﻿ 木工圆锯片锯齿侧刃参数对锯切表面粗糙度的影响
 林业科学  2019, Vol. 55 Issue (1): 66-73 PDF
DOI: 10.11707/j.1001-7488.20190108
0

#### 文章信息

Li Weiguang, Zhang Zhankuan.

Effect of the Side Edge Parameters of Sawteeth on the Surface Roughness in Woodworking Circular Sawing

Scientia Silvae Sinicae, 2019, 55(1): 66-73.
DOI: 10.11707/j.1001-7488.20190108

### 作者相关文章

Effect of the Side Edge Parameters of Sawteeth on the Surface Roughness in Woodworking Circular Sawing
Li Weiguang, Zhang Zhankuan
Key Laboratory of Wood Science and Technology of National Forestry and Grassland Administration Research Institute of Wood Industry, CAF Beijing 100091
Key words: surface roughness    sawing    side edge    the radial clearance angle

1 理论背景

 图 1 圆锯锯切表面 Fig. 1 The circular sawing surface
 图 2 锯切表面锯路形成示意 Fig. 2 Schematic of the formation of sawing surfaces a.圆锯锯切运动示意Schematic of circular sawing motion；b.具有径向侧后角的锯齿形成锯切表面原理Schematic of the formation of sawing surfaces with a radial clearance angle；c.存在有零径向侧后角段和零径向侧后角锯齿的锯切原理Schematic of the formation of sawing surfaces with a straight length of zero degree radial clearance and a zero degree radial clearance angle.

 ${U_z} = \frac{U}{{\mathit{nz}}}。$ (1)

 $h = {U_z}\sin \varphi {\rm{ }}。$ (2)

 ${S_{\rm{b}}} = {U_z}\sin \varphi 。$ (3)

 $h = {S_{\rm{b}}} = {U_z}。$ (4)

 ${S_{\rm{n}}} = {S_{\rm{b}}}\tan \lambda = {U_z}\sin \varphi \tan \lambda = \frac{U}{{nz}}\sin \varphi \tan \lambda 。$ (5)

 图 3 零径向侧后角锯齿和微量零径向侧后角锯齿示意 Fig. 3 Schematic of sawtooth with zero degree clearance angle and mic-zero degree clearance angle a.零径向侧后角锯齿示意Sawtooth with a zero degree radial clearance angle; b.微量零径向侧后角锯齿示意Sawtooth with a mic-zero degree radial clearance angle. B.锯齿宽度Width of sawtooth; S′.锯料量Tooth side clearance; l.零径向侧后角段长度Zero degree radial clearance angle section; λ.径向侧后角Radial clearance angle.

2 材料与方法 2.1 试验材料

2.2 试验装置

 图 4 试验示意 Fig. 4 Schematic diagram of the test a.锯切Schematic of rap sawing; b.表面粗糙度测试Surface roughness measurements were performed with a contact diamond stylus.

2.3 试验设计

3 结果与分析 3.1 进给速度对表面粗糙度的影响

 图 5 进给速度对表面粗糙度的影响 Fig. 5 Effect of feed speed on surface roughness 锯片规格中的第1个数字代表径向侧后角角度，第2个数字代表零径向侧后角段长度。例如3°-1 mm代表具有径向侧后角为3度、零径向侧后角段长度为1 mm锯齿的圆锯片。 The first number of the saw blade specification represents the angle of the radial clearance angle, and the second represents the straight length of the zero degree radial clearance, such as 3°-1 mm, on behalf of a sawtooth structure with radial clearance angle of 3° and a straight length of zero degree radial clearance of 1 mm.
3.2 径向侧后角对表面粗糙度的影响

 图 6 径向侧后角对表面粗糙度的影响 Fig. 6 Effect of radial clearance angle on surface roughness
3.3 零径向侧后角段长度对表面粗糙度的影响

 图 7 零径向侧后角段长度对水曲柳锯切表面粗糙度的影响 Fig. 7 Effect of the straight length of zero degree radial clearance on surface roughness when cutting Fraxinus mandshurica

 图 8 锯零径向侧后角段长度对高密度纤维板锯切表面粗糙度的影响 Fig. 8 Effect of the straight length of zero degree radial clearance on surface roughness when cutting high density fibreboard
4 讨论

5 结论

1) 圆锯锯切时锯齿在锯切表面产生的锯痕理论深度为：${S_{\rm{n}}} = {S_{\rm{b}}}\tan \lambda = {U_z}\sin \varphi \tan \lambda = \frac{U}{{n \cdot z}}\sin \varphi \tan \lambda$，锯切表面锯痕深度一定程度上可直接影响表面粗糙度，当其他因素保持不变时，进给速度增加，锯痕深度增大，锯切表面粗糙度也会增加。

2) 在相同条件下，水曲柳锯切表面粗糙度要高于高密度纤维板，这是材料材质和结构差异所导致。

3) 圆锯片锯切水曲柳和高密度纤维板时，锯切表面粗糙度均随锯齿径向侧后角减小而降低，零径向侧后角锯齿圆锯片锯切2种材料时，其表面粗糙度最小，这说明使用具有零径向侧后角锯齿的锯片锯切木材或木质材料时，可以有效解决由于进给速度增加而引起的表面粗糙度增大问题。

4) 使用零径向侧后角段锯齿的圆锯片锯切，当零径向侧后角段长度大于0.5 mm时，侧刃的径向侧后角段已起到刨削作用，与具有零径向侧后角锯齿相比，同样可起到改善锯切表面质量的作用；且在保持其他切削参数不变的情况下，进给速度越大，每齿进给量越大，具有微量零径向侧后角段的锯齿产生的表面粗糙度越低，越有优势，零径向侧后角段长度要比每齿进给量略大且越接近每齿进给量越理想。

 孟庆午, 齐英杰. 1999. 零锯料角带锯的锯切机理探讨. 林业机械与木工设备, 27(11): 18-20. (Meng Q W, Qi Y J. 1999. The study on mechanism of bandsaw of zero degree side clearance angle. Forestry Machinery & Woodworking Equipment, 27(11): 18-20. [in Chinese]) 孟庆午, 李传信, 甘心基. 2001a. 零锯料角锯子性能的再分析. 木材加工机械, (2): 14-16. (Meng Q W, Li C X, Gan X J. 2001a. Performance analysed again on the sawblades of zero degree side clearance angle. Wood Processing Machinery, (2): 14-16. [in Chinese]) 孟庆午, 李传信, 甘心基. 2001b. 锯片锯料角对锯切表面粗糙度影响机理分析. 木材工业, 15(6): 22-24. (Meng Q W, Li C X, Gan X J. 2001b. Effect of saw side clearance angle on cutting roughness. China Wood Industry, 15(6): 22-24. [in Chinese]) Aguilera León A A.2000.Optimisation des conditions de coupe pour l'usinage du bois: application de la méthode du couple outilmatière au défonçage des panneaux de fibres de densitémoyenne.Dissertation, Universitéde Nancy 1 Henri Poincaré. Brémaud I, Gril J, Thibaut B. 2011. Anisotropy of wood vibrational properties:dependence on grain angle and review of literature data. Wood Science and Technology, 45(4): 735-754. DOI:10.1007/s00226-010-0393-8 Costes J P.2001.Approche de l'usinageàgrandevitesse du bois: application au défonçage.UniversitéPaul Sabatier, Toulouse Ⅲ, Heisel U, TroÈger J, Fritz H.1998.Circular saw tools with curved lateral cutting edges extraordinary cutting results.Space Cut Fritz KG, Gewerbestrasse 11, D-89542, Herbrechtingen, Germany. Kilic M, Hiziroglu S, Burdurlu E. 2006. Effect of machining on surface roughness of wood. Building and Environment, 41(8): 1074-1078. Koch P. 1964. Wood machining process. New York: The Ronald Press Company. Korkut I, Donertas M. 2007. The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling. Materials & Design, 28(1): 308-312. KováDč J, Mikleš M. 2009. Analysis a cutting edge geometry influence on circular saw teeth at the process of crosscutting wood. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 57: 177-182. DOI:10.11118/actaun200957050177 Krilov A. 1988. New sawblade design:practical aspects and advantages. Proceedings of the 9th International Wood Machining Seminar: 237-249. Marko J, Holík J.2000.Teória delenia dreva.TechnickáUniverzita, Zvolen. Martin P.1992.Bois et productique.Cépaduèséditions, Toulouse. McKenzie W M. 2012. Effects of bevelling the teeth of rip saws. Wood Science and Technology, 34(2): 125-133. Okai R, Tanaka C, Ohtani T, et al. 2005. Application of a novel technique for band sawing using a tip-inserted saw regarding surface profiles. Holz als Roh-und Werkstoff, 63(4): 256-265. Simonin G, Meausoone P J, Rougie A. 2009. Carbide characteriza for spruce rip-sawing. Pro Ligno, 5(2): 49-57. Thibaut B, Denaud L, Collet R, et al. 2016. Wood machining with a focus on French research in the last 50 years. Annals of Forest Science, 73(1): 163-184. DOI:10.1007/s13595-015-0460-2 Triboulot P. 1984. Réflexions sur les surfaces et mesures desétats de surface du bois. Annales des Sciences Forestières, 41: 335-354. DOI:10.1051/forest:19840305 Triboulot P, Kremer P, Martin P, et al. 1991. Planing of Norway spruce with very varied ring width. Holz als Roh-und Werkstoff, 49(5): 181-184. DOI:10.1007/BF02613266