. 2012. Use of analytical factor structure to increase heritability of clonal progeny tests of Pinus taeda L. Chilean Journal of Agricultural Research, 72(3): 309-315. DOI:10.4067/S0718-58392012000300002
Zas R, Merlo E, Diaz R, et al. 2003. Stability across sites of Douglas-fir provenances in northern Spain. Forest Genetics, 10(1): 71-82.
Zheng R H, Hong Z, Su S D, et al. 2016. Inheritance of growth and survival in two 9-year-old, open-pollinated progenies of an advanced breeding population of Chinese firs in southeastern China. Journal of Forestry Research, 27(5): 1067-1075. DOI:10.1007/s11676-016-0250-1