林业科学  2019, Vol. 55 Issue (4): 62-68   PDF    
DOI: 10.11707/j.1001-7488.20190407
0

文章信息

高暝, 陈益存, 吴立文, 汪阳东.
Gao Ming, Chen Yicun, Wu Liwen, Wang Yangdong.
山鸡椒水分及氮素利用效率性别特异性动态
Dynamic Patterns of Sex-Specific Difference of Water and Nitrogen Use Efficiency in Litsea cubeba
林业科学, 2019, 55(4): 62-68.
Scientia Silvae Sinicae, 2019, 55(4): 62-68.
DOI: 10.11707/j.1001-7488.20190407

文章历史

收稿日期:2018-11-21
修回日期:2019-01-01

作者相关文章

高暝
陈益存
吴立文
汪阳东

山鸡椒水分及氮素利用效率性别特异性动态
高暝, 陈益存, 吴立文, 汪阳东     
中国林业科学研究院亚热带林业研究所 杭州 311400
摘要:【目的】以雌雄异株山鸡椒为研究材料,分析雌雄植株在生殖生长过程中水分及氮素利用策略的性别特异性动态变化规律,以期为雌雄异株植物资源分配动态变化机制提供理论依据。【方法】测定雌雄植株在开花后105~165天共5个时期叶片养分含量(碳含量、氮含量、碳氮比)、稳定碳同位素组成(δ13C)、稳定氮同位素组成(δ15N),并分析其动态变化规律。【结果】1)雌雄株叶片δ13C平均值分别为-29.38‰和-28.08‰。性别和发育时期对雌雄株叶片δ13C值影响均显著,5个时期雌株δ13C值均显著低于雄株;且随发育进程雌雄植株δ13C值均不断下降。2)雌雄株叶片δ15N平均值分别为1.90‰和2.95‰。性别和发育时期对雌雄株叶片δ15N值均有极显著影响,开花后105~150天(即雌株果实中精油及柠檬醛含量快速积累期)雌株δ15N值显著低于雄株;随着发育进程,雌雄株叶片δ15N值均表现出双峰变化趋势,双峰出现在开花后105天和135天,雌株叶片δ15N在开花后120天达到最低值,雄株叶片在开花后165天时达到最低值。3)雌雄株叶片碳含量平均值分别为49.44%和49.28%。开花后105天和120天,雌株叶片C含量高于雄株叶片C含量,开花后135~165天(果实精油快速积累期到稳定期),雌株叶片C含量低于雄株。雄株叶片C含量随发育进程显著升高,而雌株叶片C含量在不同时期无显著差异。4)雌雄株叶片N含量平均值分别为1.71%和1.51%。性别对N含量影响显著,雄株叶片N含量均低于雌株(除开花后135天)。5)雌雄株叶片C/N平均值分别为29.15和33.72。性别对叶片碳氮比影响显著,雌株C/N值在不同发育时期均小于雄株,但发育时期对其无显著影响;随着发育时期推进,雄株C/N值下降程度高于雌株。6)雌雄植株叶片δ13C与N含量以及δ13C与δ15N之间均无显著相关性。【结论】山鸡椒雌雄植株在养分含量、水分及氮素利用策略存在差异,且在开花后105~165天表现出动态变化规律。雌株水分利用效率低于雄株,从果实精油及柠檬醛含量快速积累期到稳定期,雌株水分利用效率不断下降;雌株氮利用低于雄株,且随着植株发育,雌雄株叶片氮素利用效率均表现出双峰变化趋势;雄株叶片氮含量低于雌株,分配更多的氮素至花芽以保证花粉形成;果实精油快速积累期到稳定期,雌株叶片碳含量低于雄株,为果实及种子的形成提供更多的碳元素。
关键词:雌雄异株    山鸡椒    水分利用效率    氮素利用效率    
Dynamic Patterns of Sex-Specific Difference of Water and Nitrogen Use Efficiency in Litsea cubeba
Gao Ming, Chen Yicun, Wu Liwen, Wang Yangdong     
Institute of Subtropical Forestry, Chinese Academy of Forestry Hangzhou 311400
Abstract: 【Objective】In this study, dynamic patterns of sex-specific water and nitrogen use efficiencies in male and female plants of dioecious Litsea cubeba were analyzed. The result provides a theoretical basis for understanding of the dynamic changes of resource allocation of dioecious plants.【Method】The nutrient content (carbon and nitrogen content, the ratio of carbon and nitrogen (C/N)), water use efficiency, as inferred from leaf carbon isotope composition (δ13C), and nitrogen use, estimated by leaf nitrogen isotope composition (δ15N) were measured in male and female plants during 105 and 165 days after flowering (DAF).【Result】1) The mean leaf δ13C values of female and male plants were -29.38‰ and -28.08‰. Leaf δ13C values of both male and female plants were significantly affected by sex and development period. Leaf δ13C values of the female plants were all lower than the male plants for the five periods. Leaf δ13C values of both male and female plants were constantly decreased during the development period. 2) The mean leaf δ15N values of the female and male plants were 1.90‰ and 2.95‰. Sex and development period also had significant effect on leaf δ15N values of male and female plants. Leaf δ15N values of the female plants were lower than the male plants from 105 to 150 DAF (rapid accumulation stage of oil and citral contents). δ15N values showed double peaks during 105 and 165 DAF, and the largest values were appeared at 105 and 135 DAF. Meanwhile, δ15N value of the female plant was lowest at 120 DAF, while the lowest value was appeared in the male plant at 165 DAF. 3) The mean leaf carbon contents of the female and male plants were 49.44% and 49.28% respectively. Leaf carbon contents were higher in the female plant than in the male plant at 105 and 120 DAF, while lower in the female plant than in the male plant from 135 DAF to 165 DAF (from accumulation stage to stable stage of oil content). The leaf carbon contents significantly increased with time in the male plant, but not significantly in the female in different periods. 4) The mean leaf nitrogen contents of the female and male plants were 1.71% and 1.51%. Sex had a significant effect on the leaf nitrogen content, and the leaf nitrogen contents of the male plants were lower than the female plants from 105 to 165 DAF (except for 135 DAF). 5) The mean leaf C/N of the female and male plants was 29.15 and 33.72. Sex had a significant effect on C/N, and the female plants had a lower C/N than the male plants, regardless of time. The decreased value of C/N was higher in the male plants than in the male plants from 135 to 165 DAF. 6) There were no correlations between δ13C and the nitrogen content and between δ13C and δ15N.【Conclusion】The sexes of the L. cubeba differ in terms of temporal patterns of water use efficiency and nitrogen use. The water use efficiency of female plant was lower than that of male plant, and constantly declined from rapid accumulation stage to stable stage of oil and citral contents. The nitrogen use efficiency of female plant was also lower than that of male plant, and the nitrogen use efficiency of female and male plants showed double peaks. The nitrogen content of male plant was lower than that of female plant, allocating more nitrogen to flower buds for pollen formation. The carbon content of female plant was lower than that of male plant from the rapid accumulation stage to stable stage of oil and citral contents, supplying more carbon for fruit and seed formation.
Key words: dioecy    Litsea cubeba    water use efficiency    nitrogen use efficiency    

被子植物中大约有6%为雌雄异株植物(Renner et al., 1995),雌雄株在生长、表型及生理特性等方面均表现出明显差异(Dawson et al., 1989; 1993; Lei et al., 2017郭海燕等,2017)。这些差异导致雌雄株植物在生殖生长中扮演了不同角色,并且在性别比例、特异资源需求与利用及生殖成本等方面均有不同(Delph,1990; Sánchez Vilas et al., 2011)。例如,雌株由于既开花又结果因而会分配更多的资源到生殖生长中,相应的雄株会分配更多资源到性状维持及生长等其他特性(Obeso,2002; Barrett et al., 2013; Juvany et al., 2015)。此外,雌雄植株不仅在资源分配的绝对量上有区别,对资源的需求也随发育时间呈现动态变化的过程,这种变化反映出植物面对发育需求做出了最适宜的调整(Pickup et al., 2012; Teitel et al., 2016)。然而,目前关于雌雄株资源分配的动态变化过程研究较少,仅对滨海沙丘植物Honckenya peploides等进行了研究(Sánchez Vilas et al., 2017)。

碳和氮是植物组织的重要组成元素,与植物生理代谢过程紧密相关。植物叶片碳同位素组成(δ13C)和氮同位素组成(δ15N)作为长期指示指标,可反映叶片整个生命周期的平均生理活性。其中植物叶片δ13C值与Ci/Ca (胞间CO2与大气CO2浓度比率)呈负相关,反映了同化速率与气孔导度之间的平衡,可用于指示植物长期水分利用效率(WUE)(Farquhar et al., 1984; 罗亚勇等,2009高暝等,2013任志国等,2014葛露露等,2018)。植物δ15N值作为氮循环的综合指标,可反映植物氮获取、同化、利用及损失过程中外源氮及15N、14N值的变化,可以作为植物营养状况、氮利用等的指示剂(Högberg,1997; Evans,2001; 赵艳艳等,2016刘建峰等,2018)。

山鸡椒(Litsea cubeba)为樟科(Lauraceae)雌雄异株植物,是我国重要的天然香料树种,全株含油,其中果实精油含量最高,精油中主要成分柠檬醛是制造香料、日化用品、药品、食品增香剂与防腐剂的原材料(Chen et al., 2013),精油及柠檬醛含量快速积累期为开花后105~165天(Gao et al., 2016)。目前山鸡椒仅在雌雄花及花芽形态、物候差异等方面有研究(许自龙,2017李红盛,2018),而关于雌雄植株在生理特性、资源分配、生殖成本方面的研究未见报道。本研究以山鸡椒雌雄株为试验材料,通过分析雌株及雄株在生殖生长过程中养分含量[碳含量(C)、氮含量(N)、碳氮比(C/N)]、δ13C和δ15N变化情况,探讨山鸡椒雌雄植株在生殖生长过程中水分及氮素利用策略的性别特异性动态变化规律,以期为雌雄异株植物资源分配动态变化机制研究提供理论依据。

1 材料与方法 1.1 采样点概况

试验材料采集自浙江省杭州市富阳区新沙岛山鸡椒家系试验林(120°00′E, 30°04′N)。年平均气温16.63 ℃,平均降水量1 479 mm,年日照时数1 759.2 h,全年无霜期约238天,供试土壤为酸性黄壤土,全氮含量0.64 g·kg-1,全磷含量0.35 g·kg-1,全钾含量8.46 g·kg-1

1.2 样品采集及分析

根据山鸡椒果实发育过程中精油及柠檬醛含量变化规律,于精油、柠檬醛含量快速积累期到稳定期,即开花后105~165天,选择同一家系内3年生健康的雌雄株各20株,每隔15天,分别采摘同一方向健康、完整叶片20片混合后装袋。所有植物样品装入牛皮纸袋,带回实验室。

叶片样本置于微波炉杀青后在65 ℃下烘72 h至恒质量,用植物样品粉碎机JP-200B-8(久晶电器有限公司,中国)粉碎叶片后过120目筛,用Flash 2000 EA-HT元素分析仪联合同位素比率质谱仪DELTA V Advantage (Thermo Fisher Scientific,Inc., USA)测定CO213C与12C比率、N215N与14N比率。植物叶片δ13C和δ15N值按下式计算:δ=(R样品-RPDB)/RPDB×1000‰。式中:R样品是植物叶片样品的13C/12C、15N/14N的比率,RPDB是测定过程中标准物质PDB的13C/12C、15N/14N比率。碳、氮稳定同位素比值的分析精度为±0.2‰。碳氮含量均采用干质量(DM,%)表示。

1.3 数据处理

应用SPSS 18.0统计分析软件进行数据分析处理,Duncan新复极差法检验差异显著性,应用SigmaPlot 12.0作图软件制图。

2 结果与分析 2.1 山鸡椒雌雄植株叶片δ13C和δ15N比较

性别和发育时期对山鸡椒雌雄株叶片δ13C值均有极显著影响,但性别和发育时期无显著性交互作用(表 1)。山鸡椒果实发育过程中,雌株叶片δ13C范围在-30.79‰~-28.19‰之间,平均值为-29.38‰;雄株叶片δ13C范围在-29.29‰~-26.84‰之间,平均值为-28.08‰。从开花后105~165天(即果实精油及柠檬醛含量快速积累期到稳定期),雌株叶片δ13C均显著低于雄株叶片δ13C值;同时,随着时间变化,雌雄株叶片δ13C均表现出逐渐下降的趋势,即开花后105天最高,开花后165天最低,雌雄株分别较105天时低4.81%和5.21%(图 1A)。

表 1 性别和发育时期对山鸡椒叶片碳氮同位素比值、碳氮含量和碳氮比的影响 Tab.1 Effect of sex and development time on the leaf δ13C, δ15N, carbon and nitrogen content and ratio of carbon to nitrogen in L. cubeba
图 1 山鸡椒雌雄植株发育不同时期叶片δ13C和δ15N动态变化 Fig. 1 The temporal variation in leaf δ13C and δ15N of male and female plants during the development of L. cubeba 大写字母“X”和“Y”表示雌雄间显著性差异(P < 0.05);大写字母“A”“B”和“C”表示日期间显著性差异(P < 0.05)。下同。 The capital letter "X" and "Y" indicate significant difference between sex, and the capital letter "A", "B" and "C" indicate significant difference between time (P < 0.05). The same below.

性别和发育时期对山鸡椒雌雄株叶片δ15N值均有极显著影响,性别和发育时期有显著交互作用(表 1)。山鸡椒果实发育过程中,雌株叶片δ15N在0.52‰~3.96‰之间,平均值为1.90‰;雄株叶片δ15N在0.99‰~7.38‰之间,平均值为2.95‰。开花后105~150天(即雌株精油及柠檬醛含量快速积累期),雌株叶片δ15N均显著低于雄株叶片δ15N值,而开花后165天时(即精油及柠檬醛含量稳定期)雌株叶片δ15N高于雄株叶片δ15N值。同时随时间变化,雌雄株叶片δ15N均表现出双峰趋势,开花后105天叶片δ15N值出现第1个小高峰,之后下降,雌株叶片δ15N在开花后120天时达到最低值(0.64‰),在开花后135天时雌雄株叶片δ15N均出现最高峰(雌雄株分别为3.65‰和5.88‰),之后下降,到165天时雄株叶片δ15N达到最低值(1.23‰)(图 1B)。

2.2 山鸡椒雌雄植株叶片碳含量、氮含量及碳氮比比较

性别对山鸡椒叶片碳含量无显著性影响,发育时期对其影响显著,且性别与发育时期有显著性交互作用(表 1)。山鸡椒果实发育过程中,雌株叶片C含量范围在47.48%~51.09%之间,平均值为49.44%;雄株叶片C含量范围在45.83%~52.45%之间,平均值为49.28%。开花后105天和120天,雌株叶片C含量高于雄株叶片C含量,之后表现出相反的趋势。同时,开花后135~165天,雄株叶片C含量随时间变化显著升高(P < 0.05),而雌株叶片C含量在不同时期无显著差异(P>0.05)(图 2A)。

图 2 山鸡椒雌雄植株发育不同时期叶片C含量、N含量和C/N动态变化 Fig. 2 The temporal variation in leaf C content, N content and C/N of male and female plants during the development of L. cubeba

性别对山鸡椒叶片氮含量有显著影响,但发育时期对其无显著影响,且性别与发育时期无显著性交互作用(表 1)。山鸡椒果实发育过程中,雌株叶片N含量范围在1.32%~2.09%之间,平均值为1.71%;雄株叶片N含量范围在1.13%~2.42%之间,平均值为1.51%。除开花后135天外,雌株叶片N含量均高于雄株叶片N含量(P < 0.05)。同时,雌雄株叶片N含量随时间变化无显著差异(P>0.05)(图 2B)。

性别对山鸡椒叶片碳氮比影响显著,但发育时期对其无显著影响,且性别与发育时期无显著性交互作用(表 1)。山鸡椒果实发育过程中,雌株叶片C/N在23.50~36.98之间,平均值为29.15;雄株叶片C/N在21.16~43.91之间,平均值为33.72。山鸡椒雌株叶片C/N值均低于雄株叶片C/N值,同时随着发育时期的推进,雌雄株叶片C/N值均呈下降的趋势(图 2C),雌株下降了16.61%,雄株下降了20.48%。

2.3 山鸡椒雌雄植株叶片δ13C与氮含量相关性分析

山鸡椒叶片δ13C与氮含量的相关性分析如图 3所示,雌株和雄株的叶片氮含量与δ13C均无显著相关性(RF2=0.000,RM2=0.186)。

图 3 山鸡椒雌雄植株叶片δ13C与氮含量相关性分析 Fig. 3 Relationship between leaf δ13C and N content of male and female plant of L. cubeba
2.4 山鸡椒雌雄植株叶片水分利用效率与氮素利用效率相关性分析

山鸡椒叶片水分利用效率与氮素利用效率的相关性分析如图 4所示,雌株和雄株的叶片δ13C和δ15N均无显著相关性(RF2=0.009,RM2=0.048)。

图 4 山鸡椒雌雄植株叶片δ13C与δ15N相关性分析 Fig. 4 Relationship between leaf δ13C and δ15N of male and female plant of L. cubeba
3 讨论

关于雌雄异株植物水分利用效率的差异,前人的结果不尽相同,在北极柳(Salix arctica)、Honckenya peploides中,雌株高于雄株(Jones et al., 1999; Sánchez Vilas et al., 2017);梣叶槭(Acer negundo)、中国沙棘(Hippophae rhamnoides ssp. sinensis)中,雌株低于雄株(Dawson et al., 1993; Ward et al., 2002高丽等,2009),而在Simmondsia chinensisMaireana pyramidata中雌雄株相同(Kohorn et al., 1994; Leigh et al., 2003)。本研究结果显示,不同发育时期雌株δ13C均小于雄株,即雌株水分利用效率低于雄株,说明雌株固定单位碳消耗了更多的水分。雌株种子和果实中包含更多的淀粉和脂肪,因此雌株在资源获取时会选择获取更多的碳(Raven et al., 2015)。由于CO2和H2O通过气孔共享一套传播途径,因此雌株若获取更多的碳则导致更多的水分丢失,即水分利用效率下降。同时从开花后105~165天,即果实精油及柠檬醛含量快速积累期到稳定期,雌株δ13C值下降,说明了随着果实发育成熟,雌株在生殖中投入了越来越多的碳,从而导致水分不断流失;雄株δ13C值下降可能是由于随着植株发育,其光合速率逐渐降低的结果。

雌雄异株植物生殖成本的差异不仅受水分利用效率影响,氮素利用效率也起到关键作用,法国山靛(Mercurialis annua)(Harris et al., 2008)、宽叶慈姑(Sagittaria latifolia)(Wright et al., 2014)、Honckenya peploides(Sánchez Vilas et al., 2017)、苏铁(Cycas)(Krieg et al., 2017)中发现雌雄株在氮含量及氮稳定同位素方面有差异。本研究中,从开花后105~150天,山鸡椒雌株叶片δ15N值均显著低于雄株叶片δ15N值,这种性别间δ15N值差异可能受一系列过程及因素的影响,例如氮循环速率、植物利用氮素的形式(铵态氮、硝态氮)、共生菌根类型和数量以及植物物候等(郑璐嘉等,2016),由于影响叶片δ15N值潜在机制的复杂性,因此无法确定山鸡椒性别间δ15N值差异的确切原因。在雌雄异株植物苏铁中,研究发现雌雄之间δ15N值的差异受共生菌的影响,雌株叶片δ15N值低于雄株,是由于雌株对氮的获取更多依赖共生菌。而山鸡椒中是否存在共生菌还需做进一步研究。另外山鸡椒叶片雄株δ15N值高于雌株,也可能由于雄株叶片能利用更多的氮素,导致植株光合效率更高,能同化更多的有机化合物。结合氮含量的数据,山鸡椒雄株从开花后135~165天叶片δ15N值显著下降,可能与此阶段叶片中氮含量下降有关。

山鸡椒雌雄株叶片氮含量和碳含量均存在差异,雌株叶片氮含量均高于雄株叶片氮含量(除开花后135天),而果实精油快速积累期到稳定期(开花后135~165天),雌株叶片碳含量低于雄株叶片碳含量。雌雄植株在生殖中扮演不同的角色,一般来说,雄株会产生更多更大的花,花粉中富含氮素(Wallace et al., 1979),因此雄株会分配更多的氮素到花中;雌株除开花外,还要产生果实和种子,其中富含淀粉和脂肪,因此雌株会分配更多的碳到果实及种子中。山鸡椒雄花较雌花大(许自龙,2017),且雄株开花时间早、花期长(李红盛,2018),因此雄株除花外的其他器官会分配更多的氮素到花中,这解释了雄株叶片氮含量低于雌株叶片氮含量的现象;同时随着发育的推进,雄株叶片氮含量轻微下降,而雌株叶片氮含量轻微上升,可能是因为在开花后135~165天,是雄株混合芽中花原基出现的时期,而雌株混合芽中花原基一般较雄株晚出现2周左右(许自龙,2017),因此在这段时期雄株叶片氮素转移至花芽中,造成了此阶段叶片氮含量下降。雌株在果实快速发育期,即精油快速积累期到稳定期(开花后135~165天),叶片会分配更多的碳到果实中,因此这段时期叶片中碳含量低于雄株。然而本研究只分析了叶片中元素含量的变化,而植株整体水平的养分分配规律还需进一步研究。

植物体中碳代谢与氮代谢相互依赖,氮代谢可为碳代谢提供酶和光合色素,碳代谢可为氮代谢提供碳源和能量,同时2个过程又因需要共同的三磷酸腺苷、还原力和碳骨架,存在着竞争关系。C/N值大小表示植物吸收单位养分含量所获取、同化C的能力,可反映植物体养分元素的利用率(赵艳艳等,2016)。本研究中,山鸡椒雌株C/N值在不同发育时期均小于雄株,说明雄株的碳氮代谢强于雌株;随着发育时期推进,雌雄株C/N值均呈下降的趋势,这可能是因为果实发育及花芽形成造成了雌雄株碳氮代谢均减弱。

植物叶片氮含量与δ13C值呈正相关(Zhao et al., 2008展小云等,2012高暝等,2013)。叶片光合能力与氮浓度呈显著正相关(Evans,1989),高浓度的氮会提高光合速率,从而降低胞间CO2浓度,δ13C值上升,即氮含量一般与δ13C值呈正相关。然而本研究中不论雌雄植株,叶片δ13C与氮含量均无显著相关性,说明在调节胞间CO2过程中,存在其他影响因子比氮含量扮演了更重要的角色,如叶片气孔导度较高,也会导致胞间CO2浓度下降(Sánchez Vilas et al., 2017)。山鸡椒中是否由于气孔导度导致胞间CO2浓度下降,从而降低δ13C值,还需要在将来的试验中继续验证。此外,环境因子(纬度、年均温、光照、水分可利用性)对植物δ13C值的影响也不可忽视。

4 结论

山鸡椒雌雄植株在养分含量、水分及氮素利用策略存在差异,且在开花后105~165天表现出动态变化规律。山鸡椒雌株δ13C值低于雄株,即水分利用效率低于雄株,且雌株从果实精油及柠檬醛含量快速积累期到稳定期,水分利用效率不断下降,说明其为生殖成本提供更多的碳,从而导致水分不断流失;雌株δ15N值显著低于雄株,且随着果实发育成熟,雌雄株叶片δ15N值均表现出双峰变化趋势;雄株叶片氮含量在开花后105~165天均低于雌株,即雄株叶片分配更多的氮素至花芽以保证花粉形成,而果实精油快速积累期到稳定期(开花后135~160天),雌株叶片碳含量低于雄株叶片碳含量,这为果实及种子的形成提供更多的碳元素;雌株C/N值在不同发育时期均小于雄株,说明雄株的碳氮代谢强于雌株,随着发育时期推进,雌雄株C/N值均呈下降的趋势;雌雄植株叶片δ13C与氮含量以及δ13C与δ15N均无显著相关性。

参考文献(References)
高丽, 杨劼, 刘瑞香. 2009. 不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征. 生态学报, 29(11): 6025-6024.
(Gao L, Yang J, Liu R X. 2009. Effects of soil moisture levels on photosynthesis, transpiration, and moisture use efficiency of female and male plants of Hippophae rhamnoides ssp. sinensis. Acta Ecologica Sinica, 29(11): 6025-6034. DOI:10.3321/j.issn:1000-0933.2009.11.034 [in Chinese])
高暝, 黄秦军, 丁昌俊, 等. 2013. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率. 林业科学, 49(8): 51-57.
(Gao M, Huang Q J, Ding C J, et al. 2013. Foliar δ13C and nitrogen use efficient of Populus deltoides and the different growth vigor F1 hybrid clones. Scientia Silvae Sinicae, 49(8): 51-57. [in Chinese])
葛露露, 孟庆权, 林宇, 等. 2018. 滨海沙地不同树种人工林叶片和土壤表层稳定碳氮同位素及水分利用效率研究. 西北植物学报, 38(3): 544-552.
(Ge L L, Meng Q Q, Lin Y, et al. 2018. Study on stable carbon and nitrogen isotope and water use efficiency in leaves and topsoils of different tree species in southeast coastal area. Acta Botanica Borealio-Occidentalia Sinica, 38(3): 544-552. [in Chinese])
郭海燕, 段婧, 刘金平, 等. 2017. 温度对雌雄葎草花芽分化和色素含量及光合作用影响的性别差异. 草业学报, 26(8): 104-112.
(Guo H Y, Duan J, Liu J P, et al. 2017. Effect of temperature on flower bud differentiation, pigment contents, and photosynthesis of male and female Humulus scandens. Acta Prataculturae Sinica, 26(8): 104-112. [in Chinese])
李红盛. 2018.山苍子生长与经济性状遗传变异及稳定性分析.长沙: 中南林业科技大学硕士学位论文.
(Li H S. 2018. Genetic variation and stability analysis of growth and economic traits of Litsea cubeba. Changsha: MS thesis of Central South University of Forestry and Technology.[in Chinese])
刘建峰, 张玉婷, 倪妍妍, 等. 2018. 栓皮栎叶片δ13C和δ15N的纬向趋势及其影响因子. 应用生态学报, 29(5): 1373-1380.
(Liu J F, Zhang Y T, Ni Y Y, et al. 2018. Latitudinal trends in foliar δ13C and δ15N of Quercus variabilis and their influencing factors. Chinese Journal of Applied Ecology, 29(5): 1373-1380. [in Chinese])
罗亚勇, 赵学勇, 黄迎新, 等. 2009. 植物水分利用效率及其测定方法研究进展. 中国沙漠, 29(4): 648-655.
(Luo Y Y, Zhao X Y, Huang Y X, et al. 2009. Research progress on plant water use efficiency and its measuring methods. Journal of Desert Research, 29(4): 648-655. [in Chinese])
任志国, 陈亚鹏, 李卫红, 等. 2014. 地下水埋深对塔里木河下游建群种植物叶片δ13C值的影响. 草业学报, 23(2): 76-82.
(Ren Z G, Chen Y P, Li W H, et al. 2014. The effect of groundwater depth on the δ13C value of constructive species leaf in the lower reaches of the Tarim River. Acta Prataculturae Sinica, 23(2): 76-82. [in Chinese])
许自龙. 2017.山鸡椒花发育形态学观察研究.长沙: 中南林业科技大学硕士学位论文.
(Xu Z L. 2017. Observation of morphological and anatomical characters of the flower development in Litsea cubeba (Lour.) Pers. Changsha: MS thesis of Central South University of Forestry and Technology.[in Chinese])
展小云, 于贵瑞, 盛文萍, 等. 2012. 中国东部南北样带森林优势植物叶片的水分利用效率和氮素利用效率. 应用生态学报, 23(3): 587-594.
(Zhan X Y, Yu G R, Shen W P, et al. 2012. Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the North South Transect of East China. Chinese Journal of Applied Ecology, 23(3): 587-594. [in Chinese])
赵艳艳, 徐隆华, 姚步青, 等. 2016. 模拟增温对高寒草甸植物叶片碳氮及其同位素δ13C和δ15N含量的影响. 西北植物学报, 36(4): 777-783.
(Zhao Y Y, Xu L H, Yao B Q, et al. 2016. Influence of simulated warming to the carbon, nitrogen and their stability isotope-(δ13C, δ15N) contents in alpine meadow plant leaves. Acta Botanica Borealio-Occidentalia Sinica, 36(4): 777-783. [in Chinese])
郑璐嘉, 黄志群, 何宗明, 等. 2016. 不同林龄杉木人工林细根氮稳定同位素组成及其对氮循环的指示. 生态学报, 36(8): 2185-2191.
(Zheng L J, Huang Z Q, He Z M, et al. 2016. δ15N in fine roots of Cunninghamia lanceolata plantations of different ages and implications for soil nitrogen cycling rates. Acta Ecologica Sinica, 36(8): 2185-2191. [in Chinese])
Barrett S C, Hough J. 2013. Sexual dimorphism in flowering plants. Journal of Experimental Botany, 64(1): 67-82. DOI:10.1093/jxb/ers308
Chen Y C, Wang Y D, Han X J, et al. 2013. Biology and chemistry of Litsea cubeba, a promising industrial tree in China. Journal of Essential Oil Research, 25(2): 103-111. DOI:10.1080/10412905.2012.751559
Dawson T E, Bliss L C. 1989. Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes. Oecologia, 79(3): 332-343. DOI:10.1007/BF00384312
Dawson T E, Ehleringer J R. 1993. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in Boxelder, Acer negundo. Ecology, 74(3): 798-815. DOI:10.2307/1940807
Delph L F. 1990. Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpina. Ecology, 71(4): 1342-1351. DOI:10.2307/1938271
Evans J R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78(1): 9-19. DOI:10.1007/BF00377192
Evans R D. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science, 6(3): 121-126. DOI:10.1016/S1360-1385(01)01889-1
Farquhar G, Richards R. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11(6): 539-552. DOI:10.1071/PP9840539
Gao M, Lin L L, Chen Y C, et al. 2016. Digital gene expression profiling to explore differentially expressed genes associated with terpenoid biosynthesis during fruit development in Litsea cubeba. Molecules, 21(9): 1251. DOI:10.3390/molecules21091251
Harris M S, Pannell J R. 2008. Roots, shoots and reproduction:sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proceedings of the Royal Society B:Biological Sciences, 275: 2595-2602. DOI:10.1098/rspb.2008.0585
Högberg P. 1997. Tansley review No. 95 15N natural abundance in soil-plant systems. New Phytologist, 137(2): 179-203. DOI:10.1046/j.1469-8137.1997.00808.x
Jones M H, MacDonald S E, Henry G H R. 1999. Sex- and habitat-specific responses of a high arctic willow, Salix arctica, to experimental climate change. Oikos, 87: 129-138. DOI:10.2307/3547004
Juvany M, Munné-Bosch S. 2015. Sex-related differences in stress tolerance in dioecious plants:a critical appraisal in a physiological context. Journal of Experimental Botany, 66(20): 6083-6092. DOI:10.1093/jxb/erv343
Kohorn L U, Goldstein G, Rundel P W. 1994. Morphological and isotopic indicators of growth environment:variability in δ13C in Simmondsia chinensis, a dioecious desert shrub. Journal of Experimental Botany, 45: 1817-1822. DOI:10.1093/jxb/45.12.1817
Krieg C, Watkins J E, Chambers S, et al. 2017. Sex-specific differences in functional traits and resource acquisition in five cycad species. AoB plant, 9(2).
Lei Y B, Jiang Y, Chen K, et al. 2017. Reproductive investments driven by sex and altitude in sympatric Populus and Salix trees. Tree Physiology, 37(11): 1503-1514. DOI:10.1093/treephys/tpx075
Leigh A, Nicotra A B. 2003. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Australian Journal of Botany, 51: 509-514. DOI:10.1071/BT03043
Obeso J R. 2002. The costs of reproduction in plants. New Phytologist, 155(3): 321-348. DOI:10.1046/j.1469-8137.2002.00477.x
Pickup M, Barrett S C H. 2012. Reversal of height dimorphism promotes pollen and seed dispersal in a wind-pollinated dioecious plant. Biology Letters, 8: 245-248. DOI:10.1098/rsbl.2011.0950
Raven J A, Griffiths H. 2015. Photosynthesis in reproductive structures:costs and benefits. Journal of Experimental Botany, 66(7): 1699-1705. DOI:10.1093/jxb/erv009
Renner S S, Ricklefs R E. 1995. Dioecy and its correlates in the flowering plants. American Journal of Botany, 82(5): 596-606. DOI:10.1002/j.1537-2197.1995.tb11504.x
Sánchez Vilas J, Pannell J R. 2011. Sexual dimorphism in resource acquisition and deployment:both size and timing matter. Annals of Botany, 107(1): 119-126. DOI:10.1093/aob/mcq209
Sánchez Vilas J, Retuerto R. 2017. Sexual dimorphism in water and nitrogen use strategies in Honckenya peploides: timing matters. Journal of Plant Ecology, 10(4): 702-712.
Teitel Z, Pickup M, Field D L, et al. 2016. The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated, dioecious plant. Plant Biology, 18(1): 98-103. DOI:10.1111/plb.12336
Wallace C S, Rundel P W. 1979. Sexual dimorphism and resource allocation in male and female shrubs of Simmondsia chinensis. Oecologia, 44(1): 34-39. DOI:10.1007/BF00346394
Ward J K, Dawson T E, Ehleringer J R. 2002. Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose. Tree Physiology, 22: 339-346. DOI:10.1093/treephys/22.5.339
Wright V L, Dorken M E. 2014. Sexual dimorphism in leaf nitrogen content but not photosynthetic rates in Sagittaria latifolia (Alismataceae). Botany, 92: 109-112. DOI:10.1139/cjb-2013-0246
Zhao C, Chen L, Ma F, et al. 2008. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia). Tree Physiology, 28(1): 133-141. DOI:10.1093/treephys/28.1.133