﻿ 青藏铁路路基对风沙运动规律影响的数值模拟
 林业科学  2018, Vol. 54 Issue (7): 73-83 PDF
DOI: 10.11707/j.1001-7488.20180708
0

#### 文章信息

Sun Xinglin, Zhang Yuqing, Zhang Jutao, Qin Shugao, Zhou Jinxing

Numerical Simulation on the Influence of Subgrade of Qinghai-Tibet Railway on Wind-Sand Movement

Scientia Silvae Sinicae, 2018, 54(7): 73-83.
DOI: 10.11707/j.1001-7488.20180708

### 作者相关文章

1. 北京林业大学水土保持学院 北京 100083;
2. 水土保持国家林业局重点实验室 北京 100083

Numerical Simulation on the Influence of Subgrade of Qinghai-Tibet Railway on Wind-Sand Movement
Sun Xinglin1, Zhang Yuqing1,2 , Zhang Jutao1, Qin Shugao1,2, Zhou Jinxing1,2
1. School of Soil and Water Conservation, Beijing Forestry University Beijing 100083;
2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University Beijing 100083
Key words: Qinghai-Tibet railway    wind-blown sand flow    Fluent software    numerical simulation    subgrade

1 模拟方法

 图 1 风沙运动数值模拟方法 Figure 1 Simulation methods of wind-sand movement numerical simulation
1.1 几何模型

 图 2 3种路基截面示意 Figure 2 Subgrade sectional views a:普通路基 Ordinary subgrade; b:通风路基 Ventilated subgrade; c:输沙路基 Sand-transmitting subgrade.
1.2 边界条件设置

 $V = {V_1}{\left({z/{z_1}} \right)^\alpha } 。$ (1)

1.3 参数设置

1.4 基本方程

1) 质量守恒方程  对于不可压缩的流体流动, 密度为常数, 表达式如下:

 $\frac{\partial }{{\partial t}}\left({{\alpha _q}{\rho _q}} \right) + \nabla \cdot \left({{\alpha _q}{\rho _q}{{\vec v}_q}} \right) = 0 。$ (2)

2) 动量守恒方程  气体相:

 $\begin{array}{l} \frac{\partial }{{\partial t}}\left({{\alpha _{\rm{g}}}{\rho _{\rm{g}}}{{\vec v}_{\rm{g}}}} \right) + \nabla \cdot \left({{\alpha _{\rm{g}}}{\rho _{\rm{g}}}{{\vec v}_{\rm{g}}}{{\vec v}_{\rm{g}}}} \right) = \\ \;\;\; - {\alpha _{\rm{g}}}\nabla p + \nabla \cdot {\overline{\overline \tau } _{\rm{g}}} + {\alpha _{\rm{g}}}{\rho _{\rm{g}}}\vec g + {f_{{\rm{sg}}}} ；\end{array}$ (3)

 $\begin{array}{l} \frac{\partial }{{\partial t}}\left({{\alpha _{\rm{s}}}{\rho _{\rm{s}}}{{\vec v}_{\rm{s}}}} \right) + \nabla \cdot \left({{\alpha _{\rm{s}}}{\rho _{\rm{s}}}{{\vec v}_{\rm{s}}}{{\vec v}_{\rm{s}}}} \right) = \\ - {\alpha _{\rm{s}}}\nabla p + \nabla {p_{\rm{s}}} + \nabla \cdot {\overline{\overline \tau } _{\rm{s}}} + {\alpha _{\rm{s}}}{\rho _{\rm{s}}}\vec g + {f_{{\rm{sg}}}} 。\end{array}$ (4)

3) 湍流动能k方程:

 $\rho \frac{{{\rm{D}}k}}{{{\rm{D}}t}} = \frac{\partial }{{\partial {x_i}}}\left[ {\left({{\mu _l} + \frac{{{\mu _t}}}{{{\sigma _k}}}} \right)\frac{{{{\rm{δ }}_\mathit{k}}}}{{{\rm{ δ }}{x_i}}}} \right] + {G_k} + {G_b} - \rho \varepsilon ；$ (5)

4) 湍流耗散率ε方程:

 $\begin{array}{l} \rho \frac{{{\rm{D}}\varepsilon }}{{{\rm{D}}\varepsilon }} = \frac{\partial }{{\partial {x_i}}}\left[ {\left({{\mu _l} + \frac{{{\mu _t}}}{{{\sigma _\varepsilon }}}} \right)\frac{{{{\rm{ δ }}_\varepsilon }}}{{{\rm{ δ }}{x_i}}}} \right] + \\ {C_{1\varepsilon }}\frac{\varepsilon }{k}\left({{G_k} + {G_{3\varepsilon }}{G_b}} \right) - {C_{2\varepsilon }}\rho \frac{{{\varepsilon ^2}}}{k} ；\end{array}$ (6)

2 结果与分析 2.1 路基平面流场速度分布特征

 图 3 不同风速下3种路基流场分布特征 Figure 3 Distribution characteristics of three subgrade flows for different wind speeds a-c：普通路基风速10、15、20 m·s-1时的流场 The flow field of ordinary subgrade at 10, 15 and 20 m·s-1; d-f：通风路基风速10、15、20 m·s-1时的流场 The flow field of ventilated subgrade at 10, 15 and 20 m·s-1; g-i：输沙路基风速10、15、20 m·s-1时的流场 The flow field of sand-transmitting subgrade at 10, 15 and 20 m·s-1. x:水平位置 Horizontal position; y:高度 Hight.所有风向与图a相同, 下同。All wind directions are the same as Figure a, the same as below.

2.2 路基边坡特征位置流场速度变化情况

 图 4 铁路路基特征断面风速廓线(风速15 m·s-1) Figure 4 Wind speed profile for the feature section of railway subgrades(wind speed 15 m·s-1) a:迎风坡脚 Windward slope; b:路基顶部 Subgrade top; c:背风坡脚 Leeward slope.

2.3 路基边坡积沙分布特征

 图 5 不同路基积沙分布(风速15 m·s-1) Figure 5 Distribution of sand deposition under different subgrades(wind speed 15 m·s-1) a.普通路基 Ordinary subgrade; b.通风路基 Ventilated subgrade; c.输沙路基 Sand-transmitting subgrade；图 6, 8同此 The same as in Fig. 6, 8.图中色阶表示沙粒相体积分数(m3·m-3), 下同。Color scale indicates the volume fraction of the sand(m3·m-3), and the same as below.
 图 6 布设沙障时铁路路基流场分布特征(风速15 m·s-1) Figure 6 Distribution characteristics of flow field in railway subgrades with sand barriers(wind speed 15 m·s-1) b, c中的PE阻沙网、栅栏沙障(轨枕式挡沙墙)设置同a。Laying of sand blocking PE nets, sand fence (sleeper-type sand barrier)in b, c are the same as in a.
 图 8 布设沙障时路基积沙分布(风速15 m·s-1) Figure 8 Distribution of sand deposition on subgrades with sand barriers(wind speed 15 m·s-1)
2.4 沙障对路基流场及积沙情况的影响

 图 7 2种沙障周围沙粒分布(风速15 m·s-1) Figure 7 Distribution of sand around two sand barriers(wind speed 15 m·s-1) a.轨枕式挡沙墙 Sleeper-type sand barrier; b.PE阻沙网 Sand blocking PE nets.
 图 9 青藏铁路南山口段沙障积沙情况 Figure 9 Sand accumulation situation in Nanshankou section of Qinghai-Tibet Railway 栅栏沙障 Sand fence：a.迎风侧 Windward side; b.背风侧 Leeward side. PE阻沙网 Sand blocking PE: c.迎风侧 Windward side; d.背风侧 Leeward side.

3 讨论

4 结论

3种路基在无防护措施的情况下, 均有不同程度的积沙, 普通路基积沙情况最严重, 迎风坡积沙量明显大于背风坡; 通风路基边坡积沙较少, 部分沙粒沉积在通风管, 破坏通风管的保温功能; 输沙路基边坡几乎没有积沙, 并且输沙管内的积沙可以通过风力作用输移到积沙池内集中处理, 节省大量人力物力, 在实际应用中可以更好地避免风沙危害带来的损失。

 北京林业大学. 2013. 输沙铁路路基. 中国专利, 2013050800677430. (Beijing Forestry University. 2013. Sand-transmitting railway subgrade. Chinese Patent: 2013050800677430. [in Chinese]) 郝晓杰, 熊治文, 蒋富强, 等. 2012. 青藏铁路不同防沙栅栏的布设位置研究[J]. 铁道标准设计, 56(4): 19-23. (Hao X J, Xiong Z W, Jiang F Q, et al. 2012. Research on the positions of various kinds of sand barriers in Qinghai-Tibet railway[J]. Railway Standard Design, 56(4): 19-23. [in Chinese]) 洪新民, 郭文华, 熊安平. 2017. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报:自然科学版, 37(5): 56-64. (Hong X M, Guo W H, Xiong A P. 2017. Numerical simulation of distribution characteristic of wind fields and terrain's influence in mountain canyon[J]. Journal of Chang'an University:Natural Science Edition, 37(5): 56-64. [in Chinese]) 姜鑫贵, 周金星, 刘玉国, 等. 2016. 青藏铁路南山口段沙害防治措施的效果[J]. 林业科学, 52(10): 55-63. (Jiang X G, Zhou J X, Liu Y G, et al. 2016. Effectiveness of sand control measures in Nanshankou Area along Qinghai-Tibet railway[J]. Scientia Silvae Sinicae, 52(10): 55-63. DOI:10.11707/j.1001-7488.20161007 [in Chinese]) 李驰, 黄浩, 孙兵兵. 2010. 风沙环境下沙漠路基风蚀破坏数值模拟研究[J]. 岩土力学, 31(2): 378-382. (Li C, Huang H, Sun B B. 2010. Numerical simulation studies on wind erosion damage for desert subgrade in sandstorm environment[J]. Rock & Soil Mechanics, 31(2): 378-382. [in Chinese]) 李凯崇, 薛春晓, 刘贺业, 等. 2015. 不同类型挡沙墙风沙防护机理的风洞实验研究[J]. 铁道工程学报, 32(1): 17-21. (Li K C, Xue C X, Liu H Y, et al. 2015. Wind tunnel test on sand-preventing mechanism of different kinds of sand-barriers[J]. Journal of Railway Engineering Society, 32(1): 17-21. [in Chinese]) 李晓军, 蒋富强. 2016. 风沙流对戈壁地区挡风墙响应规律的数值模拟分析[J]. 铁道标准设计, 60(3): 47-51. (Li X J, Jiang F Q. 2016. Numerical simulation analysis of response law of wind-blown sand flow around wind-break wall in Gobi Area[J]. Railway Standard Design, 60(3): 47-51. [in Chinese]) 刘世海, 冯玲正, 许兆义. 2010. 青藏铁路格拉段高立式沙障防风固沙效果研究[J]. 铁道学报, 32(1): 133-136. (Liu S H, Feng L Z, Xu Z Y. 2010. Study on effect of wind erosion controlling in the Geerm-Lahsa section of the Qinghai-Tibet railway[J]. Journal of the China Railway Society, 32(1): 133-136. [in Chinese]) 刘伟伟, 崔立臣. 2006. 风沙流速与沙漠路基合理填土高度分析[J]. 青岛理工大学学报, 27(3): 140-143. (Liu W W, Cui L C. 2006. The analysis between sand flow rate and filling height of roadbed in desert regions[J]. Journal of Qingdao Technological University, 27(3): 140-143. [in Chinese]) 刘志强, 赖远明, 张淑娟, 等. 2006. 青藏铁路通风路基三维温度场的数值分析[J]. 土木工程学报, 39(1): 70-74. (Liu Z Q, Lai Y M, Zhang S J, et al. 2006. Numerical analysis for the ventilated embankment in Qing-Tibet railway[J]. China Civil Engineering Journal, 39(1): 70-74. [in Chinese]) 卢玉华, 曾雪兰, 黄润兰. 2012. 障碍物对山坡地形风场的影响分析[J]. 可再生能源, 30(4): 33-36. (Lu Y H, Zeng X L, Huang R L. 2012. Influence analysis of obstacle on wind field over hilly terrain[J]. Renewable Energy Resources, 30(4): 33-36. [in Chinese]) 马学喜, 李生宇, 何志辉, 等. 2016. 高立式阻沙网的阻沙效果对比[J]. 中国沙漠, 36(4): 925-931. (Ma X X, Li S Y, He Z H, et al. 2016. Comparison of the sand-blocking effects of HDPE windbreaks[J]. Journal of Desert Research, 36(4): 925-931. DOI:10.7522/j.issn.1000-694X.2015.00120 [in Chinese]) 牛清河, 屈建军, 张克存, 等. 2009. 青藏铁路典型路段风沙灾害现状与机械防沙效益估算[J]. 中国沙漠, 29(4): 596-603. (Niu Q H, Qu J J, Zhang K C, et al. 2009. Status of aeolian-sand disaster and estimation of mechanical sand-controlling benefit at typical sections of Qinghai-Tibet railway[J]. Journal of Desert Research, 29(4): 596-603. [in Chinese]) 邱青云, 魏庆朝, 吴西良. 2004. 青藏铁路唐拉段地质灾害的评价分析[J]. 中国安全科学学报, 14(5): 3-5. (Qiu Q Y, Wei Q C, Wu X L. 2004. Evaluation analysis on geological disasters at Tang-La section of Qing-Zang railway[J]. China Safety Science Journal, 14(5): 3-5. [in Chinese]) 石龙, 蒋富强, 韩峰. 2014. 风沙两相流对铁路路堤响应规律的数值模拟研究[J]. 铁道学报, 36(5): 82-87. (Shi L, Jiang F Q, Han F. 2014. Numerical simulation of response law of wind-blown sand flow around the railway embankment[J]. Journal of the China Railway Society, 36(5): 82-87. [in Chinese]) 唐玉龙. 2013. 青藏铁路西格段戈壁风沙流防治体系研究[J]. 中国沙漠, 33(1): 72-76. (Tang Y L. 2013. Wind-blown sand prevention system at Gobi Desert Area along Xining-Golmud section of Qinghai-Tibet railway[J]. Journal of Desert Research, 33(1): 72-76. DOI:10.7522/j.issn.1000-694X.2013.00010 [in Chinese]) 谢胜波, 屈建军. 2014. 青藏铁路沿线地形、气候、水文特征及其对沙害的影响[J]. 干旱区资源与环境, 28(10): 157-163. (Xie S B, Qu J J. 2014. The effects of landform and the climatic and hydrological characteristics on the sand hazards along Qinghai-Tibet railway[J]. Journal of Arid Land Resources & Environment, 28(10): 157-163. [in Chinese]) 谢胜波, 屈建军, 刘冰, 等. 2014. 青藏铁路沙害及其防治研究进展[J]. 中国沙漠, 34(1): 42-48. (Xie S B, Qu J J, Liu B, et al. 2014. Advances in research on the sand hazards and its controls along the Qinghai-Tibet railway[J]. Journal of Desert Research, 34(1): 42-48. DOI:10.7522/j.issn.1000-694X.2013.00087 [in Chinese]) 辛国伟, 程建军, 景文宏, 等. 2016. 来流廓线对风沙流场和风沙堆积影响的数值模拟—以挡沙墙为例[J]. 干旱区研究, 33(3): 672-679. (Xin G W, Cheng J J, Jing W H, et al. 2016. Numerical simulation of the influence of incoming flow profile on sand flow field and aeolian Sand deposition:a case study around sand retaining wall[J]. Arid Zone Research, 33(3): 672-679. [in Chinese]) 薛智德, 刘世海, 许兆义, 等. 2010. 青藏铁路措那湖沿岸防风固沙工程效益[J]. 北京林业大学学报, 32(6): 61-65. (Xue Z D, Liu S H, Xu Z Y, et al. 2010. Efficiency of wind erosion control measures along Cuona Labe on Qinghai-Tibet railway, western China[J]. Journal of Beijing Forestry University, 32(6): 61-65. [in Chinese]) 杨印海, 蒋富强, 王锡来, 等. 2010. 青藏铁路错那湖段沙害防治措施研究[J]. 中国沙漠, 30(6): 1256-1262. (Yang Y H, Jiang F Q, Wang X L, et al. 2010. Prevention and management of blown-sand hazards along Qinghai-Tibet railway in Cuonahu Lake Area[J]. Journal of Desert Research, 30(6): 1256-1262. [in Chinese]) 尤全刚, 薛娴, 王涛, 等. 2011. 戈壁地区公路防沙措施防沙效应的风洞试验[J]. 中国沙漠, 31(3): 550-557. (You Q G, Xue X, Wang T, et al. 2011. Wind tunnel experiment of the effect of sand prevention measures along Gobi highway[J]. Journal of Desert Research, 31(3): 550-557. [in Chinese]) 于云江, 鲁春霞. 2001. 青藏线客城区段沙害成因与防治途径的研究[J]. 干旱区地理, 24(3): 236-242. (Yu Y J, Lu C X. 2001. Studies on forming cause of sand disaster and sand-controlling approach at Ke-Cheng section in Qinghai-Tibet railway[J]. Arid Land Geography, 24(3): 236-242. [in Chinese]) 于云江, 史培军, 鲁春霞. 2001. 青藏铁路客城区段风沙流特点及沙害防治措施的研究[J]. 自然灾害学报, 10(1): 30-36. (Yu Y J, Shi P J, Lu C X. 2001. Research on characteristics of wind-sand fluid and sandy disaster reduction at Kecheng(K454-459) section along Qing-Zang railway[J]. Journal of Natural Disasters, 10(1): 30-36. [in Chinese]) 苑宝华, 张立刚, 杨有海, 等. 2013. 戈壁地区高速铁路路基边坡防护措施研究[J]. 路基工程, 30(2): 65-68. (Yuan B H, Zhang L G, Yang Y H, et al. 2013. Study on slope protection measures for subgrade of high-speed railway in Gobi region[J]. Subgrade Engineering, 30(2): 65-68. [in Chinese]) 姚立强, 左合君, 李钢铁, 等. 2013. 临策铁路戈壁段路堤二维风速流场特征研究[J]. 铁道标准设计, 57(9): 4-9. (Yao L Q, Zuo H J, Li G T, et al. 2013. Research on the characteristics of two-dimensional wind velocity field of embankment of Gobi section of Linhe-Ceke railway[J]. Railway Standard Design, 57(9): 4-9. [in Chinese]) 张军平, 王引生, 蒋富强. 2011. 兰新铁路戈壁地区路基周围风沙流运动特征数值分析[J]. 中国铁道科学, 32(4): 14-18. (Zhang J P, Wang Y S, Jiang F Q. 2011. Numerical analysis on the features of sand flow movement around the embankment of Lan-Xin railway in Gobi region[J]. China Railway Science, 32(4): 14-18. [in Chinese]) 张克存, 安志山, 庞营军, 等. 2016. 青藏铁路北麓河路段风沙防护体系阻沙效益[J]. 中国沙漠, 36(5): 1216-1222. (Zhang K C, An Z S, Pang Y J, et al. 2016. Benefit of wind-blown sand prevention system in the Beiluhe section of the Qinghai-Tibet railway[J]. Journal of Desert Research, 36(5): 1216-1222. DOI:10.7522/j.issn.1000-694X.2015.00148 [in Chinese]) 张克存, 牛清河, 屈建军, 等. 2010. 青藏铁路沱沱河路段流场特征及沙害形成机理[J]. 干旱区研究, 27(2): 303-308. (Zhang K C, Niu Q H, Qu J J, et al. 2010. Study on the characteristics of flow field and the mechanism of wind-blown sand disasters in the Tuotuohe region along the Qinghai-Tibet railway[J]. Arid Zone Research, 27(2): 303-308. [in Chinese]) 张克存, 屈建军, 牛清河, 等. 2011. 青藏铁路沿线阻沙栅栏防护机理及其效应分析[J]. 中国沙漠, 31(1): 16-20. (Zhang K C, Qu J J, Niu Q H, et al. 2011. Protective mechanism and efficiency of sand-blocking fences along Qinghai-Tibet railway[J]. Journal of Desert Research, 31(1): 16-20. [in Chinese]) 朱红钧, 林元华, 谢龙汉. 2010. FLUENT流体分析及仿真实用教程[M]. 北京: 人民邮电出版社. (Zhu H J, Lin Y H, Xie L H. 2010. FLUENT fluid analysis and simulation practical tutorial[M]. Beijing: Posts & Telecom Press. [in Chinese]) 邹维. 2012. 风沙运动规律的分析和研究[J]. 中国水土保持, 32(5): 44-46. (Zou W. 2012. Analysis and study of wind blow sand movement[J]. Soil and Water Conservation in China, 32(5): 44-46. [in Chinese]) Zhang K C, Qu J J, Liao K T, et al. 2010. Damage by wind-blown sand and its control along Qinghai-Tibet railway in China[J]. Aeolian Research, 1(3): 143-146.