林业科学  2019, Vol. 55 Issue (4): 31-41   PDF    
DOI: 10.11707/j.1001-7488.20190404
0

文章信息

申静霞, 袁秀锦, 李迈和, 于飞海, 王雪, 刘录, 贺云龙, 雷静品.
Shen Jingxia, Yuan Xiujin, Li Maihe, Yu Feihai, Wang Xue, Liu Lu, He Yunlong, Lei Jingpin.
土壤温度和水分变化对川西云杉幼苗氮和磷含量的影响
Effects of Soil Temperature and Moisture on Nitrogen and Phosphorus Contents in Picea balfouriana Seedlings
林业科学, 2019, 55(4): 31-41.
Scientia Silvae Sinicae, 2019, 55(4): 31-41.
DOI: 10.11707/j.1001-7488.20190404

文章历史

收稿日期:2018-04-03
修回日期:2018-07-09

作者相关文章

申静霞
袁秀锦
李迈和
于飞海
王雪
刘录
贺云龙
雷静品

土壤温度和水分变化对川西云杉幼苗氮和磷含量的影响
申静霞1, 袁秀锦3, 李迈和4,5, 于飞海6, 王雪6, 刘录7, 贺云龙1, 雷静品1,2     
1. 中国林业科学研究院林业研究所 国家林业局林木培育重点实验室 北京 100091;
2. 南京林业大学南方现代林业协同创新中心 南京 210037;
3. 中国林业科学研究院森林生态环境与保护研究所 北京 100091;
4. 中国科学院沈阳应用生态研究所 沈阳 110016;
5. 瑞士联邦森林、雪和景观研究院 苏黎世 CH-8903;
6. 台州学院 浙江省植物进化生态与保护重点实验室 台州 318000;
7. 北京林业大学自然保护区学院 北京 100083
摘要:【目的】研究不同梯度的土壤温度和水分对川西云杉幼苗生长性状和各器官氮和磷含量的影响,以期为全球气候变暖背景下解释川西云杉树线形成的原因提供参考和数据积累。【方法】以5年生川西云杉幼苗为试验材料,采用人工气候室结合嵌套设计,设置5个土壤温度梯度(2、7、12、17、22℃)和3个土壤水分梯度(干旱处理、正常水分含量处理、饱和水分含量处理)。每处理9株幼苗,共135株幼苗。实验处理4个月后,测定并比较分析不同梯度的土壤温度和水分对幼苗的生长性状、各器官干物质含量、各器官全氮、全磷浓度和含量以及土壤全氮和全磷浓度的影响。【结果】土壤温度处理对幼苗基径和株高生长量均无显著影响,而土壤水分处理对幼苗株高生长量有显著影响;在2℃和7℃土壤温度干旱处理下显著降低了幼苗的株高生长量,但随着土壤温度的升高其影响效应不显著。土壤温度处理对土壤氮和磷浓度无显著影响,而干旱处理显著升高了土壤氮和磷浓度。川西云杉幼苗各器官的氮和磷浓度以及当年生叶氮含量随土壤温度降低显著降低;干旱和饱和水分处理显著降低了当年生叶和当年生枝的氮浓度,饱和水分处理显著降低了当年生叶的磷浓度,干旱处理显著降低了当年生枝、茎和根的磷浓度,干旱和饱和水分处理显著降低了当年生叶和根的氮和磷含量,且随着土壤温度升高影响效应更显著。【结论】在短期内,土壤低温对川西云杉幼苗的生长性状没有明显的制约作用,但对川西云杉幼苗各器官的氮和磷浓度及含量影响显著,尤其是当年生叶和根的氮和磷浓度及含量。在川西地区,低温、干旱等极端气候胁迫导致的云杉幼苗氮、磷含量的不足很可能是限制川西云杉垂直分布的重要因素。此外,土壤温度和水分处理存在显著的交互作用,随着土壤温度的降低,水分胁迫对幼苗各器官氮和磷含量的影响由显著变得不再显著,说明随着海拔升高,与水分因子相比,土壤低温成为造成云杉各器官营养元素亏缺的主导因子。
关键词:川西云杉幼苗    土壤低温    水分胁迫    氮和磷    
Effects of Soil Temperature and Moisture on Nitrogen and Phosphorus Contents in Picea balfouriana Seedlings
Shen Jingxia1, Yuan Xiujin3, Li Maihe4,5, Yu Feihai6, Wang Xue6, Liu Lu7, He Yunlong1, Lei Jingpin1,2     
1. State Forestry Administration Key Laboratory of Forest Silviculture Research Institute of Forestry, Chinese Academy of Forestry Beijing 100091;
2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University Nanjing 210037;
3. Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing 100091;
4. Institute of Applied Ecology, Chinese Academy of Sciences Shenyang 110016;
5. Swiss Federal Research Institute WSL Zuercherstrasse CH-8903;
6. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Taizhou 318000;
7. School of Nature Conservation, Beijing Forestry University Beijing 100083
Abstract: 【Objective】This study aimed to explain the formation mechanism of Picea balfouriana tree line in terms of nutrient elements. Effects of different soil temperature and moisture on the growth and physiology, and nutrient concentration (unit mass content)and content in responses to low soil-temperature and water stress(drought and saturated water stress) were studied by simulating changes of soil temperature and moisture.【Method】In this study, 5-year-old P. fouriana seedlings were taken as experimental material. The experiment was conducted in a walk-inartificial climate chamber with a nested design. Five soil temperature regimes (2, 7, 12, 17, 22℃) and three soil moisture treatments (drought treatment, normal moisture treatment and saturated moisture treatment) were set up. A total of 135 seedlings were used in the experiment, and 9 seedlings were randomly selected in each treatment. After 4 months treatments, phenotypic traits, dry mass, total nitrogen and total phosphorus of seedlings were measured and analyzed. At the same time, soil samples were collected to measure total nitrogen and total phosphorus.【Result】Soil temperature treatments had no significant effects on basal diameter and height increment, while soil moisture treatments had significant effects on height increment. Drought treatment significantly reduced height increment at 2℃ and 7℃, however the effect was no longer significant with soil temperature increasing. Soil temperature treatments had no significant influences on nitrogen (N) and phosphorus (P) concentration in soil, while drought stress significantly increased N and P concentration in soil. The N and P concentration in different organs, and N content in annual needles of spruce seedlings were significantly decreased with soil temperature decreasing. Drought and saturated water stress significantly reduced N concentration in annual needles and annual branches. Saturated water stress significantly reduced P concentration in annual needle, and drought stress significantly reduced P concentration in annual branch, stem and root. Drought and saturated water stress significantly decreased N and P content in annual needle and root, and the higher the temperature the effect was more significant.【Conclusion】In the short term, low soil temperature and water stress had no significant limitations on phenotypic traits, while the stress had significant effects on N, P concentration and content, especially in annual needle and root. The deficiency of N and P content in organs of the seedlings caused by extreme climate changes, such as low temperature stress and water stress, is likely to limit the vertical distribution of P. balfouriana in the western of Sichuan province, in China. In addition, there was a significant interaction between soil temperature and moisture treatment, The effects of water stress on nutrient in various organs of the seedlings was significantly reduced with soil temperature decreasing. It was suggested that low soil temperature became the leading factor for the deficiency of nutrient elements in various organs of P. balfouriana seedlings with the increase of altitude.
Key words: Picea balfouriana seedling    soil low-temperature stress    soil water stress    N    P    

气候变化可导致植物垂直分布范围改变(Zhu et al., 2012),相较于其他地区,高山地带对气候变化更为敏感(Körner, 1998; Lloyd et al., 2002),尤其是高山林线交错带是研究全球气候变化的理想场所(Bekker et al., 2005; Payette et al., 2001; Smith et al., 2009)。高山林线本质上是一条低温界限,是低温与一系列其他环境因子共同作用的结果,尤其是生长季的土壤低温与高山林线的形成密切相关(Crescente et al., 2002; Li et al., 2006; 乌凤章等, 2015; 丛毓等, 2016)。但在气候变暖的环境下,高山林线表现出升高、降低或不变等截然不同的趋势(Danby et al., 2007; Leif et al., 2007; Mäkinen et al., 2000; Michel et al., 2002; 张立杰等, 2012),这为预测全球气候变暖和山地森林退化大背景下林线树种的生理生态响应过程和动态变迁带来极大的不确定性。因此,有必要对林线的形成机制进行深入探究。目前的研究多集中在野外观测试验和小环境整体增温或降温方面,而将地上地下温度严格分离,单独研究土壤温度变化与植物关系的试验很少见。另外,水分也是影响植物存活和生长发育的关键因子,干旱和过度潮湿的土壤均会导致植物光合作用下降和死亡率上升(Cuevas et al., 2000; Johnson et al., 2004) (Gilfedder et al., 2010)。水分在很大程度上决定着植物的分布(Robredo et al., 2007; Wullschleger et al., 2002),很可能是导致垂直分布上限形成的关键因子(Kong et al., 2012; Yu et al., 2014)。因此,研究植物生长和生理对土壤温度与水分变化的响应对于解释植物垂直分布与气候变化的关系具有重要意义(蒋高明, 2001; 许振柱等, 2003)。

氮和磷是植物生长发育必需的营养元素,参与一系列重要的物质代谢和能量代谢过程(罗绪强等, 2007; 杜启燃等, 2014; Reich et al., 2006; Takashima et al., 2004)。氮和磷含量的不足会影响植物的生长和光合作用(Li et al., 2009; Martine et al., 2009)。因此,温度、水分等环境因子变化导致的植物营养缺乏或植物养分利用限制,很可能是影响植物在海拔上限分布格局的关键因素(Li et al., 2004; Morales et al., 2004; Richardson et al., 2002)。目前,在土壤温度和水分变化下,探讨土壤和植物营养元素的计量特征变化对高山植物生理生态过程和垂直分布格局影响的研究还相对较少。

川西云杉(Picea balfouriana)主要分布在我国西南地区海拔3 300~4 300 m的森林垂直分布界限地带,是云杉属(Picea)中分布海拔最高的树种,经常被选作高海拔荒山造林树种(中国科学院中国植物志委员会, 1974)。幼苗是植物生长发育过程中最为脆弱的阶段,幼树能否成功繁殖和定居对于高山林线的位置变化至关重要(Holtmeier et al., 2005)。本研究以5年生川西云杉幼苗为研究对象,通过对地上地下温度严格分离,并将土壤温度和水分因子相结合,在前人研究的基础上,采用室内控制试验探究川西高山地区土壤温度和水分变化对高山树木各器官氮和磷营养元素含量的影响,以期完善对林线树木营养元素的研究,并为解释川西云杉树线形成的原因提供参考和数据积累。

1 材料与方法 1.1 试验材料与土壤采集

以四川省阿坝州金川县苗木基地(30°28′01″N, 101°50′02″E)人工培育的5年生川西云杉幼苗作为试验材料,试验用土为该地区海拔3 800 m川西云杉160年天然林林下棕色针叶林土,pH5.92。该树种分布区年平均气温7.8 ℃,生长季平均气温17 ℃;年平均降水量600~1 000 mm,6—9月降水量占全年降水量的80%,年平均相对湿度70%左右。于2016年6月初将川西云杉幼苗移栽至不透水的圆柱形塑料容器(直径10 cm,高20 cm)中,移栽时土壤高度为15 cm,并保持根系位置一致,为保持土壤温度和湿度在土壤表面撒约1 cm厚的蛭石。

1.2 试验设计

川西云杉幼苗移栽后恢复生长一段时间,选择135株长势良好且一致的幼苗,于2016年6月上旬转移到3个环境条件完全相同的步入式人工气候室内进行温度和水分处理。试验期间于气候室内模拟川西云杉生长季环境条件,设置光照时间14 h,空气相对湿度70%,白天/夜间温度17 ℃/17 ℃。

每个气候室布设5个低温循环水箱(YHX-0510, 宁波江南仪器厂)控制土壤温度(Asher et al., 1965)。为检验Körner等(19992004)关于全球林线位置受生长季6.7 ℃左右土壤温度控制的假说,在整个试验期间设定5个土壤温度处理:2、7、12、17、22 ℃。笔者采用打有圆孔的泡沫板将植物连同培养容器架空在低温循环水箱中(图 1),水箱中水的高度设置为高出植物培养容器中土壤表面1 cm,以保持土壤温度与水箱中水温的一致性。每个水箱随机选择3株植物材料作干旱处理,3株植物作正常水分含量处理(对照处理),其余3株作饱和水分处理,分别用Dry、Normal和Wet表示。本试验共135株川西云杉幼苗[5个温度处理×3个水分处理×3个气候室×3株川西云杉幼苗]试验设计如图 1。采用土壤温湿度测试计(SS101, Dowdon technology Co., Ltd., 深圳)指示的3个土壤湿度水平直接作为本试验需要的3个土壤水分处理:干旱处理(土壤质量含水量为35%~40%)、正常水分含量处理(土壤质量含水量为55%~60%)、饱和水分含量处理(土壤质量含水量为75%~80%)。每天使用土壤温湿度测试计监测土壤温度和湿度,观察是否在正常设置范围,大概在浇水后的第4~5天土壤湿度可能会降低至设置范围以外,因此试验期间每隔5天的下午5:00浇水,使土壤湿度保持在设置的范围,2016年10月上旬生长季末期。

图 1 试验设计 Fig. 1 Schematic diagram of experimental design
1.3 幼苗生长和生理指标测定

在整个试验过程中,定期观察记录川西云杉幼苗的生长状况,重点关注针叶失绿变黄现象。试验结束时,用游标卡尺测量幼苗的基径和株高,基径为土壤表面以上0.5 cm处干的直径;株高为土壤表面以上0.5 cm处至干的顶端的高度,使用毫米尺测定(Lahti et al., 2005)。待幼苗收获后,将每1株幼苗的各个器官分离(当年生叶、当年生枝、多年生叶、多年生枝、茎、根),放入烘箱于70 ℃烘至恒质量,记录幼苗各器官干质量;同时采集土壤,烘干至恒质量。

使用普通研磨仪(FW100, Test Instrument Co., Ltd., 天津, 中国)及球磨仪研究(MM400, Retsch, 德国)土壤及幼苗各器官,然后通过孔径为0.3 mm的标准分样筛,过筛后的土壤和植物样品分别进行全氮和全磷浓度的测定。由于当年生叶和当年生枝的干物质含量过低,将同一个气候室相同处理的3株幼苗的器官分别混合在一起研磨。土壤和植物样品全氮和全磷浓度的测定分别采用凯氏定氮法和HClO4-H2SO4法。植物全氮和全磷含量为各器官全氮和全磷浓度与其干物质含量的乘积。

1.4 数据处理和分析

利用SPSS 22.0进行数据统计分析,以嵌套双因素方差(Two-way ANOVA)分析检验土壤温度、土壤水分、二者交互作用、气候室及同一个系统内的个体对植物生长与生理的影响,检验对株高和基径相对生长量的影响时,将原始株高和基径作为协变量,差异显著性水平设定为0.05。同一个系统内的个体作为随机因素嵌套在土壤水分处理中。当检测到土壤温度与土壤水分的交互作用有显著影响时,用Bonferroni校正进行事后检验,比较5个土壤温度处理下土壤水分处理之间生长和生理特性的差异以及同一土壤水分处理下5个土壤温度处理对植物生长和生理影响的差异。分析前,对所有数据进行正态性和方差同质性检验。利用SigmaPlot 12.5进行柱状图的绘制。

2 结果与分析 2.1 土壤温度和水分变化对幼苗形态指标的影响

土壤温度处理对幼苗株高和基径生长量均无显著影响(表 1)(P>0.05);土壤水分处理对基径生长量无显著影响,但对株高生长量影响极显著(表 1)(P<0.01),在土壤低温(2 ℃和7℃)处理下,相较于饱和水分处理,干旱处理显著降低了株高生长量(图 2A)。这说明在短期内土壤低温胁迫会增大干旱对株高的负面影响。

表 1 土壤温度和水分处理对幼苗基径和株高相对生长量以及土壤氮磷浓度的影响(F值) Tab.1 Results(F value) of two-way ANOVA on effects of soil temperature and moisture on basal diameter increment, height increment and N, P concentration in soil
图 2 不同土壤温度和水分处理下川西云杉幼苗株高和基径相对生长量 Fig. 2 Height (A), basal diameter (B) increment of P. balfouriana seedlings under different soil temperature and moisture treatments at the end of the experiment 不同大写字母表示相同土壤温度处理下不同土壤水分处理间差异显著;不同小写字母表示相同土壤水分处理下不同土壤温度处理间差异显著(P<0.05)。下同。 Different capital letters indicate significant differences between soil moisture treatments under same soil temperature treatment. Different lowercase letters indicate significant differences between soil temperature treatments under same soil moisture treatment at P < 0.05. Vertical bars are SE and each value is the mean±SE. The same below.
2.2 土壤温度和水分变化对土壤氮、磷浓度的影响

土壤温度处理对土壤氮和磷浓度无显著影响,而土壤水分处理对土壤氮和磷浓度影响显著(表 1)(P<0.05),干旱处理显著提高了土壤的氮和磷浓度(P<0.05),而饱和水分处理对土壤氮和磷浓度无显著影响。由多重比较的结果可知,干旱处理显著提高了12、17和22 ℃温度处理下土壤的氮浓度(图 3A);在5个温度处理下,干旱处理均显著提高了土壤的磷浓度(图 3B),说明在短期内干旱能够减少土壤中的氮和磷矿化。

图 3 不同土壤温度和水分处理下土壤氮、磷浓度 Fig. 3 N, P concentration in soil under different soil temperature and moisture treatments
2.3 土壤温度和水分变化对幼苗氮、磷浓度和含量的影响 2.3.1 土壤温度和水分变化对幼苗氮和磷浓度的影响

土壤温度处理对幼苗各器官氮和磷浓度均影响显著(表 2)(P<0.05)。由多重比较的结果可知,随着土壤温度的降低,饱和水分处理和正常水分处理下当年生叶和根的氮浓度显著降低(P<0.05),但干旱处理下的氮浓度无显著变化,且干旱处理下的氮浓度显著低于其他2个水分处理,这说明干旱胁迫对叶和根氮浓度的影响大于土壤低温(图 4AD);土壤温度降低显著降低了饱和水分处理下当年生枝的氮浓度(P<0.05),但对干旱和正常水分处理下的氮浓度无显著影响(图 4B);随着土壤温度的降低,正常处理下当年生叶的磷浓度、干旱处理下当年生枝的磷浓度以及饱和水分处理下茎的磷浓度均显著降低(P<0.05)(图 4A~C),3个水分处理下根的磷浓度随着土壤温度降低有降低的趋势,但并不显著(图 4D)。结合对土壤氮、磷浓度的分析,短期内土壤低温对土壤氮、磷没有影响,但显著降低了植物体内的氮、磷浓度,说明土壤低温很可能影响了土壤氮、磷的转运及幼苗对土壤氮、磷等营养元素的吸收和利用。

表 2 土壤温度和水分处理对川西云杉幼苗氮、磷浓度和含量的影响(F值) Tab.2 Results(F value) of two-way ANOVA on effects of soil temperature and moisture on N, P concentration and content of seedlings
图 4 不同土壤温度和水分处理下川西云杉幼苗各器官氮、磷浓度 Fig. 4 N, P concentration in different parts of P. balfouriana seedlings under different soil temperature and moisture treatments

土壤水分处理对幼苗当年生叶、当年生枝、根的氮浓度以及各器官的磷浓度均影响显著(表 2)(P<0.05)。由多重比较的结果可知,干旱处理显著降低了7 ℃温度处理下当年生枝的氮浓度,干旱和饱和水分处理均显著降低了17 ℃温度处理下当年生枝的氮浓度(P<0.05)(图 4AB);饱和水分处理显著降低了12 ℃和22 ℃温度处理下当年生叶的磷浓度,干旱处理显著降低了7 ℃温度处理下当年生枝的磷浓度(P<0.05)(图 4EF)。

2.3.2 土壤温度和水分对幼苗氮和磷含量的影响

土壤温度处理对当年生叶的氮含量影响显著(表 2)(P<0.05)。由多重比较的结果可知,土壤温度降低显著降低了正常和饱和水分处理下当年生叶的氮含量,而干旱处理下当年生叶的氮含量随着土壤温度的降低呈现出显著升高的趋势(P<0.05)(图 5A);土壤温度降低显著降低了正常水分处理下根的氮含量(P<0.05),但对干旱和饱和水分处理下根的氮含量无显著影响(图 5D)。土壤温度对各器官的磷含量均无显著影响,且对当年生枝和茎的氮含量也无显著影响(表 2, 表5B、C、E、F、G、H)。

图 5 不同温度和水分处理下川西云杉幼苗各器官氮、磷含量 Fig. 5 N, P content in different parts of P.balfouriana seedlings under different soil temperature and moisture treatmentsat

土壤水分处理对当年生叶和根的氮、磷含量影响极显著(表 2)(P<0.01)。干旱和饱和水分处理显著降低了当年生叶和根的氮、磷含量,土壤温度较高时效果更显著(P<0.05)。由多重比较的结果可知,相较于正常水分处理,干旱和饱和水分处理均显著降低了7、17和22 ℃温度处理下当年生叶的氮含量,干旱处理显著降低了22 ℃温度处理下当年生叶的磷含量(P<0.05)(图 5A, E);干旱处理显著降低了12 ℃温度处理下根的氮和磷含量,同时干旱和饱和水分处理均显著降低了17 ℃和22 ℃温度处理下根的氮和磷含量(P<0.05)(图 5DH)土壤水份处理对茎的磷含量有显著影响,干旱显著降低了12 ℃时茎的磷含量(表 2, 图 5G)。土壤水分处理对当年生枝和茎中的氮含量以及当年枝的磷含量均无显著影响(表 2, 图 5BCF)。

土壤温度和土壤水分处理对当年生叶和根的氮含量具有显著的交互作用(P<0.01)(表 2),随着土壤温度的降低,干旱胁迫对当年生叶和根中氮含量的消极效应由显著影响逐渐变为无显著影响(图 5A)。上述研究结果说明,干旱对植物氮、磷含量的影响要大于土壤低温,且温度升高会加重干旱对植物中氮含量的影响。

3 讨论

土壤温度过低会导致植物的生长受到抑制,严重时甚至会导致植物死亡,在较低的温度环境下光合产物转化为可溶性糖和淀粉的比例大于纤维,从而导致基径和株高减小(刘兴良等, 2006; Li et al., 2004; Luo et al., 2004)。高山植物更容易受到高寒气候的胁迫,但本研究的结果表明:土壤温度降低对川西云杉幼苗的基径和株高生长量无显著影响,这可能是由于不同树种对低温胁迫的响应不同,也可能短期内低温胁迫对基径和株高不会造成较大影响。另外,本试验过程中同时也发现针叶失绿变黄现象首先发生在低温干旱处理的川西云杉幼苗树冠的底部,试验结束时针叶失绿变黄以及干枯落叶在低温干旱处理时显著,这与Achten等(2010)的研究结果一致。

土壤温度是影响土壤氮矿化的主要环境因子(Bremer et al., 1997),随着海拔升高,土壤低温胁迫的加剧显著降低土壤的氮浓度(周才平等, 2001a; 2001b; 徐宪根等, 2009),李丹维等(2017)研究发现,土壤的有机碳和氮浓度随海拔升高呈现先升后降的趋势,而土壤的磷浓度无显著变化。付晶莹等(2008)研究表明,土壤的氮浓度随海拔升高而升高,而土壤的磷浓度随海拔升高而降低,但本研究中土壤低温处理对土壤氮和磷浓度无显著影响,说明随着海拔升高土壤中的氮磷浓度并不是限制川西云杉生长和垂直分布的关键因素。此外,周才平等(2001a)研究表明在一定的范围内氮的矿化速率与土壤的水分含量呈正相关,而在本研究中,干旱处理却显著提高了土壤的氮和磷浓度,这可能是由于土壤理化性质及微生物活动的差异导致土壤养分对温度和水分变化的不同响应规律,具体原因有待于进一步研究。

川西云杉幼苗各器官氮、磷浓度和含量随着土壤温度降低均呈现出显著降低的趋势,尤其是当年生叶和根的氮、磷浓度和含量的降低趋势极明显。这与胡启武等(2007)对青海云杉(Picea crassifolia)的研究结果一致,在本研究中,随着土壤温度降低,土壤的氮和磷浓度并无显著变化,而幼苗各器官全氮和全磷浓度却呈现降低趋势。结合对土壤氮和磷浓度的分析,笔者认为土壤温度降低导致土壤氮和磷的矿化、迁移速率以及根对离子的吸收速率降低(刘勇等, 2014; Marschner, 1995)。但也有研究表明,随着海拔上升,叶片的氮和磷浓度均显著上升(祁建等, 2007; Li et al., 2015)或者没有显著变化(Körner, 1998; Sveinbjörnsson et al., 2010)。这可能是由于在高海拔地区,低温胁迫导致植物的一系列生理生化过程变缓慢,而较高的氮浓度有利于补偿低温对植物的损耗(Reich et al., 2004; He et al., 2006),植物叶片保持较高水平的氮浓度还能够促使羧化作用与能量供应保持平衡,以抵御低温胁迫(闫霜等, 2014),因此,认为土壤低温胁迫下植物体内氮、磷含量的不足并不是限制植物垂直分布的原因。此外,吴杰等(2010)对油竹(Bambusa surrecta)和华西箭竹(Fargesia nitida)的研究表明,叶片中的氮浓度随海拔的升高分别表现出高-低-高的双峰变化过程和无显著变化,2竹种对海拔升高表现出不同的响应结果,这说明植物对环境变化的生理生态响应有明显的种间差异(祁建等, 2007; 李轩然等, 2007)。

干旱胁迫显著降低了川西云杉幼苗当年生叶的氮浓度,干旱和饱和水分胁迫显著降低了当年生叶和根的氮和磷含量。这个结果与前人得出的结论不同,随着土壤水分含量的减少,落羽杉(Taxodium distichum)叶和根的氮浓度逐渐升高(汪贵斌等, 2004),青海云杉叶片的氮浓度与土壤含水量呈负相关(胡启武等, 2007)。本研究还发现,土壤低温与水分胁迫存在明显的交互作用,在极端低温环境下,水分胁迫对川西云杉幼苗各器官氮和磷含量的影响不显著,土壤低温将变成影响川西云杉幼苗氮和磷含量的主导因子。此外,汪贵斌等(2004)研究发现,随着土壤水分胁迫加重,植株将更多的氮和磷分配到根系中,而在本研究中干旱胁迫对氮和磷地上地下分配的影响并不显著。结合对土壤氮和磷浓度的分析,本研究发现干旱对土壤和川西云杉幼苗氮和磷的影响是不一致的,干旱胁迫下土壤的氮和磷浓度未降低反而升高,但幼苗当年生叶和根的氮和磷含量显著降低,本文推测干旱胁迫也可能导致土壤中氮和磷的迁移速率或根对离子的吸收速率降低,最终导致植物各器官营养元素的亏缺。

由于氮和磷会影响植物的碳同化过程,进而影响植物碳水化合物的供应和积累(雷静品等, 2012; 杜启燃等, 2014),建议以后应着重将氮、磷等养分元素与碳水化合物二者结合起来进行研究,以期完善对气候变化下高山树木生理生化过程的理解。

4 结论

土壤低温和水分胁迫是影响川西云杉幼苗氮和磷吸收和利用的重要因素。在全球气候变化加剧的背景下,川西高海拔地区低温和干旱导致的幼苗氮、磷含量的不足很可能成为限制川西云杉垂直分布的关键因子。此外,土壤温度和土壤水分处理间存在显著的交互作用,在较低的土壤低温环境下水分胁迫不再是影响川西云杉幼苗营养元素的主要因素。

参考文献(References)
丛毓, 贺红士, 谷晓楠, 等. 2016. 高山林线形成机理研究进展. 应用生态学报, 27(9): 3035-3041.
(Cong Y, He H S, Gu X N, et al. 2016. Progress of alpine treeline formation mechanism. Chinese Journal of Applied Ecology, 27(9): 3035-3041. [in Chinese])
杜启燃, 雷静品, 刘建锋, 等. 2014. CO2浓度增加和施氮对栓皮栎幼苗生理生态特征的影响. 应用生态学报, 25(1): 24-30.
(Du Q R, Lei J P, Liu J F, et al. 2014. Eco-physiological response of Quercusvariabilis seedlings to increased atmospheric CO2 and N supply. Chinese Journal of Applied Ecology, 25(1): 24-30. [in Chinese])
付晶莹, 朱晓芳. 2008. 庐山不同海拔高度土壤养分含量分析. 安徽农学通报, 14(15): 73-74.
(Fu J Y, Zhu X F. 2008. Analysis on soil nutrient in different altitudes of Lushan. Anhui Agricultural Science, 14(15): 73-74. DOI:10.3969/j.issn.1007-7731.2008.15.032 [in Chinese])
胡启武, 宋明华, 欧阳华, 等. 2007. 祁连山青海云杉叶片氮、磷含量随海拔变化特征. 西北植物学报, 27(10): 2072-2079.
(Hu Q W, Song M H, Ouyang H, et al. 2007. Variations in leaf N, P of Picea crassifolia alongthe altitude gradient in Qilian Mountains. Acta Botanica Boreali-Occidentalia Sinica, 27(10): 2072-2079. DOI:10.3321/j.issn:1000-4025.2007.10.023 [in Chinese])
蒋高明. 2001. 当前植物生理生态学研究的几个热点问题. 植物生态学报, 25(5): 514-519.
(Jiang G M. 2001. Review on some hot topics towards the researches in the field of plant physioecology. Chinese Journal of Plant Ecology, 25(5): 514-519. DOI:10.3321/j.issn:1005-264X.2001.05.002 [in Chinese])
雷静品, 熊定鹏, 刘建锋, 等. 2012. 生境变化对栓皮栎幼苗营养元素含量的影响. 应用生态学报, 23(6): 1441-1446.
(Lei J P, Xiong D P, Liu J F, et al. 2012. Effects of habitat change on nutrient contents in Quercus variabilis seedlings. Chinese Journal of Applied Ecology, 23(6): 1441-1446. [in Chinese])
李丹维, 王紫泉, 田海霞, 等. 2017. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 54(1): 160-170.
(Li D W, Wang Z Q, Tian H X, et al. 2017. Carbon, nitrogen, phosphorus content in soil and ecological and chemical measurement characteristics at different altitudes of Taibai Mountains. Acta Pedologica Sinica, 54(1): 160-170. [in Chinese])
李轩然, 刘琪璟, 蔡哲, 等. 2007. 千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31(1): 93-101.
(Li X R, Liu Q J, Cai Z, et al. 2007. Specific leaf area and leaf area index of conifer plantations in Qianyan Station of subtropical China. Chinese Journal of Plant Ecology, 31(1): 93-101. DOI:10.3321/j.issn:1005-264X.2007.01.012 [in Chinese])
刘兴良, 刘世荣, 宿以明, 等. 2006. 巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应. 林业科学, 42(2): 1-7.
(Liu X L, Liu S R, Su Y M, et al. 2006. Aboveground biomass of Quercus aquifolioides shrub community and its responses to altitudinal gradients in Balangshan Mountain, Shichuan province. Scientia Silvae Sinicae, 42(2): 1-7. [in Chinese])
刘勇, 冯美利, 曹红星, 等. 2014. 低温胁迫对油棕叶片养分含量变化的影响. 热带农业科学, 34(6): 16-19.
(Liu Y, Feng M L, Cao H X., et al. 2014. Effect of low temperature on theleaf nutrient content of oil palm. Chinese Journal of Tropical Agriculture, 34(6): 16-19. DOI:10.3969/j.issn.1009-2196.2014.06.005 [in Chinese])
罗绪强, 王世杰, 刘秀明. 2007. 陆地生态系统植物的氮源及氮素吸收. 生态学杂志, 26(7): 1094-1100.
(Luo X Q, Wang S J, Liu X M. 2007. Nitrogen source and its uptake by plants interrestrial ecosystems. Chinese Journal of Ecology, 26(7): 1094-1100. DOI:10.3321/j.issn:1000-4890.2007.07.023 [in Chinese])
祁建, 马克明, 张育新. 2007. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释. 生态学报, 27(3): 930-937.
(Qi J, Ma K M, Zhang Y X. 2007. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations. Acta Ecologica Sinica, 27(3): 930-937. DOI:10.3321/j.issn:1000-0933.2007.03.013 [in Chinese])
汪贵斌, 曹福亮. 2004. 不同土壤水分含量下落羽杉根、茎、叶营养水平的差异. 林业科学研究, 17(2): 213-219.
(Wang G B, Cao F L. 2004. Effects of soil water contents on nutrient uptake and allocation of Baldcypress. Forest Research, 17(2): 213-219. DOI:10.3321/j.issn:1001-1498.2004.02.012 [in Chinese])
乌凤章, 王贺新, 徐国辉, 等. 2015. 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 51(7): 116-128.
(Wu F Z, Wang H X, Xu G H, et al. 2015. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae, 51(7): 116-128. [in Chinese])
徐宪根, 周焱, 阮宏华, 等. 2009. 武夷山不同海拔高度土壤氮矿化对温度变化的响应. 生态学杂志, 28(7): 1298-1302.
(Xu X G, Zhou Y, Ruan H H, et al. 2009. Responses of soil nitrogen mineralization to temperature change along an elevation gradient in Wuyi Mountain, China. Chinese Journal of Ecology, 28(7): 1298-1302. [in Chinese])
许振柱, 周广胜. 2003. 陆生植物对全球变化的适应性研究进展. 自然科学进展, 13(2): 113-120.
(Xu Z Z, Zhou G S. 2003. Research progress on the adaptability of terrestrial plants to global change China. Progress in Natural Science, 13(2): 113-120. DOI:10.3321/j.issn:1002-008X.2003.02.001 [in Chinese])
闫霜, 张黎, 景元书, 等. 2014. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 38(6): 640-652.
(Yan S, Zhang L, Jing Y S, et al. 2014. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chinese Journal of Plant Ecology, 38(6): 640-652. [in Chinese])
张立杰, 刘鹄. 2012. 祁连山林线区域青海云杉种群对气候变化的响应. 林业科学, 48(1): 18-21.
(Zhang L J, Liu H. 2012. Response of Picea crassifolia population to climate change at the treeline ecotones in Qilian Mountains. Scientia Silvae Sinicae, 48(1): 18-21. [in Chinese])
周才平, 欧阳华. 2001a. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响. 植物生态学报, 25(2): 204-209.
(Zhou C P, Ouyang H. 2001a. Temperature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest. Chinese Journal of Plant Ecology, 25(2): 204-209. [in Chinese])
周才平, 欧阳华. 2001b. 长白山两种主要林型下土壤氮矿化速率与温度的关系. 生态学报, 21(9): 1469-1473.
(Zhou C P, Ouyang H. 2001b. Effect of temperature on nitrogen mineralization at optimum and saturated soil water content in two types of forest in Changbai Mountain. Acta Ecologica Sinica, 21(9): 1469-1473. [in Chinese])
Achten W M J, Maes W H, Reubens B, et al. 2010. Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass & Bioenergy, 34(5): 667-676.
Asher C J, Ozanne P G, Loneragan J F. 1965. A method of controlling the ionic environment of plant roots. Soil Science, 100(3): 149-156.
Bekker M F. 2005. Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, U.S.A. Arctic, Antarct & Alps Research, 37(1): 97-107.
Bremer E, Kuikman P. 1997. Influence of competition for nitrogen in soil on net mineralization of nitrogen. Plant & Soil, 190(1): 119-126.
Crescente MF, Gratani L, Larcher W. 2002. Shoot growth efficiency and production of Quercus ilex L. in differentclimates. Flora, 197(1): 2-9. DOI:10.1078/0367-2530-00007
Cuevas, Jaime G. 2000. Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. Journal of Ecology, 88(5): 840-855. DOI:10.1046/j.1365-2745.2000.00497.x
Danby R K, Hik D S. 2007. Variability, contingency and rapid change in recent subarctic alpine treeline dynamics. Journal of Ecology, 95(2): 352-363. DOI:10.1111/jec.2007.95.issue-2
Gilfedder L. 2010. Factors influencing the maintenance of an inverted Eucalyptus coccifera treeline on the Mt Wellington Plateau, Tasmania. Austral Ecology, 13(4): 495-503.
He J S, Fang J Y, Wang Z H, et al. 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in thegrassland biomes of China. Oecologia, 149(1): 115-122. DOI:10.1007/s00442-006-0425-0
Holtmeier F K, Broll G. 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology & Biogeography, 14(5): 395-410.
Johnson D M, Germino M J, Smith W K. 2004. Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiology, 24(4): 377-386. DOI:10.1093/treephys/24.4.377
Körner C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 15(4): 445-459.
Körner C. 1999. Alpine plant life: Functional plant ecology of high mountain ecosystems. Berlin Spring-Verlag: 338.
Körner C, Paulsen J. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713-732. DOI:10.1111/j.1365-2699.2003.01043.x
Kong G, Luo T, Liu X, et al. 2012. Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecology, 213(11): 1843-1855. DOI:10.1007/s11258-012-0140-3
Lahti M, Aphalo P J, Finér L, et al. 2005. Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiology, 25(1): 115-122. DOI:10.1093/treephys/25.1.115
Leif K. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005:implications for tree line theory and climate change ecology. Journal of Ecology, 95(1): 41-52. DOI:10.1111/jec.2007.95.issue-1
Lloyd A H, Fastie C L. 2002. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. climatic change, 52(4): 481-509.
Li C, Wu C, Duan B, et al. 2009. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides, along an altitudinal gradient. Trees, 23(5): 1109-1121. DOI:10.1007/s00468-009-0354-8
Li C, Zhang X, Liu X, et al. 2015. Leaf morphological and physiological responses of Quercus aquifolioidesalong an altitudinal gradient. Silva Fennica, 40(1): 5-13.
Li M H, Krauchi N, Dobbertin M. 2006. Biomass distributionof different aged needles in young and old Pinus cembratrees at highland and lowland sites. Trees, 20(5): 611-618. DOI:10.1007/s00468-006-0076-0
Li M H, Yang J. 2004. Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science, 61(2): 217-223.
Luo T, Pan Y, Ou Y H, et al. 2004. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology & Biogeography, 13(4): 345-358.
Mäkinen H, Nöjd P, Mielikäinen K. 2000. Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finland to the Arctic timberline. Canadian Journal of Forest Research, 30(30): 769-777.
Marschner H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, Lndon.
Martine J. van de Weg, Patrick Meir, John Grace, et al. 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Transactions of the Botanical Society of Edinburgh, 2(3): 243-254.
Michel D, Rechenberger J, Hartleb O. 2002. Population stasis in a high-elevation herbaceous plant under moderate climate warming. Basic & Applied Ecology, 3(1): 77-83.
Payette S, Fortin M J. 2001. The subarctic forest-tundra:the structure of a biome in a changing climate. BioScience, 51(9): 709-718. DOI:10.1641/0006-3568(2001)051[0709:TSFTTS]2.0.CO;2
Reich P B, Oleksyn J. 2004. Global patterns of plant leaf Nand P in relation to temperature and latitude. PNAS, 101(30): 11001-11006. DOI:10.1073/pnas.0403588101
Reich P B, Tjoelker M G, Machado J L, et al. 2006. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439(7075): 457-461. DOI:10.1038/nature04282
Richardson A D, Berlyn G P. 2002. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89(1): 88-94. DOI:10.3732/ajb.89.1.88
Robredo A, Pérez-López U, Maza H S, et al. 2007. Elevated CO2 alleviates the impact of drought on barley improving water status bylowering stomatal conductance and delaying its effects onphotosynthesis. Environmental and Experimental Botany, 59(3): 252-263. DOI:10.1016/j.envexpbot.2006.01.001
Smith W K, Germino M J, Johnson D M, et al. 2009. The altitude of alpine treeline:a bellwether of climate change effects. Botanical Review, 75(2): 163-190. DOI:10.1007/s12229-009-9030-3
Sveinbjörnsson B, Smith M, Traustason T, et al. 2010. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska. Oecologia, 163(4): 833-843. DOI:10.1007/s00442-010-1597-1
Takashima T, Hikosaka K, Hirose T. 2004. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell & Environment, 27(8): 1047-1054.
Wullschleger S, Tschaplinski T, Norby R. 2002. Plant water relations atelevated CO2- implications for water-limitedenvironments. Plant, Cell and Environment, 25(2): 319-331. DOI:10.1046/j.1365-3040.2002.00796.x
Yu D, Wang Q, Liu J, et al. 2014. Formation mechanisms of the alpine Erman's birch (Betula ermanii) treeline on Changbai Mountain in northeast China. Trees, 28(3): 935-947. DOI:10.1007/s00468-014-1008-z
Zhu K, Woodall C W, Clark J S. 2012. Failure to migrate:lack of tree range expansion in response to climate change. Global Change Biology, 18(3): 1042-1052. DOI:10.1111/j.1365-2486.2011.02571.x