文章信息
- 高尚坤, 肖文发, 曾立雄, 雷蕾, 黄志霖, 王松.
- Gao Shangkun, Xiao Wenfa, Zeng Lixiong, Lei Lei, Huang Zhilin, Wang Song.
- 马尾松人工林干扰对土壤微生物群落结构的短期影响
- Short Term Effects of Pinus massoniana Plantation Disturbance on Soil Microbial Community Structure
- 林业科学, 2018, 54(12): 92-101.
- Scientia Silvae Sinicae, 2018, 54(12): 92-101.
- DOI: 10.11707/j.1001-7488.20181210
-
文章历史
- 收稿日期:2017-02-23
- 修回日期:2018-06-06
-
作者相关文章
2. 南京林业大学南方现代林业协同创新中心 南京 210037;
3. 湖北省秭归县九岭头林场 秭归 443604
2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University Nanjing 210037;
3. Jiulingtou Forest Farm of Zigui County, Hubei Province Zigui 443604
森林是陆地生态生态系统最大的碳汇,可保护生物多样性,保持水土和提供木材(Pan et al., 2011)。由于森林对土壤特性有重要影响,比如调节凋落物分解和根系分泌物,影响土壤环境温度、透气性(氧气的消耗)、孔隙度(根系)和持水力(根吸收)(Augusto et al., 2002)。森林土壤很少像耕地那样受到有规律的干扰,因此土壤层养分随土壤剖面具有一定的梯度。但是森林土壤质量仍受到森林干扰的影响(Hartmann et al., 2009; 2012; 2013; Nacke et al., 2011; Purahong et al., 2014)。在不同干扰活动下,土壤质量会随着森林群落结构、林龄和更新类型产生变化,如生物量移除干扰导致土壤有效养分的降低(Hartmann et al., 2012)。林下层的灌丛是森林生态系统的重要组成部分,在维持生物多样性、土壤养分循环和碳储量方面起着非常重要的作用(Zhou et al., 2017; Wu et al., 2011a; 2011b)。林下层包含植被恢复过程中的植物幼苗,因此对林下层的干扰会导致生物多样性的严重下降。虽然之前的一些研究表明不同干扰后土壤质量有一定的变化,但是仍然不清楚土壤质量对干扰的响应机制(Bradford et al., 2012; Burton et al., 2013)。
森林土壤定量和定性的变化取决于树种(树种影响)和林分类型(纯林和混交林)(Andrianarisoa et al., 2010; Augusto et al., 2002; 2015),更可以被相关的土壤生物群系(土壤微生物、微动物和大型土壤动物)表征(Geisen et al., 2016; Korboulewsky et al., 2016)。Hartmann等(2012)研究表明干扰15年后,细菌群落的结构和组成产生显著差异,没有恢复到干扰前的水平。由于重型机械干扰改变了土壤的理化性质,机械压实造成土壤孔隙度和透气性的变化,大多数的研究发现干扰后短期和长期显著改变了土壤细菌群落结构、多样性和丰度(Frey et al., 2011; Hartmann et al., 2012; 2013)。
森林生态系统的地上和地下部分通过交互作用密切联系在一起(Gao et al., 2017)。土壤微生物是森林地下生态系统的重要生物驱动力之一(Wardle et al., 2004)。首先,微生物是森林生态系统生物地球化学循环研究中的最敏感指标之一(Hartmann et al., 2012),土壤微生物群落结构特征能快速响应干扰,但干扰对微生物群落结构的影响机制还不清楚。其次,已有研究对采伐干扰多年的亚寒带云杉(Picea asperata)和美国花旗松(Pseudotsuga menziesii)林土壤微生物进行对比,发现采伐干扰显著改变了土壤微生物群落特征(Hartmann et al., 2012),而采伐干扰后短期内土壤微生物群落变化特征的研究还比较少。最后,近些年基于简单的微生物表征指标(微生物生物量碳氮、专一酶等)得到的结论还不一致,研究地点、对象的差异性是部分可能原因(Busse et al., 2005; Kebli et al., 2012)。另外,微生物群落具有高度复杂性,全面深入了解微生物群落具有一定难度。随着分子生物学的发展,当前测序技术成为获得土壤微生物群落结构与组成详细信息的有效方法,为深入理解土壤微生物响应营林干扰提供了可能(Medini et al., 2008)。
马尾松(Pinus massoniana)林广泛分布于三峡库区(肖文发等, 2004)。目前关于其土壤微生物对干扰的响应特征研究还较少。因此,本研究随机布设3种干扰方式(除灌、轻度干扰、重度干扰),以未经处理的马尾松人工林为对照,对所取的土壤样品通过高通量测序方法获取微生物群落信息特征,分析微生物群落组成、结构对不同干扰的响应特征,系统分析该地区马尾松人工林土壤质量受不同干扰方式影响的微生物机制,为评估不同干扰方式对地下生态系统的影响提供理论基础。
1 研究区概况研究地点位于湖北省秭归县九岭头林场,地理坐标为30°59′N、110°47′E,海拔1 220 m左右,年均降水量1 000~1 250 mm,年均气温16.9 ℃,属亚热带大陆性季风气候。土壤类型以黄壤、黄棕壤为主。研究林地内为40多年生的马尾松人工林,林分郁闭度0.8以上。林下层灌木主要有木姜子(Litsea pungens)、火棘(Pyracantha fortuneana)、胡枝子(Lespedeza bicolor)等,草本植物主要为狗脊(Woodwardia japonica)、中日金星蕨(Parathelypteris nipponica)等。
在2013年9月份选取样地进行采伐,在同一坡面上随机选取24个10 m×10 m的样地,样方间距30 m以上。每种干扰方式随机选取6块样地,另有6块样地为对照。除灌(shrub removal, SR)即清除马尾松样地内所有的灌丛;轻度干扰(light disturbance, LR)即清除样地内少量胸径≥4 cm的非马尾松乔木,主要为光皮桦(Betula luminifera)、杉木(Cunninghamia lanceolata)和漆树(Toxicodendron vernicifluum),按胸高断面积计算的采伐强度为15%;重度干扰(heavy disturbance, HD)即剔除样地内胸径≥17.9 cm的马尾松,按胸高断面积计算的采伐强度为70%。共设24个(4处理×6样方重复)固定样地,处理后对样地进行调查的结果如表 1所示。样地间土壤养分含量(碳、氮、磷和钾)没有显著差异。
2015年7月采用多点混合取样法,在24个样地进行土壤取样。每个样地内随机选8个取样点,取0~10 cm表层土样,混合为1个样,用干冰保鲜带回实验室。土壤样品过2 mm筛,一部分用于土壤理化分析,另一部分放置-80 ℃超低温冰箱保存。
2.2 土壤DNA提取和高通量测序土壤样品按照E. Z. N. A. ® DNA试剂盒(Omega Bio-tek, Norcross, GA, U.S.)说明进行DNA提取,提取后进行DNA检测,以备扩增。
以细菌V3—V4高变区的通用引物338F(5′-barcode-ACTCCTACGGGAGGCAGCA-3′)、806R(5′-barcode-GGACTACHVGGGTWTCTAAT-3′)进行扩增;以真菌的SSU0817(5′-barcode-TTAG CATGGAATAATRRAATAGGA-3′)、SSU1196R(5′-barcode-TCTGGACCTGGTGAGTTTCC-3′)设计通用引物进行PCR扩增,每个样品3次重复PCR后混合,经过回收检测合格后进行高通量测序。
2.3 序列数据处理对测序原始数据经QIIME(1.9.1)处理,然后进行一定的质量控制筛选、拼接,以97%相似性水平比对细菌和真菌的数据库聚类,获得细菌和真菌的详细分类信息数据。
2.4 统计分析利用R(V.3.2.1)的Vegan包,分析土壤微生物主要优势类群丰度的差异性,主成分分析(PCA)呈现不同干扰方式下土壤微生物的群落结构差异性。利用PAST对微生物群落结构差异进行显著性检验;基于Bray-Curtis dissimilarity矩阵计算微生物群落特征相似性指数。用Picante包计算种系多度和谱系多样性。本文中的图均用Sigamaplot 12.5绘制。
3 结果与分析对24个样地的土壤样品所得测序序列,以97%相似性阀值进行OTU聚类,获得细菌(3 597 reads)、真菌(657 reads)的群落结构组成信息。细菌和真菌测序深度(Coverage)分别为97%和99.7%。与数据库进行比对后可知,细菌包含34门83纲173目321科537属1 090种;真核包含(真菌10个门的丰度占94%)49门94纲139目170科264属265种。
3.1 土壤微生物群落组成马尾松林土壤中细菌的主要优势菌群为酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、疣微菌门(Verrucomicrobia)、硝化菌门(Nitrospirae)、厚壁菌门(Firmicutes)、浮霉菌门(Planctomycetes)等。变形菌门又可细分为α-变形菌门、β-变形菌门、δ-变形菌门、γ-变形菌门。在门水平上对细菌群落相对丰度进行组间差异显著性检验,结果表明,只有拟杆菌门差异显著(P < 0.05)。不同干扰方式分别与对照两两比较:轻度干扰时变形菌门相对丰度(36%) < 对照相对丰度(42%)(P < 0.05);轻度干扰时拟杆菌门相对丰度(2.1%)和重度干扰时拟杆菌门相对丰度(3.4%) < 对照(4.2%)(P < 0.05);除灌措施没有对细菌门水平产生显著影响。在细菌纲水平上的组间差异显著性检验(图 1A)表明:β-变形菌门、δ-变形菌门和γ-变形菌门相对丰度的组间差异显著(P < 0.05)。各干扰方式与对照相比:轻度干扰时β-变形菌门相对丰度(7.09%)、δ-变形菌门相对丰度(5.96%)和γ-变形菌门相对丰度(3.21%)都较对照β-变形菌门相对丰度(8.33%)、δ-变形菌门相对丰度(7.43%)和γ-变形菌门相对丰度(4.63%)显著降低(P < 0.05);重度干扰的δ-变形菌门相对丰度(3.83%)较对照δ-变形菌门相对丰度(4.63%)显著降低(P < 0.05);而除灌较对照在门和纲水平上都没有发生显著变化。细菌门、纲水平的物种相对丰度差异分析说明不同干扰方式下的样地土壤细菌类群的响应存在差异性。
真核微生物相对丰度数据中真菌界相对丰度占总体的92%以上,因此本研究中的真核微生物主要是真菌群落。真菌群落的优势门为担子菌门(Basidiomycota)、子囊菌门(Ascomycota)、接合菌门(Zygomycota)等。通过对真菌的物种差异进行分析,发现干扰后真菌的主要优势菌门相对丰度都发生了显著变化(图 1B)。各干扰方式分别与对照两两比较:除灌措施对应的担子菌门相对丰度(41.68%) < 对照(50.19%)(P < 0.05),而子囊菌门相对丰度(31.29%)>对照(21.44%)(P < 0.05);轻度干扰对应的担子菌门相对丰度(54.22%)>对照担子菌门相对丰度(50.19%)(P < 0.05), 子囊菌门相对丰度(30.25%)>对照(21.51%)(P < 0.05),而接合菌门的相对丰度(9.524%) < 对照(17.07%)(P < 0.05);重度干扰的担子菌门相对丰度(35%) < 对照担子菌门相对丰度(50.19%)(P < 0.05), 接合菌门的相对丰度(14.72%) < 对照(17.07%)(P < 0.05), 而子囊菌门相对丰度(36.19%)>对照(21.51%)(P < 0.05)。
3.2 土壤微生物的群落结构基于细菌OTU水平进行主成分分析(PCA),提取细菌的第1、2主成分(图 2 A),可知不同干扰方式下细菌群落结构能够显著分开。细菌的PC1解释了细菌群落结构变化的38.38%,PC2贡献细菌群落结构变化的26.9%。非参数多元方差分析(PERMANOVA)发现干扰极显著改变了细菌的群落结构(P < 0.001)。各干扰方式与对照的两两比较,除灌与对照的细菌群落结构没有产生显著差异,而重度和轻度干扰与对照的细菌群落结构产生了显著差异(表 2)。
基于真菌的OTU水平主成分分析(PCA)(图 2B),真菌经采伐处理后群落结构极显著区分开(P < 0.001)。真菌PC1贡献了总变异的36.66%,PC2贡献了总变异的18.81%(图 2B)。非参数多元方差分析表明土壤真菌群落结构差异极显著(P= 0.000 1)。另外,各干扰方式对真菌群落结构的影响与对照差异显著(表 2)。
基于Bray-Curtis距离矩阵获得不同干扰方式下土壤细菌和真菌的相似矩阵,并对不同干扰方式自身以及不同干扰方式间细菌和真菌群落结构的相似性进行差异显著性检验(图 3)。
细菌群落:干扰方式自身群落结构相似性比较结果表明,对照(71.1%) < 除灌(71.6%) < 重度干扰(71.8%) < 轻度干扰(74.6%);不同干扰方式之间群落结构相似性比较结果表明,轻度干扰和重度干扰较对照显著降低(P < 0.05)。
真菌群落:干扰方式自身群落结构相似性比较结果表明,重度干扰(73.1%) < 对照(74.8%) < 除灌(81.5%) < 轻度干扰(81.7%);不同干扰方式之间群落结构相似性比较结果表明,干扰与对照真菌群落结构相似性都显著降低(P < 0.05)。
3.4 土壤微生物群落结构的谱系多样性基于谱系发育树获得了细菌、真菌的谱系指数。干扰后细菌群落结构的种系多度和谱系多样性普遍降低,轻度干扰时细菌种系多度和谱系多样性显著下降(P < 0.005)。真菌群落种系多度和谱系多样性在轻度干扰后显著降低(P < 0.05),除灌和重度干扰时真菌种系多度和谱系多样性变化不显著;真菌经除灌处理谱系多样性下降不大,重度干扰时真菌种系多度和谱系多样性呈升高趋势,但不显著(图 4)。
本研究表明,土壤中细菌的主要优势菌门为酸杆菌门、变形菌门、放线菌门、绿弯菌门和拟杆菌门等,真菌群落的优势门为担子菌门、子囊菌门、接合菌门等。这些菌群也同样在其他生态系统中检测出来,并主导土壤微生物群落结构(Xiao et al., 2016; Cong et al., 2015; Zhou et al., 2015; Liu et al., 2014),这说明上述类群可能广泛参与土壤生态过程。
微生物群落作为生物地球化学循环的重要组成部分,是地下生态系统响应环境干扰的重要敏感指标(Colombo et al., 2016; Holden et al., 2013; Hartmann et al., 2012)。大多数微生物群落的组成对干扰是敏感的,干扰后微生物群落无法立即恢复到原来的状态,并且微生物群落组成的变化往往与生态系统过程变化有关(Colombo et al., 2016; Holden et al., 2013; Hartmann et al., 2012)。因此,扰动引起的微生物群落的变化可能直接影响生态系统过程。本研究中经过短期干扰,土壤细菌、真菌群落特征发生了显著响应,验证了微生物对经营干扰的高度敏感性。对已发表微生物研究结论进行的宏分析(Meta-analysis)表明,经过营林干扰后土壤微生物生物量显著降低(Holden et al., 2013),Chatterjee等(2008)研究发现,北方针叶林的采伐显著降低了森林土壤中革兰氏阳性细菌、真菌和细菌的PLFA生物量,而且Hartmann等(2012)发现森林采伐10年后土壤微生物的丰度和多样性显著降低。这和本研究的结果都说明森林干扰措施能够显著影响森林土壤微生物的群落特征。灌丛作为林下层的重要组成部分,能够为土壤微生物的生存提供微环境(Zhao et al., 2013)。本研究表明林下层灌丛的移除部分改变了微生物的群落组成特征,而且显著改变了真菌的群落结构。Zhao等(2013)的研究发现,林下层植被的移除显著降低了真菌的生物量。因此,林下植被的存在有利于土壤微生物的生存,能够提供更多的能量和养分,灌丛作为林下层的重要组成部分不应该被移除。
有研究表明经营措施增加了碳库的周转率或损失(土壤异养呼吸升高、土壤有机碳含量降低),并减少了包括革兰氏阴性细菌和真菌在内的重要微生物群落的数量,导致土壤物理环境的恶化(即土壤密度增加),同时,土壤环境和养分输入的变化有可能改变土壤有机质和微生物群落结构的稳定性,从而最终影响土壤微生物群落类群的变化(Grayston et al., 2006; Priha et al., 2000; Zhao et al., 2011; Wu et al., 2011b; Colombo et al., 2016)。另外,土壤微生物群落结构组成的差异也常表征养分动态的差异(Grayston et al., 2005)。因此,微生物群落组成结构的改变一定程度上反映了土壤养分的状况(Fierer et al., 2007)。本研究对细菌群落种群的相对丰度差异分析表明,与对照相比:轻度干扰显著降低了拟杆菌门、β-变形菌门、δ-变形菌门和γ-变形菌门的相对丰度;重度干扰显著降低拟杆菌门、δ-变形菌门的相对丰度;而除灌在细菌的门纲水平上主要优势菌群没有发生显著变化。可能反映出土壤养分受到了干扰的显著影响。通过宏分析研究将寡营养-富营养概念应用于土壤微生物,可以对各种细菌类群的生态学属性进行具体的预测,从而更好地了解土壤细菌群落的结构和功能(Noah et al., 2007; Cederlund et al., 2014)。宏分析研究结果表明,拟杆菌门、β-变形菌门与土壤碳的有效性呈显著正相关。本研究中轻度干扰后,所有的富营养菌的相对丰度显著降低,说明轻度干扰显著降低了土壤有效碳的含量,即土壤质量下降;而重度干扰只有δ-变形菌门显著降低,这可能由于重度干扰后大量的阳光和植物地下死根系弥补了短期的碳有效性,使细菌群落依然保持了谱系多样性指数的上升趋势,但是其群落结构与对照相比还是存在显著差异;除灌没有降低富营养菌群丰度,对土壤质量的干扰最小。
真菌群落结构经过干扰后产生了显著差异(P < 0.05)。首先,大部分真菌类群具有宿主专一性(Hibbett et al., 2011)。其次,腐生真菌是最先定植于植物残体的菌群,极易受到植被生物量的影响(Kennedy et al., 2009)。最后,植被生物量和植物多样性受到营林干扰的影响,降低了真菌所需养分多样性,真菌群落结构的多样性降低(Eisenhauer et al., 2011; Hooper et al., 2000; Waldrop et al., 2006)。所以真菌对营林措施的敏感性更强。
通常担子菌门与宿主形成共生体菌根,除灌和重度干扰显著降低了担子菌门的丰度,主要归因于地上部分的宿主植物被移除。除灌和重度干扰后草本植物得以更新。大多数草本植物与丛植菌根共生,与共生菌根产生竞争(Wubet et al., 2012)。子囊菌门丰度在干扰后显著增高(P < 0.005),是因为子囊菌门多数营腐生、寄生,营林前期产生的大量的植物残体和枯落物为子囊菌门提供了养分(魏玉莲等, 2004)。其他的真菌类群还没有确切的功能描述,需要进一步探讨。
4.2 土壤微生物群落结构的响应机制本研究中森林干扰对真菌的影响更显著(除灌只在真菌群落结构特征方面显著区别于对照)。细菌对干扰具有一定的抵抗力稳定性,主要是因为细菌类群组成复杂且呈现多样的生态学功能(Bell et al., 2005; Allison et al., 2008);再者,细菌随机分布,不具有宿主特异性,因此地上部分发生变化时对土壤细菌群落结构影响相对较小(Hartmann et al., 2012)。另外,由于采伐过程中人为踩踏或机械碾压,土壤空隙度减少,土壤透气性差,反而促进部分厌氧细菌菌群生长(Schnurrpütz et al., 2010)。基于以上原因,细菌群落结构呈现一定稳定性。
经过外界环境干扰后,微生物群落结构在干扰前后的相似性越大,说明微生物群落的抵抗力稳定性越强,相似性越低,则说明微生物的抵抗力稳定性越弱(Schnurrpütz et al., 2010)。本研究中,干扰后土壤细菌和真菌的群落结构显著低于对照,说明干扰改变了土壤微生物群落结构的稳定性。除灌、轻度干扰和重度干扰与对照的相似性指数越低,表明土壤微生物群落结构受干扰的影响越大。土壤微生物群落多样性(群落结构、功能多样性)越高,土壤生态系统越稳定,即土壤微生物相似性指数是土壤生态系统稳定性的量化指标(Shade et al., 2011),土壤微生物群落内部多样性指数越高,抵抗力稳定性也越高(Allison et al., 2008);本研究中,轻度干扰后谱系多样性指数显著降低,表明轻度干扰显著降低了群落多样性,即群落的抵抗力和稳定性受轻度干扰影响而显著降低。本研究表明,轻度干扰和重度干扰都显著降低了与对照微生物群落结构的相似性,轻度干扰显著降低了谱系多样性指数,说明这些干扰方式显著减低了微生物群落结构的稳定性。
谱系多样性能在某种程度上表征生态位的多样性(Tilman, 1999),生态位越多表明环境中所能承载的微生物种群也就越多(Doležal et al., 2013; Srivastava et al., 2012)。干扰导致生态系统所提供的生态位发生变化,细菌和真菌种系多度和谱系多样性产生显著变化。轻度干扰剔除了非马尾松乔木,导致提供微生物生存的生态位数量减少,因此土壤微生物种系多度和谱系多样性显著降低,因而不利于森林生态系统的可持续性,而除灌和重度干扰后有大量的草本更新,可能使生态位得到了一定的恢复。
5 结论干扰后的马尾松人工林土壤微生物群落特征发生了显著变化。1)土壤细菌和真菌的优势菌群对干扰的响应程度不同, 轻度和重度干扰后土壤细菌和真菌的组成更加趋向寡营养菌群, 说明轻度干扰和重度干扰导致土壤质量下降。2)由于土壤微生物整体群落结构在不同干扰方式内部相似性较高, 而与对照相似性降低, 说明干扰显著改变了土壤微生物的稳定性。特别是导致真菌群落结构的稳定性更低。3)通过对土壤微生物响应机制的初步研究发现, 干扰导致了地下微生物生态位分化, 轻度干扰导致地下生态位丰度和多样性降低, 从而降低了土壤质量。综上, 今后的森林经营过程中不宜进行马尾松和非马尾松林木的清除, 因为这些干扰方式都不利于土壤质量的保持。
魏玉莲, 戴玉成. 2004. 木材腐朽菌在森林生态系统中的功能. 应用生态学报, 15(10): 1935-1938. (Wei Y L, Dai Y C. 2004. Ecological function of wood-inhabiting fungi in forest ecosystem. Chinese Journal of Applied Ecology, 15(10): 1935-1938. DOI:10.3321/j.issn:1001-9332.2004.10.046 [in Chinese]) |
肖文发, 雷静品. 2004. 三峡库区森林植被恢复与可持续经营研究. 长江流域资源与环境, 13(2): 138-144. (Xiao W F, Lei J P. 2004. Spatial distribution, disturbance and restoration of forests in the three gorges reservoir region. Resources and Environment in the Yangtze Basin, 13(2): 138-144. DOI:10.3969/j.issn.1004-8227.2004.02.008 [in Chinese]) |
Allison S D, Martiny J B. 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105(32): 11512-11519. |
Andrianarisoa K S, Zeller B, Poly F, et al. 2010. Control of nitrification by tree species in a common-garden experiment. Ecosystems, 13(8): 1171-1187. DOI:10.1007/s10021-010-9390-x |
Augusto L, An D S, Vesterdal L, et al. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2): 444-466. DOI:10.1111/brv.2015.90.issue-2 |
Augusto L, Ranger J, Dan B, et al. 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59(3): 233-253. DOI:10.1051/forest:2002020 |
Bell T, Newman J A, Silverman B W, et al. 2005. The contribution of species richness and composition to bacterial services. Nature, 436(7054): 1157. DOI:10.1038/nature03891 |
Bradford J B, D'Amato A W. 2012. Recognizing trade-offs in multi-objective land management. Frontiers in Ecology and the Environment, 10(4): 210-216. DOI:10.1890/110031 |
Burton J I, Ares A, Olson D H, et al. 2013. Management trade-off between aboveground carbon storage and understory plant species richness in temperate forests. Ecological Applications, 23(6): 1297-1310. DOI:10.1890/12-1472.1 |
Busse M D, Hubbert K R, Fiddler G O, et al. 2005. Lethal soil temperatures during burning of masticated forest residues. International Journal of Wildland Fire, 14(3): 267-276. DOI:10.1071/WF04062 |
Cederlund H, Wessén E, Enwall K, et al. 2014. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Applied Soil Ecology, 84: 62-68. DOI:10.1016/j.apsoil.2014.06.003 |
Chatterjee A, Vance G F, Pendall E, et al. 2008. Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biology and Biochemistry, 40(7): 1901-1907. |
Colombo F, Macdonald C A, Jeffries T C, et al. 2016. Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology and Biochemistry, 94: 200-210. DOI:10.1016/j.soilbio.2015.11.029 |
Cong J, Yang Y, Liu X, et al. 2015. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Scientific Reports, 5: 10007. DOI:10.1038/srep10007 |
Doležal J, Yakubov V, Hara T. 2013. Plant diversity changes and succession along resource availability and disturbance gradients in Kamchatka. Plant Ecology, 214(3): 477-488. DOI:10.1007/s11258-013-0184-z |
Eisenhauer N, Milcu A, Sabais A C W, et al. 2011. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS One, 6(1): 95-95. |
Fierer N, Bradford M A, Jackson R B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88(6): 1354-1364. DOI:10.1890/05-1839 |
Frey B, Niklaus P A, Kremer J, et al. 2011. Heavy-machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils. Applied & Environmental Microbiology, 77(17): 6060-6068. |
Gao C, Shi N N, Chen L, et al. 2017. Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. New Phytologist, 213(4): 1874. DOI:10.1111/nph.14287 |
Geisen S, Koller R, Hünninghaus M, et al. 2016. The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biology & Biochemistry, 94: 10-18. |
Grayston S J, Prescott C E. 2005. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry, 37(6): 1157-1167. DOI:10.1016/j.soilbio.2004.11.014 |
Grayston S J, Rennenberg H. 2006. Assessing effects of forest management on microbial community structure in a central European beech forest. Canadian Journal of Forest Research, 36(10): 2595-2604. DOI:10.1139/x06-154 |
Hartmann M, Howes C G, VanInsberghe D, et al. 2012. Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME J, 6(12): 2199-218. DOI:10.1038/ismej.2012.84 |
Hartmann M, Lee S, Hallam S J, et al. 2009. Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environmental Microbiology, 11(12): 3045. DOI:10.1111/emi.2009.11.issue-12 |
Hartmann M, Niklaus P A, Zimmermann S, et al. 2013. Resistance and resilience of the forest soil microbiome to logging-associated compaction. Isme Journal, 8(1): 226-244. |
Hibbett D S, Ohman A, Glotzer D, et al. 2011. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biology Reviews, 25(1): 38-47. DOI:10.1016/j.fbr.2011.01.001 |
Holden S R, Treseder K K. 2013. A meta-analysis of soil microbial biomass responses to forest disturbances. Frontiers in Microbiology, 4(5): 573-580. |
Hooper D U, Bignell D E, Brown V K, et al. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50(12): 1049-1061. DOI:10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 |
Kebli H, Brais S, Kernaghan G, et al. 2012. Impact of harvesting intensity on wood-inhabiting fungi in boreal aspen forests of Eastern Canada. Forest Ecology & Management, 279(6): 45-54. |
Kennedy P G, Peay K G, Bruns T D. 2009. Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception?. Ecology, 90(8): 2098-2107. DOI:10.1890/08-1291.1 |
Korboulewsky N, Perez G, Chauvat M. 2016. How tree diversity affects soil fauna diversity: A review. Soil Biology & Biochemistry, 94: 94-106. |
Liu J, Sui Y, Yu Z, et al. 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology & Biochemistry, 70(2): 113-122. |
Medin D, Serruto D, Parkhill J, et al. 2008. Microbiology in the post-genomic era. Nature Reviews Microbiology, 6(6): 419. DOI:10.1038/nrmicro1901 |
Noah F, Bradford M A, Jackson R B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88(6): 1354-1364. DOI:10.1890/05-1839 |
Nacke H, Thürmer A, Wollherr A, et al. 2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6(2): e17000. DOI:10.1371/journal.pone.0017000 |
Pan Y, Birdsey R A, Fang J, et al. 2011. A large and persistent carbon sink in the world's forests. Science, 333(6045): 988-993. DOI:10.1126/science.1201609 |
Priha O, Grayston S J, Hiukka R, et al. 2000. Microbial community structure and characteristics of the organic matter under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biology & Fertility of Soils, 33: 17-24. |
Purahong W, Hoppe B, Kahl T, et al. 2014. Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems. Journal of Environmental Management, 139: 109-119. |
Schnurrpütz S, Bååth E, Guggenberger G, et al. 2010. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. Fems Microbiology Ecology, 58(3): 503-516. |
Shade A, Read J S, Welkie D G, et al. 2011. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environmental Microbiology, 13(10): 2752-2767. DOI:10.1111/emi.2011.13.issue-10 |
Srivastava D S, Cadotte M W, Macdonald A A, et al. 2012. Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15(7): 637-648. DOI:10.1111/ele.2012.15.issue-7 |
Tilman D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80(5): 1455-1474. |
Waldrop M P, Zak D R, Blackwood C B, et al. 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 9(10): 1127-1135. DOI:10.1111/j.1461-0248.2006.00965.x |
Wardle D A, Bardgett R D, Klironomos J N, et al. 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677): 1629-33. DOI:10.1126/science.1094875 |
Wu J, Liu Z, Chen D, et al. 2011a. Understory plants can make substantial contributions to soil respiration: Evidence from two subtropical plantations. Soil Biology and Biochemistry, 43(11): 2355-2357. DOI:10.1016/j.soilbio.2011.07.011 |
Wu J, Liu Z, Wang X, et al. 2011b. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Functional Ecology, 25(4): 921-931. DOI:10.1111/fec.2011.25.issue-4 |
Wubet T, Christ S, Schöning I, et al. 2012. Differences in soil fungal communities between European Beech (Fagus sylvatica L.) dominated forests are related to soil and understory vegetation. PLoS One, 7(10): e47500. DOI:10.1371/journal.pone.0047500 |
Zhang X, Liu S R, Li X Z, et al. 2016. Changes of soil prokaryotic communities after clear-cutting in a karst forest: evidences for cutting-based disturbance promoting deterministic processes. Fems Microbiology Ecology, 92(3): fiw026. DOI:10.1093/femsec/fiw026 |
Zhao J, Wan S, Fu S, et al. 2013. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecology and Management, 310(1): 80-86. |
Zhao J, Wang X, Shao Y, et al. 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology & Biochemistry, 43(5): 954-960. |
Zhou J, Guan D, Zhou B, et al. 2015. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology & Biochemistry, 90(11): 42-51. |
Zhou X, Wen Y, Goodale U M, et al. 2017. Optimal rotation length for carbon sequestration in Eucalyptus plantations in subtropical China. New Forests, 48(5): 609-627. DOI:10.1007/s11056-017-9588-2 |