林业科学  2018, Vol. 54 Issue (12): 110-115   PDF    
DOI: 10.11707/j.1001-7488.20181212
0

文章信息

曾健勇, 张方明, 吴玥, 张婷婷, 张国财.
Zeng Jianyong, Zhang Fangming, Wu Yue, Zhang Tingting, Zhang Guocai.
阿维菌素与杀铃脲对舞毒蛾幼虫的联合作用机制
Synergy Mechanism of Abamectin and Triflumuron on Lymantria dispar Larvae
林业科学, 2018, 54(12): 110-115.
Scientia Silvae Sinicae, 2018, 54(12): 110-115.
DOI: 10.11707/j.1001-7488.20181212

文章历史

收稿日期:2018-05-03
修回日期:2018-07-16

作者相关文章

曾健勇
张方明
吴玥
张婷婷
张国财

阿维菌素与杀铃脲对舞毒蛾幼虫的联合作用机制
曾健勇, 张方明, 吴玥, 张婷婷, 张国财     
东北林业大学林学院 哈尔滨 150040
摘要:【目的】通过舞毒蛾幼虫解毒酶活力、保护酶活力测定,研究阿维菌素和杀铃脲对舞毒蛾幼虫的联合作用机制,为上述2种农药的混用提供理论依据。【方法】人工饲料中添加不等量的9 000 μg·mL-1阿维菌素丙酮溶液和25 000 μg·mL-1杀铃脲丙酮溶液,分别配制成含有阿维菌素、杀铃脲的单剂和复合剂混毒饲料。饲料中药剂含量:低浓度处理组单剂阿维菌素0.50 μg·g-1,单剂杀铃脲8.30 μg·g-1,复合剂阿维菌素0.50 μg·g-1、杀铃脲8.30 μg·g-1;高浓度处理组单剂阿维菌素1.10 μg·g-1,单剂杀铃脲16.60 μg·g-1,复合剂阿维菌素1.10 μg·g-1、杀铃脲16.60 μg·g-1。采用含毒饲料处理3龄舞毒蛾幼虫,24 h后统计幼虫死亡率,测定存活幼虫解毒酶CarE和GST活力以及保护酶SOD、POD、CAT和PPO活力。【结果】对照组、阿维菌素和杀铃脲单剂处理时舞毒蛾幼虫死亡率为0,低浓度复合剂处理的舞毒蛾幼虫死亡率为1.15%,与对照组、单剂处理组无显著差异;高浓度复合剂处理的舞毒蛾幼虫死亡率为4.11%,与对照组、单剂处理组有显著差异。阿维菌素和杀铃脲单剂处理、复合剂处理的幼虫CarE和GST活力均高于对照组;阿维菌素和杀铃脲单剂处理时,幼虫CarE和GST活力显著高于对照组,复合剂处理与对照组无显著差异。阿维菌素和杀铃脲单剂处理及复合剂处理时,幼虫SOD、CAT和PPO活力均高于对照组,而POD活力均低于对照组;复合剂处理SOD、POD和CAT活力均高于单剂处理,而复合剂处理PPO活力则均低于单剂处理。【结论】阿维菌素和杀铃脲联合作用主要是通过抑制舞毒蛾幼虫解毒酶CarE和GST活力,再辅以抑制保护酶PPO活力,从而提高毒杀效果。
关键词:联合作用机制    解毒酶    保护酶    农药    舞毒蛾    
Synergy Mechanism of Abamectin and Triflumuron on Lymantria dispar Larvae
Zeng Jianyong, Zhang Fangming, Wu Yue, Zhang Tingting, Zhang Guocai     
School of Forestry, Northeast Forestry University Harbin 150040
Abstract: 【Objective】The combined use of abamectin and triflumuron has synergistic effect on the control of gypsy moths, but the synergy mechanism of abamectin and triflumuron is still unknown. In order to clarify the synergy mechanism of abamectin and triflumuron, 3rd-instar Lymantria dispar larvae were treated with abamectin and triflumuron alone or their combination, and then the activities of detoxification enzymes and protective enzymes were determined, which would provide theoretical basis for the mixture use of the two pesticides.【Method】Abamectin acetone solution of 9 000 μg·mL-1 or triflumuron acetone solution of 25 000 μg·mL-1, and the two combination were added to the artificial diet for preparation of poisonous feed for L. dispar larvae. In a low concentration group, the content of drugs was 0.50 μg·g-1 abamectin or 8.30 μg·g-1 triflumuron in single pesticide treatment group, and 0.50 μg·g-1 abamectin plus 8.30 μg·g-1 triflumuron in mixed pesticide group. In a high concentration group, the content of drugs was 1.10 μg·g-1 abamectin or 16.60 μg·g-1 triflumuron in single pesticide treatment group, and 1.10 μg·g-1 abamectin plus 16.60 μg·g-1 triflumuron in mixed pesticide group. The third instar L. dispar larvae were fed with the poisonous artificial diet for 24 h. Survivors were counted following activity determinations of detoxification enzyme and protective enzyme.【Result】Mortality analysis showed that all larvae of the control group, single abamectin treatment, and single triflumuron treatment survived from this experiment. The mortality of mixed pesticide treatment group was 1.15% at a low concentration, and 4.11% at a high concentration. There was no significant difference between low concentration group and control, but there was significant difference between the high concentration group and control. Detoxification enzyme activities analysis showed that the activities of CarE and GST of larvae treated with abamectin or triflumuron were significantly higher than those of the control group, while there were no significant differences in the enzymes activities between the mixed pesticide treatment and the control group. Protective enzyme activities assay showed that activities of SOD, CAT and PPO of larvae treated with abamectin, triflumuron, and the two combination were higher than those of control group, however POD activities of treated larvae were lower than that of the control. Meanwhile, activities of SOD, POD and CAT of larvae treated with the mixed pesticides were higher than that treated with either single pesticide, while the case for PPO activity was opposite.【Conclusion】It is concluded that the combined effect of abamectin and triflumuron on Lymantria dispar larvae is mainly through inhibiting the activity of the detoxifying enzymes CarE and GST, and supplemented by inhibiting the activities of protective enzymes PPO, so as to improve the toxicity effect.
Key words: combined mechanism    detoxification enzyme    protective enzyme    pesticide    Lymantria dispar    

化学药剂防治是森林有害生物综合治理中有效而直接的急救措施(Jin et al., 2014)。但是在同一地区长时间施用同一种药剂等不科学的农药使用方法,往往使得害虫产生严重的抗药性。而采用作用机制或代谢途径不同的药剂进行合理混用,可以提高防治效果,并且有效地延缓害虫抗药性的产生(张国财, 2013)。

阿维菌素(Abamectin)是一类从阿维链霉菌发酵液中分离提纯的十六元大环内酯类化合物(Barrett et al., 1994),对昆虫、螨类以及线虫具有高效广谱的杀虫活性(Siddique et al., 2015; Xu et al., 2016; Mermans et al., 2017)。通过对阿维菌素母体改造得到多种衍生物(Bai et al., 2016; Ozdemir et al., 2016),其中阿维菌素和甲氨基阿维菌素(Emamectin)被广泛应用于农林业害虫防治,而伊维菌素(Ivermectin)被广泛用于线虫和节肢动物类寄生虫防治(Wei et al., 2018)。阿维菌素进入昆虫体内后,可以通过对γ-氨基丁酸受体(γ-aminobutyric acid, GABAr)的作用,以激动剂的方式引发神经突触膜释放GABA,使得细胞膜Cl-通透性增加,从而导致GABA介导的中枢神经系统以及神经-肌肉传导受阻,引起虫体麻痹,最终致死(Wann, 2010; Zhao et al., 2016; Wei et al., 2018)。

苯甲酰苯基脲(Benzoylphenylurea, BPU)是在除草剂筛选过程中发现的一类具有杀虫活性的物质(Sun et al., 2015),主要作用于昆虫几丁质合成通路,干扰昆虫几丁质合成,导致蜕皮失败、畸形,甚至死亡(Merzendorfer, 2006; 2013)。已发现或合成的BPU类药剂超过1万种,用于商品化生产的BPU类药昆虫生长调节剂有15种(Henriques et al., 2016),其中杀铃脲(Triflumuron)广泛应用于农林业(Chernaki- Leffer et al., 2011; Sagheer et al., 2012)、畜牧业(Waghorn et al., 2013)和卫生害虫(Belinato et al., 2013; Jacups et al., 2014)防治。

在生产实践中采用阿维菌素和杀铃脲联合使用防治舞毒蛾幼虫具有显著的增效作用,但关于二者联合作用增效的机制尚未见报道。本文采用阿维菌素和杀铃脲单剂、复合剂处理3龄舞毒蛾幼虫,测定幼虫解毒酶和保护酶活力,对阿维菌素和杀铃脲联合作用机制进行探究。

1 材料与方法 1.1 试验材料与试剂

舞毒蛾虫卵及饲料购自中国林业科学研究院;阿维菌素和杀铃脲原药购自哈尔滨美望科技发展有限公司;分析纯考马斯亮蓝G-250、无水乙醇、磷酸、氯仿、异丙醇购自天津市永大化学试剂有限公司;生物纯牛血清蛋白购自Beijing Biotopped Science & Technology Co., Ltd;谷胱甘肽-S-转移酶(GST)、羧酸酯酶(CarE)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、多酚氧化酶(PPO)测定试剂盒均购自南京建成生物工程研究所。

1.2 主要仪器与设备

HPG-280H型人工气候培养箱;Adventure AR2130电子分析天平;DK-S14电热恒温水浴锅;ULtrospec 5300 pro紫外分光光度计;MX-F漩涡振荡器;D3024R低温离心机。

1.3 试验方法 1.3.1 舞毒蛾幼虫饲养

舞毒蛾虫卵经10%甲醛溶液浸泡消毒、流水冲洗、室温阴干卵表面后,置于恒温培养箱内25 ℃孵化。孵化的幼虫转接到新的养虫盒内,采用人工饲料饲养。饲养条件:温度25 ℃±1 ℃,相对湿度75%,光照时间16 h·d-1。每天及时更换新鲜饲料,定期清理排泄物和食物残渣。

1.3.2 舞毒蛾亚致死剂量处理

饲料煮熟前在人工饲料中添加不等量的9 000 μg·mL-1阿维菌素丙酮溶液和25 000 μg·mL-1杀铃脲丙酮溶液,分别配制成含有阿维菌素、杀铃脲单剂和复合剂混毒饲料。不同处理组饲料中药剂含量及编号见表 1。挑选大小一致临近蜕皮的3龄健康幼虫饥饿处理12 h后,采用混有杀虫剂的饲料进行饲喂处理,以加入丙酮的饲料作为溶剂对照。24 h后统计死亡率。存活幼虫液氮处理后,置于-75 ℃冰箱保存备用。每处理为30头幼虫,水平重复3次。

表 1 饲料中阿维菌素和杀铃脲含量 Tab.1 Contents of abamectin and triflumuron in the artificial diet
1.3.3 解毒酶和保护酶活力测定

解毒酶CarE、GST和保护酶SOD、POD、CAT、PPO活力测定采用南京建成生物工程研究所试剂盒,按说明书进行测定计算。酶液制备取液氮研磨的舞毒蛾虫体组织0.1 g,按说明书加入生理盐水或提取液后,漩涡振荡抽提2 min,再按说明书要求进行离心,取上清液作为酶液。酶液中组织蛋白含量采用Bradford考马斯亮蓝G-250法进行测定(Bradford, 1976)。

1.4 数据统计分析

数据统计采用SPSS 21.0单因素ANOVA分析进行。试验数据以“平均值±标准误”表示,图表中字母完全不同表示组间差异显著(P<0.05)。

2 结果与分析 2.1 舞毒蛾死亡情况

表 2可知,对照组、阿维菌素和杀铃脲单剂处理舞毒蛾幼虫死亡率为0;低浓度处理组中阿维菌素和杀铃脲复合剂处理的幼虫死亡率为1.15%,与对照组无显著差异;高浓度处理组中阿维菌素和杀铃脲复合剂处理的幼虫死亡率为4.11%,与对照组有显著差异。

表 2 药剂处理24 h舞毒蛾幼虫死亡情况 Tab.2 Mortality of Lymantria dispar at 24 h after drugs treatment
2.2 舞毒蛾解毒酶活力

图 1(A)可知,药剂处理的舞毒蛾幼虫CarE活力均高于对照组,但单剂处理CarE活力相比对照组显著提高,而复合剂处理与对照组无显著差异。对于低浓度处理组,复合剂处理CarE活力比阿维菌素处理下降30.78%,比杀铃脲处理下降29.68%;对于高浓度处理组,复合剂处理CarE活力比阿维菌素处理下降27.97%,比杀铃脲处理下降9.28%。相比单剂处理,阿维菌素和杀铃脲联合作用抑制了舞毒蛾幼虫CarE活力。

图 1 舞毒蛾解毒酶活力 Fig. 1 Detoxification enzyme activities of Lyamntria dispar

图 1(B)可知,药剂处理的舞毒蛾幼虫GST活力均高于对照组,但单剂处理的舞毒蛾幼虫GST活力相比对照组显著提高,而复合剂处理GST活力与对照组无显著差异。对于低浓度处理组,复合剂处理GST活力比阿维菌素处理下降24.24%,比杀铃脲处理下降15.81%;对于高浓度处理组,复合剂处理CarE活力比阿维菌素处理下降20.52%,比杀铃脲处理下降23.77%。相比单剂处理,阿维菌素和杀铃脲联合作用抑制了舞毒蛾幼虫GST活力。

2.3 舞毒蛾保护酶活力

图 2(A)可知,药剂处理的舞毒蛾幼虫SOD活力均高于对照组,但阿维菌素处理与对照组无显著差异,杀铃脲处理和复合剂处理与对照组有显著差异,对于低浓度处理组,复合剂处理SOD活力比阿维菌素处理提高27.43%,比杀铃脲处理下降16.79%;在高浓度处理组,复合剂处理SOD活力比阿维菌素处理提高9.43%,比杀铃脲处理提高5.42%。相比单剂处理,阿维菌素和杀铃脲联合作用提高了舞毒蛾幼虫SOD活力。

图 2 舞毒蛾保护酶活力 Fig. 2 Protective enzyme activities of Lyamntria dispar

图 2(B)可知,药剂处理的舞毒蛾幼虫POD活力均低于对照组,但除了高浓度组中阿维菌素处理组外,均与对照组无显著差异。在低浓度处理组,复合剂处理POD活力比阿维菌素处理提高2.43%,比杀铃脲处理提高0.59%;在高浓度处理组,复合剂处理POD活力比阿维菌素处理提高7.06%,比杀铃脲处理提高0.61%。相比单剂处理,阿维菌素和杀铃脲联合作用提高了舞毒蛾幼虫POD活力。

图 2(C)可知,药剂处理的舞毒蛾幼虫CAT活力均高于对照组,但低浓度处理组与对照组有显著差异,而高浓度处理组与对照组无显著差异。对于低浓度处理组,复合剂处理CAT活力比阿维菌素处理提高5.88%,比杀铃脲处理提高17.42%;对于高浓度处理组,复合剂处理CAT活力比阿维菌素处理提高8.11%,比杀铃脲处理提高11.08%。相比单剂处理,阿维菌素和杀铃脲联合作用提高了舞毒蛾幼虫CAT活力。

图 2(D)可知,药剂处理的舞毒蛾幼虫PPO活力均高于对照组。对于低浓度处理组,复合剂处理PPO活力比阿维菌素处理下降42.26%,比杀铃脲处理下降25.06%;对于高浓度处理组,复合剂处理PPO活力比阿维菌素处理下降7.50%,比杀铃脲处理下降3.24%。相比单剂处理,阿维菌素和杀铃脲联合作用抑制了舞毒蛾幼虫PPO活力。

3 讨论

农药混用是指将2种或2种以上农药混合使用进行病虫害防治的方法,是生产实践中常用的一种用药方式,也是一种增强防治效果、延缓害虫抗药性产生的有效途径。比如阿维菌素与Monepantel混用可以有效地增加捻转血矛线虫(Haemonchus contortus)对药剂的敏感性,降低其抗药性(Kotze et al.,2018)。同时通过农药混用还可以降低药剂费用、提高经济效益。但是并非任意农药均可以进行混合使用。在进行农药混用时,需要综合考虑农药混配后对彼此的理化性质、对病虫害的药效和对保护植株的影响情况。不科学的农药混用可能产生拮抗作用,甚至对保护植株造成负面影响。比如有机磷酸酯类、氨基甲酸酯类、拟除虫菊酯类杀虫剂在碱性条件下会分解失效,因此不能与碱性农药进行混用;石硫合剂和波尔多液2种碱性杀菌剂如果混用也会因为复分解反应产生多硫化铜,不仅失去药效,同时容易产生药害(张国财, 2013);杀铃脲与嘧菌酯、环丙唑醇、氧化锌、硫酸锰混用,不仅对草地贪夜蛾防治效果无益,还对植株的呼吸作用和光合作用有着显著的抑制作用(Zandonadi et al.,2017)。在不产生负作用的条件下,农药混用多选用作用机制不同、作用速度不同或杀虫谱不同的药剂进行混用,以达到提高防治效果的目的。在农药混用水平成为一个国家农药加工和使用水平高低标志之一的时代,农药混用吸引了广大科研工作者的研究兴趣,但绝大多数关于农药混用的研究都只关注农药混用剂型的开发(庾琴等, 2013; 杨超, 2016; 崔博等, 2017)和农药混用的防治效果(Wanna et al.,2012; 沈登荣等, 2017),而对农药混用的联合作用机制关注较少。

阿维菌素属神经性毒剂,作用效果相对迅速。杀铃脲属于昆虫生长调节剂,作用时间相对缓慢。阿维菌素和杀铃脲混用是典型的作用机制不同且作用速度不同的2种农药混用。本文采用阿维菌素和杀铃脲对舞毒蛾幼虫进行联合处理,研究了阿维菌素和杀铃脲对舞毒蛾幼虫的联合作用机制,结果表明:阿维菌素和杀铃脲单剂处理、复合剂处理的舞毒蛾幼虫CarE和GST活力均高于对照组,说明CarE和GST是舞毒蛾幼虫体内应对阿维菌素和杀铃脲胁迫的重要解毒酶。但单剂处理CarE和GST活力显著高于对照组,而复合剂处理与对照组无显著差异,说明阿维菌素和杀铃脲联合作用可以抑制舞毒蛾幼虫CarE和GST活力。阿维菌素和杀铃脲单剂处理及复合剂处理的舞毒蛾幼虫SOD、CAT和PPO活力均高于对照组,而POD活力均低于对照组,说明SOD、CAT和PPO是舞毒蛾幼虫体内应对阿维菌素和杀铃脲胁迫的重要保护酶。但复合剂处理SOD、POD和CAT活力均高于单剂处理,而复合剂处理PPO活力则均低于单剂处理。说明阿维菌素和杀铃脲复合剂处理可以抑制舞毒蛾幼虫PPO活力。另外研究发现SOD作为保护酶,在应对阿维菌素、杀铃脲单剂处理和复合剂处理胁迫中表现了比POD、CAT更强的保护作用,笔者计划在下一步的研究中,从舞毒蛾SOD分型功能、SOD基因时空表达和SOD对不同胁迫环境的应答的角度,对舞毒蛾SOD在胁迫应答过程中扮演的角色进行深入研究。

4 结论

阿维菌素和杀铃脲联合作用主要是通过抑制舞毒蛾幼虫解毒酶CarE和GST活力,再辅以抑制保护酶PPO活力,从而提高阿维菌素和杀铃脲对舞毒蛾幼虫的毒杀效果。

参考文献(References)
崔博, 王春鑫, 吕妍, 等. 2017. 两种杀虫剂复配的固体纳米分散体的增效研究. 中国生物防治学报, 33(6): 760-766.
(Cui B, Wang C X, Lü Y, et al. 2017. Synergistic effect of mixing solid nanodispersions of two insecticides. Chinese Journal of Biological Control, 33(6): 760-766. [in Chinese])
沈登荣, 何超, 赵远艳, 等. 2017. 多杀菌素与4种杀虫剂复配对西花蓟马的联合毒力. 江苏农业科学, 45(23): 91-93.
(Shen D R, He C, Zhao Y Y, et al. 2017. The combined toxicity of spinosad and four insecticides to western flower thrips. Jiangsu Agricultural Sciences, 45(23): 91-93. [in Chinese])
杨超.2016.防治粘虫(Mythimna separata)和豆蚜(Aphis cracivora)的杀虫剂增效复配研究.上海: 华东理工大学硕士学位论文.
(Yang C. 2016. Study on synergistic combination of insecticides for controlling Mythimna separata and Aphis cracivora larvae.Shanghai: MS thesis of East China University of Science and Technology. [in Chinese])
庾琴, 王振, 封云涛, 等. 2013. 不同杀虫剂对苹果黄蚜的毒力及复配研究. 植物保护, 39(3): 178-181.
(Yu Q, Wang Z, Feng Y T, et al. 2013. Toxicity test of different pesticides and their mixed formulation against Aphis citricola. Plant Protection, 39(3): 178-181. DOI:10.3969/j.issn.0529-1542.2013.03.036 [in Chinese])
张国财. 2013. 森林有害生物防治. 哈尔滨: 黑龙江科学技术出版社.
(Zhang G C. 2013. Forest Pest Management. Harbin: Heilongjiang Science and Technology Press. [in Chinese])
Bai S H, Ogbourne S. 2016. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere, 154: 204-214. DOI:10.1016/j.chemosphere.2016.03.113
Barrett K, Grandy N, Harrison E. 1994.Guidance document on regulatory testing procedures for pesticides and non-target arthropods: from the ESCORT workshop (European standard characteristics of beneficials regulatory testing).IAC Wageningen, The Netherlands, 28-30.
Belinato T A, Martins A J, Lima J B P, et al. 2013. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions. Parasites & Vectors, 6(1): 83.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1): 248-254.
Chernaki-Leffer A M, Soso-Gomez D R, Almeida L M, et al. 2011. Susceptibility of Alphitobius diaperinus (Panzer) (Coleoptera, Tenebrionidae) to cypermethrin, dichlorvos and triflumuron in southern Brazil. Revista Brasileira De Entomologia, 55(1): 125-128. DOI:10.1590/S0085-56262011000100020
Henriques B S, Genta F A, Mello C B, et al. 2016. Triflumuron effects on the physiology and reproduction Ofrhodnius prolixus adult females. BioMed Research International, (2): 1-11.
Jacups S P, Paton C J, Ritchie S A. 2014. Residual and pre-treatment application of starycide insect growth regulator (triflumuron) to control Aedes aegypti in containers. Pest Management Science, 70(4): 572-575. DOI:10.1002/ps.2014.70.issue-4
Jin T, Lin Y, Jin Q, et al. 2014. Sublethal effect of avermectin and acetamiprid on the mortality of different life stages of Brontispa longissima (Gestro) (Coleoptera: Hispidae) and its larvae parasitoid Asecodes hispinarum Bouček (Hymenoptera: Eulophidae). Crop Protection, 58: 55-60. DOI:10.1016/j.cropro.2013.12.025
Kotze A C, Ruffell A, Lamb J, et al. 2018. Response of drug-susceptible and -resistant Haemonchus contortus larvae to monepantel and abamectin alone or in combination in vitro. Vet Parasitol, 249: 57-62. DOI:10.1016/j.vetpar.2017.11.007
Mermans C, DermauwW, Geibel S, et al. 2017. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. Pest Management Science, 73(12): 2413-2418. DOI:10.1002/ps.2017.73.issue-12
Merzendorfer H. 2006. Insect chitin synthases: a review. Journal of Comparative Physiology B, 176(1): 1-15.
Merzendorfer H. 2013. Chitin synthesis inhibitors: old molecules and new developments. Insect Science, 20(2): 121-138. DOI:10.1111/j.1744-7917.2012.01535.x
Ozdemir N, Kahraman T. 2016. Rapid confirmatory analysis of avermectin residues in milk by liquid chromatography tandem mass spectrometry. Journal of Food & Drug Analysis, 24(1): 90-94.
Sagheer M, Yasir M, Mansoor H, et al. 2012. Impact of triflumuron on reproduction and development of red flour beetle, Tribolium castaneum (herbst) (Coleoptera: Tenebrionidae). Pakistan Journal of Agricultural Sciences, 49(2): 173-178.
Siddique S, Syed Q, Saleem Y, et al. 2015. Toxicity of avermectin B1b to earthworm and cockroaches. Journal of Animal & Plant Sciences, 25(3): 844-850.
Sun R, Liu C, Zhang H, et al. 2015. Benzoylurea chitin synthesis inhibitors. Journal of Agricultural and Food Chemistry, 63(31): 6847-6865. DOI:10.1021/acs.jafc.5b02460
Waghorn T S, McKay C H, Heath A C. 2013. The in vitro response of field strains of sheep blowflies Lucilia sericata and L. cuprina (Calliphoridae) in New Zealand to dicyclanil and triflumuron. New Zealand Veterinary Journal, 61(5): 274-280. DOI:10.1080/00480169.2012.760400
Wann K T. 2010. The cellular actions of the avermectins. Phytotherapy Research, 1(4): 143-150.
Wanna R, Xu Z H, Yu H X. 2012. Bioefficacy of a mixed biocide BtA against Helicoverpa armigera (Lepidoptera: Noctuidae) and its contact toxicity to pupae and adults of parasitoid Microplitis mediator (Hymenoptera: Braconidae). Acta Entomologica Sinica, 55(8): 941-949.
Wei P, Che W, Wang J, et al. 2018. RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci. Pesticide Biochemistry and Physiology, 145: 1-7. DOI:10.1016/j.pestbp.2017.12.004
Xu Z, Shi L, Peng J, et al. 2016. Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology, 129: 75-82. DOI:10.1016/j.pestbp.2015.10.021
Zandonadi C H S, Alves T C, Silva S M. 2017. Tank mixture of pesticides for Spodoptera frugiperda control in maize with triflumuron. Bioscience Journal, 33(1): 31-40.
Zhao Y, Sun Q, Hu K, et al. 2016. Isolation, characterization, and tissue-specific expression of GABA A receptor α1 subunit gene of Carassius auratus gibelio after avermectin treatment. Fish Physiology and Biochemistry, 42(1): 83-92.