文章信息
- 汤丹, 江锡兵, 龚榜初, 刘同祥, 徐阳, 吴开云
- Tang Dan, Jiang Xibing, Gong Bangchu, Liu Tongxiang, Xu Yan, Wu Kaiyun
- ‘富有’甜柿中间砧的早期筛选和嫁接亲和性
- Early Selection of Interstocks for Improving Grafting Compatibility in Diospyros kaki 'Fuyu'
- 林业科学, 2017, 53(5): 54-62.
- Scientia Silvae Sinicae, 2017, 53(5): 54-62.
- DOI: 10.11707/j.1001-7488.20170507
-
文章历史
- 收稿日期:2016-05-24
- 修回日期:2016-07-22
-
作者相关文章
‘富有’甜柿(Diospyros kaki ‘Fuyu’)是日本、韩国、新西兰等国家的甜柿主栽品种,具有商品性强、产量高、品质优良等优点。我国在20个世纪20年代和80年代2次引进‘富有’等甜柿品种,但是受嫁接不亲和限制(王劲风等,1993;刘勇等,1998;冷平等,2003;龚榜初等,2007),目前‘富有’甜柿仅在浙江等地零星栽培;且国内关于‘富有’甜柿栽培研究报道极少(龚榜初等,2007),一直未形成商品生产力。中间砧嫁接作为一种有效的手段,常用于改善果树嫁接不亲和(周开兵等,2004a;彭松兴等,2011)、矮化树势(闫树堂等,2005;Alla et al., 2008;姜淑苓等,2010)、增强抗逆性(曹庆林等,1986;Shokrollah et al., 2011)和改善果实品质(张宇等,2011;张强等,2013;Curt,2013)等。在国外,中间砧在甜柿上的研究已见报道,并证明‘次郎’(D. kaki ‘Jirou’)、‘西村早生’(D. kaki ‘Nishmiurawase’)中间砧可矮化‘富有’的树势(Goto et al., 1997;Koshita et al., 2006;2007);‘西村早生’等中间砧可矮化‘前川次郎’(D. kaki ‘Maekawajiro’)树势(Manago et al., 2000)。然而,国内关于中间砧在甜柿上的研究却少有报道。
解剖学观测是预判嫁接是否亲和的有效方法。前人研究表明,嫁接口愈合良好,嫁接将会亲和(Feucht,1988;Errea et al., 2001)。嫁接口不愈合引起的维管束连接紊乱、胞间连丝不充分(Pina et al., 2009)或木质部变异(Pina et al., 2005;2009) 等,将干扰水分(Goncalves et al., 2007;Tombesi et al., 2010a)、养分(Darikova et al., 2011)、矿质元素和激素(Webster, 2004)等的传递,导致嫁接苗出现生长不良、细胞色素合成显著降低等现象(Ciobotari et al., 2010),从而嫁接苗早枯或嫁接几年后死亡。但是,在中间砧嫁接苗中,前人的解剖学研究多集中在致矮机制上,尚无确切的关于中间砧改善嫁接亲和性的解剖学研究报道。因此,本试验对9种‘富有’甜柿中间砧嫁接组合苗期生长指标和嫁接口解剖特征对比研究和综合分析,初步评价不同中间砧下‘富有’嫁接苗早期亲和性,筛选出综合表现优良的嫁接组合,并探讨中间砧嫁接的亲和性机制。
1 材料与方法 1.1 试验材料本试验在中国林业科学研究院亚热带林业研究所(浙江省杭州市富阳区)甜柿苗圃进行。试验材料以‘富有’为接穗,中间砧包括‘次郎’、‘西村早生’、‘兰溪大红柿’(D. kaki ‘Lanxidahongshi’)和‘南通小方柿’(D. kaki ‘Nantongxiaofangshi’)4种,基砧为浙江柿(D. glaucifolia)。中间砧长度包括10 cm和25 cm 2种。共9种嫁接组合(表 1),其中,组合C1为对照。试验苗在2012年3月进行实生育苗。2013年3月,切接法嫁接1年生中间砧,对照嫁接1年生浙江柿。2014年3月,在中间砧上用切接法嫁接1年生‘富有’接穗。各嫁接组合为随机区组设计,每种组合3个重复,每个重复50株嫁接苗。试验区为红黄壤土,微酸性,田间管理条件一致。嫁接苗株行距20 cm×30 cm。
![]() |
成活率、株高、茎段直径和嫁接口膨大统计2013年5月上旬,统计浙江柿基砧嫁接中间砧的成活率,记为成活率Ⅰ;2014年5月上旬,统计各组合嫁接‘富有’接穗的成活率,记为成活率Ⅱ。
2014年11月上旬和2015年11月上旬,测量各嫁接苗株高和茎段直径。其中,基砧和接穗直径测量部位为嫁接口上下5 cm处,中间砧直径测量部位为中间部位。
按照表 2的分级标准,对各嫁接组合嫁接口膨大情况进行量化统计,计算膨大指数(R):
![]() |
(1) |
![]() |
式中:i,ni,Pi,N和Pmax分别代表分级、膨大级数为i的苗木数、膨大级数为i的代表值、调查总株数和最大分级的代表值。
1.2.2 叶片表型性状测定2015年7月上旬,每个组合选取30株长势一致的嫁接苗,取中部偏上的健康完整成熟功能叶片50片,采用CI-202便携式叶面积仪测量叶片长度、叶片宽度、叶片面积和叶柄长。其中,叶形指数=叶片长度/叶片宽度;比叶质量=叶片干质量/叶片面积。
1.3 叶片和根系生理生化指标测定2015年7月上旬,选择晴朗天气3~4天,上午9:00—11:00测定嫁接苗瞬时光合速率。试验仪器为Li-6400便携式光合作用测定仪。
选取中部偏上的健康完整成熟功能叶片50片、直径2 mm以下的细根10 g用液氮速冻处理,充分研磨后测定各生理生化指标。每个指标重复测3次。其中,叶绿素含量测定参照李合生等(2000)方法;叶片和根系可溶性糖含量采用蒽酮比色法测定,根系活力采用TTC法测定(张志良等,2003)。
1.4 嫁接口解剖学观测2015年3月下旬,每个组合选取9株长势一致的嫁接苗,从上下2个嫁接口各截取1 cm茎段,立即放入FAA混合固定液中固定,采用石蜡切片法制片。将制作完成的切片放置到OLYMPUS-BX53显微镜中拍照、观测。每张切片观测20个视野。根据观测结果计算:
![]() |
(2) |
![]() |
(3) |
式中:j和M分别指观测的第j张切片、总切片数。
1.5 数据处理采用Excel 2007和SPSS 19.0软件进行Duncan’s多重比较、Pearson相关性分析和综合评价。
2 结果与分析 2.1 ‘富有’甜柿中间砧嫁接苗早期表型性状对比分析成活率统计显示,浙江柿嫁接不同中间砧时,各处理的成活率均较高(成活率Ⅰ≥0.856);嫁接‘富有’接穗时,试验组成活率明显大于对照(C1,成活率Ⅱ=0.579),且相同中间砧下,10 cm长度中间砧的组合成活率大于25 cm长度中间砧的组合。2014年11月的株高和茎段直径测定结果(图 1、表 3)显示,组合C5、C9与对照(C1) 株高差异不显著,但这3种组合的株高均极显著大于组合C2、C3、C6、C7和C8(P<0.05);除组合C2和C3外,各嫁接组合的茎段直径差异不显著(P>0.05)。
![]() |
图 1 ‘富有’甜柿嫁接苗株高多重比较 Fig.1 The multiple comparison of plant height in 'Fuyu' persimmon graftings 不同字母代表测量指标在同一时期组合间存在极显著差异(P<0.05)。下同。 Different letters indicate significant differences in experimental indexes (P < 0.05) in the same period. The same below. |
![]() |
2015年对2年生嫁接苗株高等表型性状多重比较显示,叶片宽度(组合C2除外)、叶形指数、叶柄长和比叶质量在组合间差异不显著(表 4)。株高和茎段直径在组合间的差异性较1年生嫁接苗明显增大(图 1、表 3)。9种嫁接组合中,组合C4、C5和C9的株高、中间砧直径、接穗直径和叶片面积极显著大于对照(组合C1,P<0.05);25 cm长度的‘兰溪大红柿’作中间砧的嫁接组合(C2) 早期株高、基砧直径、中间砧直径、接穗直径、叶片长度、叶片宽度和叶片面积均小于C1等嫁接组合。相同中间砧下,10 cm长度中间砧的组合株高、基砧直径、中间砧直径、接穗直径和叶片面积均大于25 cm长度中间砧的组合;且中间砧长度对株高的影响尤为明显,相同中间砧下,2种长度中间砧的嫁接组合株高差异显著(P<0.05)。
![]() |
嫁接口膨大是早期不亲和的外在体现,常表现为嫁接口外部膨大或开裂,导致嫁接苗死亡或从嫁接口断裂。‘富有’嫁接苗的膨大情况观测及其分级统计(图 2)显示,2014年11月,‘富有’1年生嫁接苗在基砧-中间砧、中间砧-接穗的嫁接口均无明显膨大现象(R值变幅0.043~0.220);2015年11月,受嫁接不亲和影响,组合C1、C2、C3、C6、C7、C8和C9的嫁接口存在明显膨大或开裂(R值变幅0.478~0.980)。‘兰溪大红柿’等4种中间砧下的嫁接苗膨大指数均小于对照(R=0.980),且‘南通小方柿’作中间砧的嫁接苗嫁接口无明显膨大现象(组合C4和C5,R值分别为0.045、0.080)。9种嫁接组合中,对照组C1在中间砧-接穗的嫁接口存在明显的膨大现象(R2=0.891),而基砧-中间砧的嫁接口无明显膨大(R1=0.089);‘次郎’作中间砧的嫁接苗(组合C6和C7) 膨大现象主要发生在基砧-中间砧的嫁接口(R1>R2),‘兰溪大红柿’和‘西村早生’作中间砧的嫁接苗则主要在中间砧-接穗的嫁接口观测到膨大现象(R1<R2)。相同中间砧下,中间砧长度越长,嫁接口膨大越明显(组合C4和C5除外)。
![]() |
图 2 ‘富有’甜柿嫁接苗膨大指数(R) Fig.2 The swell index (R) in 'Fuyu' persimmon graftings R1和R2分别指基砧-中间砧、中间砧-接穗间嫁接口的膨大指数,R=R1+R2。 R1, R2 represent the swell index between rootstock and interstock, and interstock and scion, R=R1+R2. |
叶绿素含量、光合速率等生理生化指标是评价苗期生长状况常用指标。以‘南通小方柿’、‘次郎’和‘西村早生’作中间砧(图 3、图 4),‘富有’嫁接苗叶绿素总量(C6除外)、瞬时光合速率(Pn)、叶片可溶性糖含量、根系可溶性糖含量和根系活力均极显著大于对照(组合C1,P<0.05),表明这3种中间砧下的嫁接苗早期生理适应性高于浙江柿直接嫁接‘富有’。9种嫁接组合中,以C2的叶绿素总量等5种生理生化指标最低。相同中间砧下,以‘南通小方柿’或‘西村早生’作中间砧,2种长度中间砧的组合在叶绿素总量等生理生化指标上差异不显著;以‘兰溪大红柿’或‘次郎’作中间砧,10 cm长度中间砧的组合叶绿素总量、瞬时光合速率(Pn)、叶片可溶性糖含量(组合C6和C7除外)、根系可溶性糖含量和根系活力均极显著大于25 cm长度中间砧的组合(P<0.05)。
![]() |
图 3 ‘富有’甜柿嫁接苗叶绿素总量、光合速率(Pn)和叶片可溶性糖含量多重比较 Fig.3 The multiple comparisons of chlorophyll (a+b) content, photosynthetic rate(Pn), and leaf soluble sugar content in 'Fuyu' persimmon graftings |
![]() |
图 4 ‘富有’甜柿嫁接苗根系可溶性糖含量和根系活力多重比较 Fig.4 The multiple comparisons of root soluble sugar content and root activity in 'Fuyu' persimmon graftings |
嫁接口解剖(图 5)显示,各嫁接组合因砧穗间亲和性差异,嫁接口愈合情况存在明显的不同。不亲和的嫁接苗生长1年后,嫁接口能分化出愈伤组织,但是,嫁接口的细胞变异或坏死,形成隔离层,且部分组合(如C1、C2等)嫁接口伴随着导管堵塞现象。嫁接口隔离层比例(G)和导管堵塞率(D)统计(表 5)显示,对照组(C1) 和‘兰溪大红柿’作中间砧的组合(C2和C3),隔离层和导管堵塞主要产生在中间砧-接穗的嫁接口[G1(基砧-中间砧)≤G2(中间砧-接穗),D1(基砧-中间砧)<D2 (中间砧-接穗)];‘次郎’和‘西村早生’作中间砧的组合(C6-C9),在中间砧和基砧嫁接口存在隔离层-导管堵塞现象(G1>G2,D1>D2)。9种嫁接组合中,C4、C5、C7、C8和C9早期嫁接口愈合情况优于对照,且以‘南通小方柿’作中间砧的组合早期愈合良好(C4和C5,G值分别为22.2%、11.1%,D=0),以‘兰溪大红柿’作中间砧的组合早期愈合最差(C2和C3,G值分别为133.3%、111.1%,D值分别为21.7%、14.2%)。相同中间砧下,10 cm长度中间砧的组合比25 cm长度中间砧的组合愈合更好。
![]() |
图 5 解剖取样示意(A)及部分组合嫁接口愈合情况观测 Fig.5 Anatomical sampling (A) and observation of compatible status in combinations a:愈伤组织; b:隔离层; c:堵塞的导管; d:木质部; e:髓。Ⅰ和Ⅱ分别指基砧-中间砧、中间砧-接穗嫁接口解剖图;C5、C9和C6分别代表嫁接口愈合优良、愈合一般和愈合差的嫁接组合。 a: Callus; b: Isolation layer; c: Vessel jam; d: Xylem; e: Pith. Ⅰ and Ⅱ represent the anatomic structure between rootstock and interstock, interstock and scion; C5, C9 and C6 represent good, middling, and poor compatibility in the grafting union. |
![]() |
早期表型和生理生化指标综合评价(表 5)显示,组合C4-C9的综合评价值(Q)大于对照(C1,Q=-1.85),且以组合C5(浙江柿基砧+10 cm‘南通小方柿’中间砧+‘富有’接穗)的Q值最高(Q=2.71),C9等组合次之。相同长度下,不同中间砧的‘富有’嫁接苗Q值由大到小顺序为‘南通小方柿’、‘西村早生’、‘次郎’、‘兰溪大红柿’;相同中间砧下,10 cm长度中间砧的嫁接组合Q值大于25 cm长度中间砧的嫁接组合。
Pearson相关性分析(表 5)显示,隔离层比例和导管堵塞率与Q值均存在极显著负相关(相关系数分别为-0.910、-0.977,P<0.01),表明嫁接口愈合越好,越有利于嫁接苗苗期生长。G2、D2与Q在P<0.01水平上呈极显著负相关(相关系数分别为-0.872、-0.881),表明在‘富有’中间砧嫁接苗中,中间砧-接穗的嫁接口愈合情况是影响嫁接苗早期生长状况的主导因子。各表型和生理生化指标(表 6)中,除成活率、叶形指数、叶柄长和比叶质量外,株高等11种指标均与根系活力、根系可溶性糖含量呈显著或极显著相关,且光合速率(Pn)和叶片可溶性糖含量分别与根系可溶性糖含量、根系活力相关最高(相关系数分别为:0.950,0.970,P<0.01)。表明在多重嫁接体系中,砧穗间存在明显的相互作用,基砧根系活力和根系可溶性糖直接影响接穗光合速率等生长指标。
![]() |
本研究中,浙江柿直接嫁接‘富有’在成活率、株高等生长指标上均表现较差,且嫁接口存在明显的膨大、隔离层和导管堵塞现象(R=0.980,G=88.9%,D=16.3%),表明浙江柿嫁接‘富有’早期不亲和,研究结果与刘勇等(1998)相符。
‘富有’甜柿嫁接不亲和在解剖结构上表现为嫁接口细胞变异或坏死,形成隔离层,这与Ermel等(1999)研究结果一致。隔离层的形成能阻断嫁接口进一步愈合,引起形成层的不连续和维管束连接中断,从而限制水分向上传递,导致木质部导管在水分胁迫下产生堵塞现象(Tyree et al., 1991;Bauerle et al., 2011);并促使接穗合成的淀粉等养分在嫁接口积累(Ermel et al., 1999),导致愈伤组织分化成大量的薄壁细胞,引起嫁接口外部明显膨大。前人研究表明,嫁接口和木质部导管特性是调控接穗水分供应和植株树势的重要因素(Olmstead et al., 2006;Goncalves et al., 2007;Tombesi et al., 2010b)。本研究发现,嫁接口愈合情况是引起‘富有’嫁接苗苗期表型性状和生理生化指标差异的主要原因之一(G、D与Q极显著负相关,相关系数分别为-0.910、-0.977,P<0.01)。
作为基砧和接穗间的连接桥梁,中间砧因其特殊的空间位置,能调节养分(Jones,1976)和激素(Webster,2004;Li et al., 2012)在砧穗间的分配,影响根系矿质代谢水平和叶片矿质元素含量(周开兵等,2002;2004a;2004b),或限制水分上下传递(Tombesi et al., 2010a)等,引起基砧和接穗因中间砧而异的形态与生理效应。本研究结果表明,在‘富有’甜柿中间砧嫁接苗中,中间砧的特殊空间位置效应或因其与基砧、接穗亲和性差异引起。4种中间砧中,‘兰溪大红柿’和‘次郎’作中间砧,浙江柿嫁接‘富有’存在明显的局部不愈合现象,嫁接口产生的隔离层和导管堵塞能物理性地限制接穗水分供应和砧穗间养分分配等,抑制嫁接苗生长。利用‘南通小方柿’和‘西村早生’作中间砧能明显降低嫁接口膨大、隔离层产生和导管堵塞,促进嫁接愈合,从而基砧根系吸收的水分、矿质元素等得以顺畅通过中间砧运输到接穗,促进叶片生长、叶绿素合成和光合能力恢复等。接穗积累的养分等则可通过输导组织向下传递至基砧根系,根系可溶性糖和根系活力增加,进而对矿质元素吸收和代谢增强。试验结果亦表明,中间砧长度对嫁接亲和性影响具有累加效应。相对10 cm长度中间砧而言,25 cm长度的中间砧将增加植株嫁接口隔离层产生和导管堵塞,抑制嫁接苗成活率及株高、茎段直径、叶片面积等表型生长;且这种累加效应在早期愈合差的组合尤为明显(例如:‘兰溪大红柿’作中间砧的嫁接组合)。
4 结论本文通过对‘富有’甜柿中间砧嫁接苗苗期生长、解剖等表现综合研究表明,浙江柿直接嫁接‘富有’甜柿早期不亲和。‘南通小方柿’和‘西村早生’可作为优良中间砧,改善浙江柿嫁接‘富有’早期亲和性,促进嫁接苗苗期生长。9种嫁接组合中,以组合C5(浙江柿基砧+10 cm‘南通小方柿’+‘富有’接穗)早期亲和最好(综合评价值Q=2.71,隔离层比例G=11.1%,导管堵塞率D=0),C4(浙江柿基砧+25 cm‘南通小方柿’+‘富有’接穗)、C9(浙江柿基砧+10 cm‘西村早生’+‘富有’接穗)等组合次之。但是,‘富有’甜柿作为多年生果树,其嫁接亲和性及‘南通小方柿’等中间砧对果实产量、品质等经济性状是否有影响仍需开展进一步的研究。
[] |
曹庆林, 张孝棋, 周文清, 等. 1986. 用抗寒中间砧高接法提高苹果的越冬性和产量. 园艺学报, 13(1): 31–36.
(Cao Q L, Zhang X Q, Zhou W Q. 1986. Increasing winter hardiness and yield of apple trees by high top-working on hardy interstocks. Acta Horticulturae Sinica, 13(1): 31–36. [in Chinese]) |
[] |
龚榜初, 吕丰旻, 孙雪忠, 等. 2007. '富有'柿优质高效栽培技术. 林业科技开发, 21(3): 91–92.
(Gong B C, Lü F Y, Sun X Z, et al. 2007. The high quality and efficient cultivation technology of 'Fuyu' persimmon. China Forestry Science and Technology, 21(3): 91–92. [in Chinese]) |
[] |
姜淑苓, 贾敬贤, 王斐, 等. 2010. 三个梨树中间砧木对嫁接树的矮化效应. 中国农业科学, 43(23): 4886–4892.
(Jiang S L, Jia J X, Wang F, et al. 2010. The dwarfing effect of three pear dwarfing intermediate stocks on grafting trees. Scientia Agricultura Sinica, 43(23): 4886–4892. DOI:10.3864/j.issn.0578-1752.2010.23.014[in Chinese]) |
[] |
冷平, 王海平, 袁文. 2003. 柿栽培北限地区引种甜柿存在问题研究. 中国农业大学学报, 8(1): 55–58.
(Leng P, Wang H P, Yuan W. 2003. Problems on introducing fine sweet persimmon varieties in northern persimmon-planted area, China. Journal of China Agricultural University, 8(1): 55–58. [in Chinese]) |
[] |
李合生, 孙群, 赵世杰, 等. 2000. 植物生理生化实验原理和技术. 北京, 高等教育出版社.
(Li H S, Sun Q, Zhao S J, et al. 2000. The experiment principle and technique on plant physiology and biochemistry. Beijing, Higher Education Press. [in Chinese]) |
[] |
刘勇, 肖德兴, 刘善军, 等. 1998. 几种柿砧木与'富有'甜柿嫁接的解剖学观察. 江西农业大学学报, 20(3): 393–396.
(Liu Y, Xiao D X, Liu S J, et al. 1998. The anatomical feature observation of 'Fuyu' persimmon grafted with some rootstocks. Acta Agriculturae Universitatis Jiangxiensis, 20(3): 393–396. [in Chinese]) |
[] |
彭松兴, 王援泉, 黄旭明, 等. 2001. 利用中间砧解决阿蒂莫耶番荔枝与圆滑番荔枝嫁接不亲和试验. 中国南方果树, 40(6): 42–44.
(Peng S X, Wang Y Q, Huang X M, et al. 2001. Enhance the affinity of graft between Annona aternoya Hort. and A. glabra by interstock. South China Fruits, 40(6): 42–44. [in Chinese]) |
[] |
王劲风, 龚榜初, 吴开云. 1993. '富有'柿嫁接砧木选择的研究. 林业科技通讯, 27(11): 22–24.
(Wang J F, Gong B C, Wu K Y. 1993. Selection of rootstock for 'Fuyu' persimmon. Forestry Science and Technology, 27(11): 22–24. [in Chinese]) |
[] |
闫树堂, 徐继忠. 2005. 不同矮化中间砧对红富士苹果果实内源激素、多胺与细胞分裂的影响. 园艺学报, 32(1): 81–83.
(Yan S T, Xu J Z. 2005. The effects of different dwarfing interstock on the endogenous hormones, polyamines and cell division in fruits of red 'Fuji' apple. Acta Horticulturae Sinica, 32(1): 81–83. [in Chinese]) |
[] |
张强, 魏钦平, 刘松忠, 等. 2013. SH6矮化中间砧富士苹果幼树至结果初期树冠结构、产量和品质的形成. 中国农业科学, 46(9): 1874–1880.
(Zhang Q, Wei Q P, Liu S Z, et al. 2013. Formation of canopy structure, yield and fruit quality of 'Fuji' apple with SH6 dwarf interstock from juvenility to fruiting early stage. Scientia Agricultura Sinica, 46(9): 1874–1880. [in Chinese]) |
[] |
张宇, 刘世琦, 张自坤, 等. 2011. 甜瓜中间砧对嫁接黄瓜生长和果实品质的影响. 中国农业科学, 44(13): 2730–2737.
(Zhang Y, Liu S Q, Zhang Z K, et al. 2011. Effect of melon interstock on the growth and fruit quality of grafted cucumber. Scientia Agricultura Sinica, 44(13): 2730–2737. DOI:10.3864/j.issn.0578-1752.2011.13.011[in Chinese]) |
[] |
张志良, 瞿伟箐. 2003. 植物生理学实验指导. 北京, 高等教育出版社.
(Zhang Z L, Qu W Q. 2003. Plant physiology experiment instruction. Beijing, Higher Education Press. [in Chinese]) |
[] |
周开兵, 夏仁学, 王利芬. 2002. 3种中间砧对长果形纽荷尔脐橙树体特性和果实品质的影响. 华中农业大学学报, 21(4): 545–549.
(Zhou K B, Xia R X, Wang L F. 2002. Effects of three kinds of interstock on the tree character and fruit quality of long-fruit-shaped newhall navel orange (Citrus sinensis Osbeck). Journal of Huazhong Agricultural University, 21(4): 545–549. [in Chinese]) |
[] |
周开兵, 夏仁学, 王贵元, 等. 2004a. 3种不同柑橘中间砧在树体矿质营养含量上的双重效应(Ⅱ):不同中间砧对枳基砧根系矿质营养含量年变化的影响. 中国农学通报, 20(2): 145–148.
(Zhou K B, Xia R X, Wang G Y, et al. 2004a. Double effects of 3 kinds of interstock on the contents of mineral nutrient of tree (Ⅱ):Effects of different kinds of interstock on the annual changes in the contents of mineral nutrient in root of trifoliate (Poncirus trifoliata Raf). Chinese Agricultural Science Bulletin, 20(2): 145–148. [in Chinese]) |
[] |
周开兵, 夏仁学, 王贵元, 等. 2004b. 3种不同柑桔中间砧在树体矿质营养含量上的双重效应Ⅰ:不同中间砧对纽荷尔脐橙叶片矿质营养含量年变化的影响. 中国农学通报, 20(1): 178–181.
(Zhou K B, Xia R X, Wang G Y, et al. 2004b. Double effects of 3 kinds of interstock on the contents of mineral nutrient of tree I:Effects of different kinds of interstock on the annual changes in the contents of mineral nutrient in leaf of newhall navel orange (Citrus sinensis Osbeck). Chinese Agricultural Science Bulletin, 20(1): 178–181. [in Chinese]) |
[] | Alla N, Seleznyova D, Stuart T, et al. 2008. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle:Precocious transition to flowering affects the composition and vigour of annual shoots. Annals of Botany, 101(5): 679–687. DOI:10.1093/aob/mcn007 |
[] | Bauerle T L, Centinari M, Bauerle W L. 2011. Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 234(5): 1045–1054. DOI:10.1007/s00425-011-1460-6 |
[] | Ciobotari G, Brinza M, Morariu A, et al. 2010. Graft incompatibility influence on assimilating pigments and soluble sugars amount of some pear (Pyrus sativa) cultivars. Not Bot Horti Agrobo, 38(1): 187–192. |
[] | Curt A. 2013. Interstock effects on topgraft vitality and strobili production after topgrafting in Pinus sylvestris. Canadian Journal of Forest Research, 43(3): 584–588. |
[] | Darikova J A, Savva Y V, Vaganov E A, et al. 2011. Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). Journal of Siberian Federal University, Biology, 1(4): 54–63. |
[] | Ermel F F, Kervella J, Catesson A M, et al. 1999. Localized graft incompatibility in pear/quince (Pyrus communis/Cydonia oblonga) combinations:multivariate analysis of histological data from 5-month-old grafts. Tree Physiol, 19(10): 645–654. DOI:10.1093/treephys/19.10.645 |
[] | Errea P, Garay L, Marin J A. 2001. Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques. Physiol Plant, 112(1): 135–141. DOI:10.1034/j.1399-3054.2001.1120118.x |
[] | Feucht W. 1988. Graft incompatibility of tree crops:an overview of the present scientific status. Acta Horticulturace, 227(1): 33–41. |
[] | Goncalves B, Correia C M, Silva A P, et al. 2007. Variation in xylem structure and function in roots and stems of scion-rootstock combinations of sweet cherry tree (Prunus avium L.). Trees, 21(2): 121–130. DOI:10.1007/s00468-006-0102-2 |
[] | Goto M, Matumura H, Ozeki K. 1997. Studies on the dwarfed tree training of Japanese persimmon 'Fuyu':2. Effects of the interstock. J Jpn Soc Hort Sci, 66(Suppl.2): 4–5. |
[] | Jones O P. 1976. Effect of dwarfing interstocks on the xylem sap composition in apple trees:Effect on nitrogen, potassium, phosphorus, calcium and magnesium content. Annals of Botany, 40(170): 1231–1235. |
[] | Koshita Y, Morinaga K, Tsuchida Y. 2006. The early growth and photosynthetic rate of Japanese persimmons (Diospyros kaki L.) grafted onto different interstocks. Scientia Horticulturae, 109(2): 138–141. DOI:10.1016/j.scienta.2006.04.002 |
[] | Koshita Y, Morinaga K, Tsuchida Y, et al. 2007. Selection of interstocks for dwarfing Japanese persimmon (Diospyros kaki Thunb.) trees. J Japan Soc Hort Sci, 76(4): 288–293. DOI:10.2503/jjshs.76.288 |
[] | Li H L, Zhang H, Yu C, et al. 2012. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiologiae Plantarum, 34(1): 235–244. DOI:10.1007/s11738-011-0822-9 |
[] | Manago N, Yoshida Y, Hosomi Y, et al. 2000. Influence of various interstem on growth of Japanese persimmon cv. Maekawajiro. Res Bull Aichi Agric Res Ctr, 32: 129–133. |
[] | Olmstead M A, Lang N S, Ewers F W, et al. 2006. Xylem vessel anatomy of sweet cherries grafted onto dwarfing and nondwarfing rootstocks. J Am Soc Hortic Sci, 131(5): 577–585. |
[] | Pina A, Errea P, Schulz A, et al. 2009. Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiol, 29(6): 809–818. DOI:10.1093/treephys/tpp025 |
[] | Pina A, Errea P. 2005. A review of new advances in mechanism of graft compatibility-incompatibility. Scientia Hort, 106(1): 1–11. DOI:10.1016/j.scienta.2005.04.003 |
[] | Shokrollah H, Abdullah T L, Sijam K, et al. 2011. Potential use of selected citrus rootstocks and interstocks against HLB disease in Malaysia. Crop Protection, 30(5): 521–525. DOI:10.1016/j.cropro.2010.09.005 |
[] | Tombesi S, Johnson R S, Day K R, et al.2010a.Peach trees growing on rootstocks with contrasting size-controlling characteristics. AoB Plants, plq013, doi:10.1093/aobpla/plq013. |
[] | Tombesi S, Johnson R S, Day K R, et al. 2010b. Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Ann Bot, 105(2): 327–331. DOI:10.1093/aob/mcp281 |
[] | Tyree M T, Ewers F W. 1991. The hydraulic architecture of trees and other woody plants. New Phytol, 119(3): 345–360. DOI:10.1111/nph.1991.119.issue-3 |
[] | Webster A D. 2004. Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Horticulturae, 658(4): 29–41. |