文章信息
- 王舒甜, 张金池, 郑丹扬, 王金平, 李伟强
- Wang Shutian, Zhang Jinchi, Zheng Danyang, Wang Jinping, Li Weiqiang
- 钟山风景区土壤环境对人为踩踏扰动的响应
- Impacts of Recreational Human Trampling on Soil Properties in Zhongshan Scenic Park
- 林业科学, 2017, 53(8): 9-16.
- Scientia Silvae Sinicae, 2017, 53(8): 9-16.
- DOI: 10.11707/j.1001-7488.20170802
-
文章历史
- 收稿日期:2016-10-25
- 修回日期:2017-07-05
-
作者相关文章
随着旅游业迅速发展,各类风景区开发数量以及游客人数急剧增长,多人次旅游活动造成的干扰将一定程度影响风景区的宏观自然资源和微观生态环境(Lucas-Borja et al., 2011;谭红妍等,2014)。如今,踩踏作为旅游活动对生态系统最主要的干扰形式之一(Ceballos-Lascurain,1998),已成为环境与旅游发展的重点;而土壤作为对踩踏反应较为敏感的环境因子和生态系统的重要组成部分,对土壤生态系统及生长在其上的植被生态系统的生存有重要影响,对维系风景区生态系统的健康与稳定有重要作用(李鹏,2012)。
人为踩踏首先改变土壤紧实度,致使土壤物理性质发生变化,进而影响土壤其他性状。近年来,有关踩踏对土壤环境影响的研究调查样地多集中在山地景区(Hiltbrunner et al., 2012;汪洪旭,2014;张淑花等,2011)、湿地(王立龙等,2013;朱芳等,2015)及特殊气候区(Lemauviel et al., 2003;Talbot et al., 2003),对普通旅游区的土壤环境影响研究较少。另外,研究多集中在土壤物理性质及有机质变化等方面,对踩踏引起土壤化学成分及土壤酶活性改变的研究较少,且研究结论不甚一致。
本研究以钟山风景区为研究对象,探讨不同旅游干扰强度对土壤理化性质、土壤养分及土壤酶活性等指标的影响,以期为风景区的生态旅游规划与管理提供依据。
1 研究区概况钟山风景区位于南京城区东北部(118°81′—118°88′E, 32°04′—32°09′N)。属亚热带湿润气候,年降水量900~1 000 mm,年均气温15.7 ℃,全年无霜期233天。土壤属黄棕壤和黄褐土,呈酸性或微酸性,pH小于5.5,剖面层次较为明显,土质较为黏重。风景区植物资源丰富,种类繁多,森林覆盖率达67.8%,是落叶阔叶林与常绿阔叶林混合生长地区,以麻栎(Quercus acutissima)、枫香(Liquidambar formosana)、青冈(Cyclobalanopsis glauca)、石楠(Photinia serrulata)和冬青(Ilex chinensis)等阔叶林为主,自然景观丰富优美,盛名享誉世界,每年接待游客数百万人次。
2 研究方法 2.1 样方设置及土样采集已有研究(石强等,2002;钟林生等,2008)表明,游客对景区土壤的影响主要集中在距游道外缘3 m范围内,超过3 m土壤各指标变化不明显。因此,本研究选取3条宽度约为3 m的游道,在每条游道的垂直方向上设置1条7 m×1 m的调查样带,在每条样带上均选择3个1 m×1 m样方,其中,高强度干扰样方距游道边缘1 m处,踩踏厉害,地表无落叶杂草与其他灌木;中等强度干扰样方距游道边缘3 m处,人类活动较少,地面覆盖少量灌木及杂草;对照区距游道边缘7 m,地被层生长旺盛,人未踏及,或者植被自然恢复能力大于人为干扰。
每个样方分别取0~5,5~15和15~25 cm土层土样。每个样方3点取土,每点每层取500 g土壤,去除可见的未分解和半分解的动植物残体和较大石砾,置于室内自然风干、过筛,以供土壤理化性质分析及土壤酶活性测定。
2.2 土壤理化性质测定土壤密度、孔隙度等物理性质采用环刀法测定;105~110 ℃烘干土壤至恒质量测定土壤含水量,各物理性质的测定参照中华人民共和国林业行业标准《森林土壤分析方法》。pH采用电位法测定;有机质、有机碳含量采用重铬酸钾氧化-外加热法测定;土壤全氮、速效磷含量分别采用半微量凯氏法、盐酸-硫酸浸提法测定;脲酶活性采用苯酚钠-次氯酸钠比色法测定;酸性磷酸酶活性采用磷酸苯二钠比色法测定;蔗糖酶活性采用3, 5-二硝基水杨酸比色法测定;过氧化氢酶活性采用高锰酸钾滴定法测定(关松荫,1986)。
2.3 土壤综合质量指数计算 2.3.1 评价指标权重的确定土壤各指标因子对土壤质量的作用不同,通常用权重表示其重要性程度及贡献度。为克服人为因素影响,采用因子分析法计算主成分的方差贡献率,并对该指标在各主成分线性组合中的系数进行加权平均,以确定权重(刘世平等,2008;吴玉红等,2010)。具体计算步骤为:1) 计算指标在各主成分线性组合中的系数,其中指标系数为因子负荷量与特征根开方的比值;2) 计算主成分方差贡献率,方差贡献率越大则该主成分的重要性越强,即方差贡献率可以看成是不同主成分的权重;3) 对各指标系数进行归一化处理以确定其权重。
2.3.2 评价指标隶属度的确定隶属度用于描述客观事物的模糊界限,可用隶属函数来表达。由于各评价指标的实际取值范围不同,隶属函数可以将各评价转变为0~1的无量纲值即隶属度,以实现对各土壤指标的量纲归一化(吴艳军,2014)。大多数指标因子对土壤质量的影响呈“S”形曲线或抛物线型。其中,土壤质量含水量、孔隙度、持水量、有机质、全氮、速效磷及土壤酶为“S”形,见(1) 式,土壤密度、pH为抛物线型(公式2):
$ F\left(x \right) = \left\{ \begin{array}{l} 1.0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \ge {x_2}\\ 0.9\left({x - {x_1}} \right)/\left({{x_2} - {x_1}} \right)\;\;\;\;\;{x_1} < x < {x_2}\\ 1.0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x < {x_1} \end{array} \right. $ | (1) |
$ F\left(x \right) = \left\{ \begin{array}{l} 0.9\left({{x_4} - x} \right)/\left({{x_4} - {x_3}} \right) + 0.1{\rm{ }}\;\;\;\;\;\;\;\;\;{x_3} < x \le {x_4}\\ 1.0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{x_2} < x \le {x_3}\\ 0.9\left({x - {x_1}} \right)/\left({{x_2} - {x_1}} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{x_1} \le x < {x_2}\\ 0.1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x < {x_1}\;\;{\rm{or}}\;\;x > {x_4} \end{array} \right. $ | (2) |
式中:F(x)为隶属函数;x为评价指标的实际测定值;x1、x2、x3和x4分别为评价指标的临界值。
2.3.3 土壤综合质量指数的确定根据加法合成原则,将各土壤因子隶属度值进行加权求和,计算土壤综合质量指数,以判断该样地土壤质量受干扰的程度。计算公式如下:
$ {\rm{SIQI}} = \sum\limits_{i = 1}^{n - 1} {{W_i}{N_i}} {\rm{ }}。$ | (3) |
式中:SIQI为土壤综合质量指数;Wi和Ni分别为第i指标的权重和隶属度值。
2.4 数据处理采用Excel进行数据处理,对不同干扰强度下土壤各指标采用单因素方差分析(one way ANOVA),其差异性检验采用最小二乘法(LSD),显著性水平为P < 0.05。利用多元统计的因子分析和主成分分析确定各指标因子的权重以表征样地的土壤质量。所有统计检验均用SPSS 19.0软件完成,其余图均在Origin 8.5软件内完成。
3 结果与分析 3.1 土壤物理性质由表 1可知:同一土层下,随干扰强度增加,土壤密度逐渐变大,但各处理差异不显著;与CK相比,0~5 cm土层土壤总孔隙度、非毛管孔隙度显著降低,中等强度干扰分别降低了28.76%和60.56%,高强度干扰分别降低了31.20%和62.11%(P < 0.05);同一干扰强度下,随土层加深,土壤密度呈先下降后上升的趋势,土壤孔隙度则相反;同一土层下,随干扰强度增加,土壤持水量呈递减趋势。同一干扰强度下,中等强度干扰和高强度干扰土壤持水量均以5~15 cm土层土最高,0~5 cm土层最低,且5~15和15~25 cm土层间差异不显著。
![]() |
不同干扰强度各土层土壤含水量差异均不显著,整体变化趋势与土壤持水量类似。同一土层下,随干扰强度增加,土壤pH逐渐增加,但各处理差异不显著。中等强度干扰和高强度干扰0~5 cm土层土壤pH最高,分别为5.08和5.12。与CK相比,中等强度干扰和高强度干扰0~5 cm土层土壤有机质含量显著降低(P < 0.05),分别降低了32.09%和33.76%。与CK相比,中等强度干扰和高强度干扰0~5 cm土层土壤全氮和速效磷含量均显著降低(P < 0.05),其中,中等强度干扰分别下降了47.11%和40.10%,高强度干扰分别下降了52.42%和47.90%;与中等强度干扰相比,高强度干扰全氮含量降低幅度不显著,仅为7.59% ~10.04%。同一干扰强度下,随土层加深,土壤全氮和速效磷含量呈先上升后下降的趋势,且5~15和15~25 cm土层间差异均不显著。随干扰强度增加,土壤碳氮比增加,有机质分解变差,CK样方土壤碳氮比较低,腐殖质易分解,但不同干扰强度各土层碳氮比差异均不显著(表 2)。
![]() |
由图 1可知,同一土层下,与CK相比,中等强度干扰和高强度干扰0~5 cm土层土壤脲酶活性显著降低了65.71%和74.29%(P < 0.05)。同一干扰强度下,5~15 cm土层土壤脲酶活性高于15~25 cm土层,但各土层差异不显著。
![]() |
图 1 不同旅游干扰强度对土壤酶活性的影响 Fig.1 Effects of different degrees of tourist disturbance on enzymatic activity of sample soil |
同一土层下,与CK相比,中等强度干扰和高强度干扰0~5 cm土层土壤酸性磷酸酶活性降低了21.90%和29.52%;且土壤酸性磷酸酶活性降低幅度小于土壤脲酶。同一干扰强度下,随土层加深,土壤磷酸酶活性呈先上升后下降的趋势,但各土层差异均不显著。
同一土层下,与CK相比,0~5和5~15 cm土层土壤蔗糖酶活性均显著降低,其中,中等强度干扰分别降低了81.12%和43.50%,高强度干扰分别降低了81.97%和60.66%;且样方土壤蔗糖酶活性降低幅度均大于土壤脲酶和土壤酸性磷酸酶。随土层加深,CK土壤蔗糖酶活性逐渐下降,中等强度干扰和高强度干扰土壤蔗糖酶活性均呈先上升后下降的趋势。
同一土层下,与CK相比,中等强度干扰和高强度干扰0~5 cm土层土壤过氧化氢酶活性显著降低了32.05%和33.97%(P < 0.05);且样方土壤过氧化氢酶活性降低幅度大于磷酸酶,小于脲酶和蔗糖酶。
3.4 土壤质量综合评价通过式(1) 和(2) 计算土壤各指标因子的隶属值(表 3),再根据表 4和表 5的特征根及因子负荷量计算各指标的权重,最后根据式(3) 确定土壤综合质量指数。
![]() |
![]() |
![]() |
从图 2可以看出:同一土层下,随干扰强度增加,土壤质量逐渐下降,其中高强度干扰样方0~5 cm土层土壤质量最差,与CK相比,分别下降了85.50%和76.42%;随土层加深,中等强度干扰和高强度干扰土壤质量呈先上升后下降的趋势;CK作为对照样方,0~5 cm土层土壤质量指数最好,为0.899,随土层加深,土壤质量逐渐下降。
![]() |
图 2 不同干扰强度土壤综合质量指数 Fig.2 Effects Soil integrated quality index of different degrees of tourist disturbance |
研究表明,随干扰强度的增加,土壤pH逐渐增加,但差异不显著(Sarah et al., 2007;Malmivaara-Lämsä et al., 2008)。这主要是由于踩踏减少景区植被数量和覆盖面积,加剧土壤板结,导致水土流失,其中一部分有机酸和无机酸随之流失,土壤碱性增强(Schmidt et al., 2011)。土壤压实,单位体积内土壤固体成分增加,土壤孔隙度减少,渗透性降低,盐基离子淋溶作用的减弱,也可能导致土壤pH上升。
随干扰强度增加,土壤通气性减弱,土壤动物、微生物数量及其活动速率降低,有机质的输出速率减慢,同时地表枯落物和植物根系的减少引起植物归还量减少,最终降低土壤有机质含量(陆林等,2011)。土壤有机质的有机态含氮化合物中储藏了大部分土壤中的氮素,土壤氮的输出主要依赖于有机质的分解,且有机质通过增加磷酸酶活性减少磷的吸附和固定,从而活化土壤中的磷,丰富磷库,因此土壤全氮、速效磷含量变化取决于土壤有机质含量变化(Grieve,2001;Mekuria et al., 2007;孟庆华等,2007;陈芙蓉等,2012)。从土壤垂直结构来看,土壤养分主要来源于枯落物、植物根系、土壤动物及其残体以及土壤微生物的分泌,枯落物分布在土壤表层,植物根系主要分布在0~20 cm土层中。随土层加深,植物根系和微生物数量的减少直接影响土壤有机质的来源,但由于踩踏对表层土壤影响最为直接,对表下层土壤影响逐渐减弱,因此干扰区土壤养分呈先上升后下降的趋势。
研究表明,与CK相比,中等强度干扰和高强度干扰样方0~5 cm土层土壤脲酶活性显著降低,说明踩踏降低土壤的供氮水平和土壤氮素的利用率,减缓土壤氮素循环致使土壤质量下降(Wang et al., 2011)。随干扰强度增加,土壤磷酸酶、蔗糖酶和过氧化氢酶活性均逐渐降低。磷酸酶作为评价土壤生物活性和磷素供应的指标与土壤速效磷呈显著正相关(r=0.745**),且磷酸酶活性越高速效磷转化速率越大(杨邦俊等,1990;司登宇,2013;舒媛媛等,2016)。蔗糖酶活性反映了土壤有机碳的分解与转化,为土壤提供可溶性营养物质。土壤过氧化氢酶与土壤微生物密切相关可在一定程度上反映土壤生物化学反应过程的强度(Frankenberger,1983)。由于土壤酶类与土壤有机质等养分含量密切相关,有机质含量的减少会降低土壤全氮量,进而影响土壤脲酶、蔗糖酶等一系列酶活性,协同降低土壤速效磷的转化速率,减少其含量。
5 结论踩踏降低土壤含水量、持水量和孔隙度,除土壤密度和碳氮比增加外,土壤养分和土壤酶活性也有不同程度的降低,且随着土层加深,土壤养分及土壤酶含量大致呈现先上升后下降的趋势,说明人为踩踏对钟山风景区土壤的影响效应明显,游道边缘踩踏强度大,土壤基本裸露,表层土壤过于紧实,植物根系难以深入,致使表层土壤质量较差,而表下层土和深层土影响不大。有机质、全氮和蔗糖酶的土壤权重值最大,说明该指标对土壤质量的贡献度最大,可表征风景区土壤健康状况。总之,人为踩踏已经严重影响到风景区的土壤质量和生态效应,可通过土壤酶活性和有机质含量来动态监测景区土壤肥力,同时时空调控游客数量来控制生态环境容量,从而保证景区的可持续发展和景观效益。
[] |
陈芙蓉, 程积民, 刘伟, 等. 2012. 不同干扰对黄土区典型草原土壤理化性质的影响. 水土保持学报, 26(2): 105–110.
( Chen F R, Cheng J M, Liu W, et al. 2012. Effects of different disturbances on soil physical and chemical properties in the typical grassland of Loess Region. Journal of Soil and Water Conservation, 26(2): 105–110. [in Chinese] ) |
[] |
关松荫. 1986. 土壤酶及其研究法. 北京, 中国农业出版社.
( Guan S Y. 1986. Soil enzyme and its research method. Beijing, China Agriculture Press. [in Chinese] ) |
[] |
李鹏, 濮励杰, 章锦河. 2012. 旅游活动对土壤环境影响的国内研究进展. 地理科学进展, 31(8): 1097–1105.
( Li P, Pu L J, Zhang J H. 2012. The influence of tourist activities on soil environment:an overview of research progress in China. Progress in Geography, 31(8): 1097–1105. DOI:10.11820/dlkxjz.2012.08.014 [in Chinese] ) |
[] |
刘世平, 陈后庆, 聂新涛, 等. 2008. 稻麦两熟制不同耕作方式与秸秆还田土壤肥力的综合评价. 农业工程学报, 24(5): 51–56.
( Liu S P, Chen H Q, Nie X T, et al. 2008. Comprehensive evaluation of tillage and straw returning on soil fertility in a wheat-rice double cropping system. Transactions of the Chinese Society of Agricultural Engineering, 24(5): 51–56. [in Chinese] ) |
[] |
陆林, 巩劼, 晋秀龙. 2011. 旅游干扰对黄山风景区土壤的影响. 地理研究, 30(2): 209–223.
( Lu L, Gong J, Jin X L. 2011. Impacts of tourist disturbance on soil in Huangshan Mountain scenic area. Geographical Research, 30(2): 209–223. [in Chinese] ) |
[] |
孟庆华, 李根英. 2007. 山东主要土类有机质及其与供磷特性的关系. 土壤通报, 38(1): 25–28.
( Meng Q H, Li G Y. 2007. Soil organic matter as related to p releasing properties in different types of soil in Shandong Province. Chinese Journal of Soil Science, 38(1): 25–28. [in Chinese] ) |
[] |
石强, 雷相东, 谢红政. 2002. 旅游干扰对张家界国家森林公园土壤的影响研究. 四川林业科技, 23(3): 28–33.
( Shi Q, Lei X D, Xie H Z. 2002. Tourism impacts on soil in Zhangjiajie National Forest Park. Journal of Sichuan Forestry Science and Technology, 23(3): 28–33. [in Chinese] ) |
[] |
舒媛媛, 黄俊胜, 赵高卷, 等. 2016. 青藏高原东缘不同树种人工林对土壤酶活性及养分的影. 生态学报, 36(2): 394–402.
( Shu Y Y, Huang J S, Zhao G J, et al. 2016. Effects of afforestation with different tree species on soil enzyme activities and nutrient content in eastern Qinghai Tibetan Plateau, China. Acta Ecologica Sinica, 36(2): 394–402. [in Chinese] ) |
[] |
司登宇. 2013. 凤阳山不同林分类型土壤生物活性研究. 南京: 南京林业大学硕士学位论文. ( Si D Y. 2013. Study on soil biological activity of different forest types in Fengyang Mountain. Nanjing: MS thesis of Nanjing Forestry University.[in Chinese]) http://cdmd.cnki.com.cn/Article/CDMD-10298-1013046268.htm |
[] |
谭红妍, 陈宝瑞, 闫瑞瑞, 等. 2014. 草地土壤微生物特性及其对人为干扰响应的研究进展. 草地学报, 22(6): 1163–1170.
( Tan H Y, Chen B R, Yan R R, et al. 2014. Advances on soil microbiological characteristics of grassland ecosystems and its response to human disturbances. Acta Agrectir Sinica, 22(6): 1163–1170. DOI:10.11733/j.issn.1007-0435.2014.06.003 [in Chinese] ) |
[] |
汪洪旭. 2014. 旅游干扰对九宫山景区土壤养分、微生物群落结构及酶活性的影响. 山东农业大学学报:自然科学版(5): 735–740.
( Wang H X. 2014. Influence of tourism disturbance on the soil nutrition, microbial community structure and its enzyme activity of the Jiugong Mountain national natural landscape protection zone. Journal of Shandong Agricultural University:Natural Science Edition(5): 735–740. [in Chinese] ) |
[] |
王立龙, 陆林. 2013. 旅游干扰对太平湖国家湿地公园土壤酶活性及大型土壤动物分布的影响. 湿地科学, 11(2): 212–218.
( Wang L L, Lu L. 2013. Effects of tourism disturbances on activities of soil enzymes and soil macrofauna in Taiping Lake National Wetland Park. Wetland Science, 11(2): 212–218. [in Chinese] ) |
[] |
吴艳军. 2014. 旅游活动和不同土地利用方式对五台山自然保护区土壤理化性质的影响. 山西: 山西农业大学硕士学位论文. ( Wu Y J. 2014. Impacts of tourist activity and different land use patterns on the physical and chemical properties of soil in Mount Wutai Meadow Nature Reserve. Shanxi:MS thesis of Shanxi Agricultural University.[in Chinese]) http://cdmd.cnki.com.cn/Article/CDMD-10113-1014413801.htm |
[] |
吴玉红, 田霄鸿, 南雄雄, 等. 2010. 基于因子和聚类分析的保护性耕作土壤质量评价研究. 中国生态农业学报, 18(2): 223–228.
( Wu Y H, Tian X H, Nan X X, et al. 2010. Evaluation of soil quality under conservation tillage via factor and cluster analyses. Chinese Journal of Eco-Agriculture, 18(2): 223–228. [in Chinese] ) |
[] |
杨邦俊, 向世群. 1990. 有机肥对紫色水稻土磷酸酶活性及磷素转化作用的影响. 土壤通报(3): 108–110.
( Yang B J, Xiang S Q. 1990. Studies on the effect of Organic fertilizer on phosphatase activity and phosphorus removal on purple paddy soil. Chinese Journal of Soil Science(3): 108–110. [in Chinese] ) |
[] |
张淑花, 赵美微, 张雪萍. 2011. 旅游干扰对二龙山风景区土壤和植被的影响. 土壤通报(3): 523–527.
( Zhang S H, Zhao M W, Zhang X P. 2011. Effects of tourism disturbance on soil and vegetation in Erlong Mountain Scenic Region. Chinese Journal of Soil scien(3): 523–527. [in Chinese] ) |
[] |
钟林生, 柴江豪, 谢婷, 等. 2008. 旅游活动对黄石寨景区步道的影响评估. 地理研究, 27(5): 1071–1077.
( Zhong L S, Chai J H, Xie T, et al. 2008. Assessment on trail impacts by tourism activities in Huangshizhai scenic spot of Zhangjiajie National Forest Park. Geographical Research, 27(5): 1071–1077. [in Chinese] ) |
[] |
朱芳, 白卓灵. 2015. 旅游干扰对鄱阳湖国家湿地公园植被及土壤特性的影响. 水土保持研究, 22(3): 33–39.
( Zhu F, Bai Z L. 2015. Impacts of tourist disturbance on soil and plant properties of Poyang Lake National Wetland Park. Research of Soil and Water Conservation, 22(3): 33–39. [in Chinese] ) |
[] | Ceballos-Lascurain H. 1998. Tourism, ecotourism, and protected areas:the state of nature-based tourism around the world and guidelines for its development. Geographical Journal, 164(3): 349. |
[] | Frankenberger W T, Dick W A. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47(5): 945–951. DOI:10.2136/sssaj1983.03615995004700050021x |
[] | Grieve I C. 2001. Human impacts on soil properties and their implications for the sensitivity of soil systems in Scotland. Catena, 42(2): 361–374. |
[] | Hiltbrunner D, Schulze S, Hagedorn F, et al. 2012. Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma, 170: 369–377. DOI:10.1016/j.geoderma.2011.11.026 |
[] | Lemauviel S, Rozé F. 2003. Response of three plant Communities to trampling in a sand dune system in Brittany (France). Environmental Management, 31(2): 227–235. DOI:10.1007/s00267-002-2813-5 |
[] | Lucas-Borja M E, Bastida F, Moreno J L, et al. 2011. The effects of human trampling on the microbiological properties of soil and vegetation in mediterranean mountain areas. Land Degradation & Development, 22(4): 383–394. |
[] | Malmivaara-Lämsä M, Hamberg L, Haapamäki E, et al. 2008. Edge effects and trampling in boreal urban forest fragments-impacts on the soil microbial community. Soil Biology & Biochemistry, 40(7): 1612–1621. |
[] | Mekuria W, Veldkamp E, Haile M, et al. 2007. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. Journal of Arid Environments, 69(2): 270–284. DOI:10.1016/j.jaridenv.2006.10.009 |
[] | Sarah P, Zhevelev H M. 2007. Effect of visitors' pressure on soil and vegetation in several different micro-environments in urban parks in Tel Aviv. Landscape & Urban Planning, 83(4): 284–293. |
[] | Schmidt M W, Torn M S, Abiven S, et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478(7367): 49–56. DOI:10.1038/nature10386 |
[] | Talbot L M, Turton S M, Graham A W. 2003. Trampling resistance of tropical rainforest soils and vegetation in the wet tropics of north east Australia. Journal of Environmental Management, 69(1): 63–69. DOI:10.1016/S0301-4797(03)00119-1 |
[] | Wang M, Markert B, Shen W, et al. 2011. Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environmental Science & Pollution Research International, 18(6): 958–967. |