林业科学  2019, Vol. 55 Issue (4): 171-177   PDF    
DOI: 10.11707/j.1001-7488.20190418
0

文章信息

梁森苗, 张淑文, 任海英, 郑锡良, 戚行江.
Liang Senmiao, Zhang Shuwen, Ren Haiying, Zheng Xiliang, Qi Xingjiang.
蜡杨梅与杨梅种间嫁接及亲缘关系分析
The Interspecific Grafting and Phylogenetic Analysis of Myrica cerifera and Myrica rubra
林业科学, 2019, 55(4): 171-177.
Scientia Silvae Sinicae, 2019, 55(4): 171-177.
DOI: 10.11707/j.1001-7488.20190418

文章历史

收稿日期:2018-01-29
修回日期:2019-01-03

作者相关文章

梁森苗
张淑文
任海英
郑锡良
戚行江

蜡杨梅与杨梅种间嫁接及亲缘关系分析
梁森苗, 张淑文, 任海英, 郑锡良, 戚行江     
浙江省农业科学院园艺研究所 杭州 310021
摘要:【目的】研究蜡杨梅与杨梅的嫁接亲和性及亲缘关系,为杨梅扩展栽培提供参考。【方法】连续3年在浙江余姚滩涂上(土壤pH8.01),以蜡杨梅和杨梅为砧木,以4种主栽品种‘荸荠种’‘东魁’‘夏至红’和‘水晶种’为接穗的种间嫁接,并基于SSR对蜡杨梅和杨梅进行亲缘关系鉴定和聚类分析。调查各砧穗组合的嫁接成活率及相关指标。【结果】杨梅砧穗组合的嫁接成活率为:70.08%~83.75%,其中‘夏至红’接穗的嫁接成活率最高(81.98%),‘荸荠种’次之(80.43%);蜡杨梅砧穗组合的嫁接成活率为27.51%~38.29%,其中,‘东魁’接穗的嫁接成活率最高(34.88%);杨梅砧穗组合的嫁接成活率极显著高于蜡杨梅砧穗组合。不同组合间的T-test显示:蜡杨梅砧穗组合BQ4-6、DK4-6和SJ4-6分别在冠径、干周和植株高度等指标上显著性高于杨梅砧穗组合。6个指标的相关性分析显示:2个砧木群体在连续3年的试验中,嫁接成活率与植株高度和冠径之间均存在显著性正相关,砧木高度与植株高度均呈现显著性负相关。利用127对SSR标记对2个砧木及4个接穗材料进行了多态性检测,聚类分析后分为3个群体,蜡杨梅与杨梅的种间亲缘系数为0.31,杨梅砧木与‘夏至红’亲缘关系最近,与‘荸荠种’次之;蜡杨梅与‘东魁’亲缘关系最近;与嫁接成活率的表现一致,亲缘关系越近成活率越高。【结论】蜡杨梅砧木与杨梅接穗间存在一定的亲和性,而且更适合生长在碱性土壤中。
关键词:蜡杨梅    杨梅    砧木    种间嫁接    相关性分析    聚类分析    
The Interspecific Grafting and Phylogenetic Analysis of Myrica cerifera and Myrica rubra
Liang Senmiao, Zhang Shuwen, Ren Haiying, Zheng Xiliang, Qi Xingjiang     
Institute of Horticulture, Zhejiang Academy of Agricultural Sciences Hangzhou 310021
Abstract: 【Objective】Chinese bayberry (Myrica rubar Sieb. et Zucc.) is an evergreen tree species and suitable for growing in weak acid soil, and it has been cultivated mainly in southern China. Bayberry fruit is ripe in early summer and delicious with attractive color, flavor, and high economic and medicinal value. M. cerifera is suitable for growing in poor alkaline soil, and different from M. rubar. It is of practical significance to study the grafting compatibility and genetic relationship between M. rubar and M. cerifera for expanding M. rubar cultivation.【Method】For three consecutive years, M. rubra and M. cerifera were used as rootstocks, and four cultivated varieties ('Biqizhong', 'Dongkui', 'Xiazhihong' and 'Shuijingzhong') as scions, and the interspecific grafting was carried out on the beach of Yuyao, Zhejiang Province (soil pH8.01). The genetic relationship between M. rubar and M. cerifera was identified and clustered based on SSR. After three years of grafting experiments, survival rate of grafting and related indexes of rootstock-scion combinations were investigated.【Results】The grafting survival rate of rootstock-scion combinations of M. rubra was 70.08-83.47%, among which the grafting survival rate of scion of 'Xiazhihong' was highest (81.98%), and the grafting survival rate of 'Biqizhong' was the second (80.43%). The grafting survival rate of rootstock-scion combinations of M. cerifera were 27.51%-38.29%, among which the grafting survival rate of scion 'Dongkui' was highest (34.88%). The grafting survival rate of M. cerifera rootstock-scion combinations was significantly lower than that of M. rubar rootstock-scion combinations. T-test showed that BQ4-6, DK4-6 and SJ4-6 of M. cerifera rootstock-scion combinations had significantly higher crown diameter, dry rootstock perimeter and plant height than those of M. rubra combinations, respectively. The correlation analysis of six indexes showed that there was a significant positive correlation between grafting survival rate and plant height and crown diameter, and a negative correlation between plant height and rootstock height in both rootstock populations over three consecutive years experiment. A total of 127 SSR markers were used to detect DNA polymorphisms of 2 rootstocks and 4 scions, these materials were clustered into 3 groups, and the genetic similarity between M. cerifera and M. rubra was 0.31. The relationship between rootstock of M. rubra and 'Xiazhihong' was the closest, followed by 'Biqizhong'. The rootstock of M. cerifera had the highest relationship coefficients with 'Dongkui'; it was demonstrated that the closer genetic relationship the higher grafting survival rate.【Conclusion】This study proved that M. cerifera used as rootstocks had to a certain degree grafting affinity with M. rubra scion, which was more suitable than M. rubra rootstocks for growing in alkali soil.
Key words: Myrica cerifera    Myrica rubar    rootstock    interspecific grafting    correlation analysis    cluster analysis    

近年来,土地盐碱化已经成为一个全球性的问题,盐碱地面积以每年10%的速度快速增长,预计到2050年会达到全部耕地面积的50%(Shrivastava et al., 2015)。世界范围内,20%的可耕作土地和33%的可灌溉农业用地均受到高盐碱害的影响(Panwar et al., 2016),因此,研究如何能够高效的利用盐碱土地资源对作物生产具有重大的意义。通过选取耐盐碱性的果树品种做为砧木,利用嫁接技术(Ostendorp et al., 2016),将品质和效益优异的品种种植到盐碱性土壤中,可达到高效利用盐碱土地和扩大品种植范围的目的。杨梅(Myrica rubra)是我国重要的亚热带水果,多年生常绿乔木,树形优美,也可用作绿化和防火树种(舒立福等,1999梁琴等,2015)。适合生长在弱酸性(pH4.95)土壤中(梁森苗等,2015)。2016年浙江全省杨梅面积8.94万hm2,产量52.4万吨,产值46.2亿元,其中最著名的2个栽培品种是‘荸荠种’(Myrica rubra cv. ‘Biqizhong’)和‘东魁’(Myrica rubra cv. ‘Dongkui’)。中国的杨梅科植物主要包括以下4个种:杨梅、毛杨梅(Myrica esculenta)、云南杨梅(Myrica nana)和青杨梅(Myrica adenophora)。杨梅科的其他种有:蜡杨梅(Myrica cerifera)、Myrica faya (原产于马德拉群岛的火山岛和加那利群岛)和Myrica rivas-martinezii (原产于西班牙) (Jia et al., 2015)。蜡杨梅原产于北美、中美和加勒比海群岛,是一种常绿的雌雄异株的植物,与杨梅存在种间差异(Xie et al., 2011; Jiao et al., 2012),为多年生灌木,植株一般高度2~3 m,最高可达6 m (Radford et al., 1968);果实为单粒种子的核果,直径4 mm,种子无胚乳,果实在初秋时节成熟(Erickson et al., 2003)。蜡杨梅与固氮菌(Frankia sp.)共生(李志真,2009),生长在较为贫瘠的沙质碱性土地上(Young et al., 1992),是绿化和改良盐碱地的优良先锋树种之一。

本研究以蜡杨梅作为砧木,以杨梅的主栽品种作为接穗进行种间嫁接试验,结合嫁接成活率(grafting survival rate, SR)的调查、嫁接后生长指标间的相关性分析以及基于SSR的种间聚类分析,以期证明蜡杨梅砧木与杨梅接穗间具有一定的亲和性,同时明确蜡杨梅与杨梅的亲缘系数。

1 材料和方法 1.1 供试材料和嫁接试验

试验于2013—2015年在浙江省余姚市泗门镇(土壤pH8.01)进行,选取8年生的蜡杨梅和杨梅为砧木,2年生的主栽品种‘荸荠种’(BQ) ‘东魁’(DK) ‘水晶种’(M. rubra cv. ‘Shuijingzhong’, SJ)和‘夏至红’(M. rubra cv. ‘Xiazhihong’, XZH)的枝条为接穗,采用主干为劈接和枝条为切接的方法进行嫁接(图 1 A、B和C、D)。连续3年的试验中,砧木和接穗共计形成24个不同的组合(表 1):BQ1-6、DK1-6、SJ1-6和XZH1-6。BQ1-3分别表示2013—2015年以‘荸荠种’为接穗,以杨梅为砧木的3个嫁接组合;BQ4-6分别表示2013—2015年以‘荸荠种’为接穗,以蜡杨梅为砧木的3个嫁接组合。其余3种接穗组合命名规律同上。

图 1 嫁接方法及嫁接位置 Fig. 1 Two kinds of grafting methods A, B:在主干上的劈接 C, D:在枝条上的切接 A, B:Side cleft in rootstock; C, D:Side cleft in branch of rootstock。
表 1 嫁接实验的不同砧穗组合及各组合的嫁接成活率 Tab.1 The design of grafting experiment and survival rates of each combination

2013、2014和2015年3月,每种组合每年进行500次嫁接试验;2015、2016和2017年5月,分别调查2013、2014和2015年每个组合嫁接成活率,同时调查5个生长指标:叶绿素相对含量(chlorophyll content)、植株高度(plant height)、冠径(crown diameter)、干周(rootstock perimeter)和砧木高度(rootstock height),叶绿素相对含量(SPAD)由便携式叶绿素含量测定仪测量。2016年5月,4种接穗各取嫩叶1份,蜡杨梅砧木和杨梅砧木各取样1份,共计取样6份,用于后续DNA的提取及亲缘关系的鉴定。

1.2 DNA提取和PCR扩增

6份材料的幼嫩叶片均由组织磨样仪(Thmorgan, China)研磨之后用CTAB方法提取样品DNA(Paterson et al., 1993)。由紫外分光光度计和1%的琼脂糖胶电泳测定DNA浓度。

本研究利用的127对SSR引物的序列来自于Jiao等(2012)。PCR反应体系为10 μL体系,包括:DNA 1 μL,Blue mix (TSINGKE, Hangzhou, China) 5 μL,Forward primer 1 μL,Reversed primer 1 μL,ddH2O 2 μL。扩增反应由Biometra (America)PCR仪完成,程序为:94 ℃预变性5 min,94 ℃ (30 s)/55 ℃ (30 s)/72 ℃ (1 min)30个循环,72 ℃ (10 min),最后延伸10 ℃ (1 min)。PCR产物电泳检测和银染显色过程参考Zhang等(2002)

1.3 数据分析

6个指标的T-test和相关性分析由SPSS 18.0计算。聚类分析和系统树是用UPGMA方法(Sneath and Sokal, 1973)由NTSYS-pc version 2.2 (Exeter Biological Software, Setauket, NY, USA)软件(Rohlf, 2005)完成。

2 结果与分析 2.1 各组合嫁接成活率调查

调查分析了连续3年的24个组合的嫁接成活率,如表 1表 2所示:杨梅砧穗组合的嫁接成活率为70.08%~83.75% (平均76.74%,下同),其中,组合XZH1-3的嫁接成活率为80.34%~83.75% (81.98%),BQ1-3的嫁接成活率为80.03%~81.15% (80.43%),DK1-3的嫁接成活率为72.89%~75.48% (73.91%),SJ1-3的嫁接成活率为70.08%~71.44% (70.60%)。蜡杨梅砧穗组合的嫁接成活率为27.51%~38.29% (31.43%),其中,组合DK4-6的嫁接成活率为32.87%~38.29% (34.88%),BQ4-6的嫁接成活率为30.29%~33.37% (32.04%),XZH4-6的嫁接成活率为28.88%~31.15% (29.93%),SJ4-6的嫁接成活率为27.51%~30.35% (28.87%)。对杨梅和蜡杨梅砧木相同接穗的组合间进行了各指标的T-test (表 2)。组合BQ1-3和BQ4-6之间的嫁接成活率均存在极显著性差异,冠径存在显著性差异;组合DK1-3和DK4-6之间的嫁接成活率存在极显著性差异,干周存在显著性差异;组合SJ1-3和SJ4-6之间的嫁接成活率为极显著性差异,植株高度存在显著性差异;组合XZH1-3和XZH4-6之间的嫁接成活率为极显著性差异。两砧木群体之间的嫁接成活率差异极显著。

表 2 不同组合及砧木群体间6个指标的表现和T-test Tab.2 The performance and T-test of six traits about different combinations and rootstock populations
2.2 指标间相关性分析

对2个砧木群体的连续3年的6个生长指标进行了相关性分析(表 3):在2个砧木群体中,植株高度与冠径,嫁接成活率与植株高度和冠径间均为正显著性相关(P < 0.05),砧木高度与植株高度均呈现显著性负相关;嫁接成活率与干周在杨梅砧木群体中均为显著性正相关,在蜡杨梅砧木群体中为显著性负相关;砧木高度与冠径在杨梅砧木群体中均为显著性负相关,在蜡杨梅砧木群体中为显著性正相关;此外,叶绿素相对含量与砧木高度仅在蜡杨梅砧木群体中存在负相关。

表 3 两砧木群体的6个指标的相关性分析 Tab.3 Correlation coefficients of six traits in two rootstocks populations
2.3 聚类分析

127对SSR引物共计产生385个多态性位点,平均每对引物可以产生3.03个位点。采用UPGMA方法进行聚类分析,不同品种的相似系数范围:0.31~0.91(图 2)。在物种水平上,UPGMA进化树将蜡杨梅(Ⅲ)和杨梅(Ⅰ和Ⅱ)聚为明显两类群,变异系数为0.31,较前人报道的0.74和0.54都低(Xie et al., 2011; Jiao et al., 2012)。在杨梅中又分为2个类群:类群Ⅰ包括‘荸荠种’ ‘夏至红’和杨梅砧木,杨梅砧木与‘夏至红’间的变异系数为0.91,与‘荸荠种’的变异系数为0.86;类群Ⅱ包括‘东魁’和‘水晶种’。

图 2 蜡杨梅和不同品种杨梅间的亲缘关系 Fig. 2 Relationship analysis between M.ceriferal and different varieties of M.rabra
3 结论 3.1 蜡杨梅与杨梅的种间嫁接具有一定的亲和性

本研究选用了蜡杨梅和杨梅为砧木,4种主栽品种‘荸荠种’ ‘东魁’ ‘水晶种’和‘夏至红’为接穗,以上4个品种的果实颜色能够代表杨梅果实的4种颜色,即:‘水晶种’为白梅类、‘夏至红’为粉色梅类、‘东魁’为红梅类、‘荸荠种’为乌梅类。近年来,随着分子标记技术的不断发展,加之其具备准确性高和重复性好等特点已广泛应用于杨梅材料的遗传多样性分析和亲缘关系鉴定(Jiao et al., 2012; Zhang et al., 2012; Wang et al., 2016)。经SSR标记鉴定及聚类分析后,杨梅砧木与‘夏至红’的亲缘关系最近,与‘荸荠种’的亲缘关系次之,与‘东魁’和‘水晶种’的亲缘关系最远。结合表 12数据可知,杨梅砧穗组合嫁接成活率的大小顺序为:XZH1-3>BQ1-3>DK1-3>SJ1-3,证明亲缘关系越近的砧穗组合嫁接成活率越高,与Goldschmidt (2014)的研究结论一致,砧木与接穗亲缘关系越近,则嫁接亲和性越好,嫁接成活率越高。这一规律也存在于在蜡杨梅砧木群体中,各组合的嫁接成活率及4种接穗与蜡杨梅间的变异系数的大小顺序均为:DK4-6>BQ4-6>XZH4-6>SJ4-6,且其各组合的嫁接成活率极显著性低于杨梅砧穗组合。Mudge等(2009)认为存在种间或属间差异的砧穗材料间通常表现出不同程度的嫁接不亲和现象,种间嫁接的亲和性与嫁接成活率明显低于种内嫁接。在张晓华等(2011)陈云斐(2013)的研究中以蜡杨梅为砧木、以‘晚稻杨梅’和‘东魁’为接穗的嫁接成活率分别为84.4%和82.78%,其调查的时间间隔分别为1年和50天,明显高于本研究的蜡杨梅砧穗组合的嫁接成活率(27.51%~38.29%),这可能与调查嫁接的时间间隔有关,本研究中的时间间隔为2年60天,各砧穗组合经历了四季变化、各种天气及人为因素的影响,因此本次实验数据更稳定可靠,而且证明了蜡杨梅作为砧木与杨梅接穗间存在一定的亲和性。

3.2 蜡杨梅砧穗组合适于生长在碱性环境中

在各指标间的相关性分析中,嫁接成活率与植株高度,嫁接成活率与冠径在两砧木群体中均为显著性正相关,表明在不同的砧木群体中,嫁接成活率越高植株高度和冠径也越大。而嫁接成活后,砧木直接影响接穗的营养生长(何文等,2017),蜡杨梅砧穗组合在亲缘关系较远、嫁接成活率较低的情况下,组合BQ4-6、DK4-6和SJ4-6分别在冠径、干周和植株高度等指标上表现出明显优于杨梅砧穗组合的差异。在碱环境中植物的生理和新陈代谢都受到胁迫,进而影响了植物的生长(Ashraf et al., 2004; Slama et al., 2015; (Panwar et al., 2016)),推断杨梅砧木在盐碱环境中的生长受到了严重的胁迫,进而影响了接穗的发育。2017年对已结果的‘荸荠种’组合进行了成熟期果实的采集和品质测定,蜡杨梅砧穗组合的果实硬度和可溶性固形物含量分别为:3.63~6.20 N (平均4.20 N)和12.55%~14.81% (13.11%),杨梅砧穗组合的果实硬度和可溶性固形物含量分别为:2.71-4.02 N (平均为3.48 N)和10.45%~13.26% (12.49%)。蜡杨梅砧穗组合的果实硬度和可溶性固形物含量较杨梅砧穗组合分别提高20.69%和4.96%。蜡杨梅砧穗组合嫁接成活后,不但冠径、干周和植株高度等优于杨梅砧穗组合,而且果实硬度和可溶性固形物含量等重要指标都有明显的改善,表明蜡杨梅砧穗组合更适于生长在碱性土壤中。

4 结论

以蜡杨梅为砧木以杨梅为接穗进行种间嫁接具有一定的亲和性,且更适合在碱性土壤中生长。为高效开发和利用盐碱地提供理论依据,也为扩展杨梅的种植范围奠定基础。

参考文献(References)
陈云斐. 2013. 蜡杨梅砧木嫁接东魁杨梅盐碱地栽培研究. 安徽农业科学, 41(27): 11030-11031.
(Chen Y F. 2013. Cultivation Experiment on Myrica rubra Dongkui Grafted onto Myrica cerifera in saline-alkali soil. Journal of Anhui Agriculture Science, 41(27): 11030-11031. DOI:10.3969/j.issn.0517-6611.2013.27.052 [in Chinese])
何文, 潘鹤立, 潘腾飞, 等. 2017. 果树砧穗互作研究进展. 园艺学报, 44(9): 1645-1657.
(He W, Pan H L, Pan T F, et al. 2017. Research progress on the interaction between scion and rootstock in fruit trees. Acta Horticulturae Sinica, 44(9): 1645-1657. [in Chinese])
李志真. 2009. 杨梅根瘤内生菌的生物学特征. 林业科学, 45(1): 81-87.
(Li Z Z. 2009. The biological characteristics of Actinomycetes Frankia living in roots of Myrica rubra. Scientia Silvae Sinicae, 45(1): 81-87. DOI:10.3321/j.issn:1001-7488.2009.01.015 [in Chinese])
梁琴, 陶建平, 邓锋, 等. 2015. 喀斯特山区9种常见树木叶片在防火期的阻火性分析. 林业科学, 51(3): 102-108.
(Liang Q, Tao J P, Deng F, et al. 2015. Fire resistance of leaves during fire prevention period of nine common tree species in Karst Mountain Regions. Scientia Silvae Sinicae, 51(3): 102-108. [in Chinese])
梁森苗, 王耀锋, 刘玉学, 等. 2015. 我国杨梅主产地土壤养分状况的分析. 果树学报, 32(4): 658-665.
(Liang S M, Wang Y F, Liu Y X, et al. 2015. Present situation of soil nutrients in bayberry orchard of China. Journal of Fruit Science, 32(4): 658-665. [in Chinese])
舒立福, 田晓瑞, 寇纪烈. 1999. 广西大桂山区防火树种的选择研究. 林业科学, 35(1): 69-76.
(Shu L F, Tian X R, Kou J L. 1999. Studies on fire resistant tree species of Dagui Mountains, Guangxi Zhuang Autonomous Region. Scientia Silvae Sinicae, 35(1): 69-76. DOI:10.3321/j.issn:1001-7488.1999.01.012 [in Chinese])
徐云焕, 梁森苗, 郑锡良, 等. 2016. 叶面营养对杨梅果实产量和品质的影响及各指标的相关性. 浙江农业学报, 28(10): 1711-1717.
(Xu Y H, Liang S M, Zheng X L, et al. 2016. Effects of foliar nutrition on fruit yield and quality of Chinese bayberry (Myrica rubra Sieb.et Zucc.). Acta Agriculturae Zhejiangensis, 28(10): 1711-1717. DOI:10.3969/j.issn.1004-1524.2016.10.12 [in Chinese])
张晓华, 高智慧, 张晓勉, 等. 2011. 蜡杨梅砧木嫁接的晚稻杨梅盐碱地栽培试验. 浙江林业科技, 31(4): 47-50.
(Zhang X H, Gao Z H, Zhang X M, et al. 2011. Cultivation Experiment on Myrica rubra var. Wandao Grafted onto M. cerifera on saline-alkali soil. Journal of Zhejiang Forestry Science and Technology, 31(4): 47-50. DOI:10.3969/j.issn.1001-3776.2011.04.010 [in Chinese])
Ashraf M, Hasnain S, Berge O, et al. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 40(3): 157-162.
Erickson D L and Hamrick J L. 2003. Genetic and clonal diversity for Myrica cerifera along a spatiotemporal island chronosequence. Heredity, 90(1): 25-32. DOI:10.1038/sj.hdy.6800172
Goldschmidt E. 2014. Plant grafting:new mechanisms, evolutionary implications. Frontiers in Plant Science, 5(5): 727.
Jia H M, Jiao Y, Wang G Y, et al. 2015. Genetic diversity of male and female Chinese bayberry (Myrica rubra) populations and identification of sex-associated markers. BMC Genomics, 16(1): 394. DOI:10.1186/s12864-015-1602-5
Jiao Y, Jia H M, Li X W, et al. 2012. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genomics, 13(1): 201. DOI:10.1186/1471-2164-13-201
Mudge K, Goldschmidt E, Scofield S R, et al. 2009. A history of grafting. Horticultural Reviews, 35: 437-487.
Ostendorp A, Pahlow S, Deke J, et al. 2016. Protocol:optimisation of a grafting protocol for oilseed rape (Brassica napus) for studying long-distance signaling. Plant Methods, 12(1): 22. DOI:10.1186/s13007-016-0122-x
Panwar M, Tewari R, Nayyar H. 2016. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiology and Molecular Biology of Plants.
Paterson A H, Brubaker C, Wendel J F. 1993. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for AFLP or PCR analysis. Plant Molecular Biology, 11(2): 122-127. DOI:10.1007/BF02670470
Radford A E, Ahles H E, Bell C R. 1968. Manual of the Vascular Flora of the Carolinas. Chapel Hill, University of North Carolina Press.
Rohlf F J. 2005. NTSYSpc: Numerical Taxonomy System ver. 2.20d, Exeter Publishing, Ltd. Setauket, NY. http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html.
Shrivastava P, Kumar R. 2015. Soil salinity:a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2): 123-131. DOI:10.1016/j.sjbs.2014.12.001
Slama I, Abdelly C, Bouchereau A, et al. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany: 1-15.
Sneath P H A, Sokal R R. 1973. Numerical taxonomy, W. Freeman, San Francisco.
Wang W T, Feng C, Zhang Z H, et al. 2016. Development of highly polymorphic expressed sequence tags-simple sequence repeat markers and their application in analysis of genetic diversity of Chinese bayberry (Morella rubra). Hortscience, 51(3): 227-231. DOI:10.21273/HORTSCI.51.3.227
Xie R J, Zhou J, Wang G Y, et al. 2011. Cultivar identification and genetic diversity of Chinese bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Molecular Biololgy Reporter, 29(3): 554-562. DOI:10.1007/s11105-010-0261-6
Young D R, Sande E, Peters G A. 1992. Spatial relationships of Frankia and Myrica cerifera on a Virginia, USA barrier island. Symbiosis, 12: 209-220.
Zhang J, Guo W Z, Zhang T Z. 2002. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics, 105(8): 1166-1174. DOI:10.1007/s00122-002-1100-4
Zhang S Y, Li X, Feng C, et al. 2012. Development and characterization of 109 polymorphic EST-SSRs derived from the Chinese bayberry (Myrica rubra, myricaceae) transcriptome. American Journal of Botany, 99(12): e501-e507. DOI:10.3732/ajb.1200156