林业科学  2017, Vol. 53 Issue (5): 156-163   PDF    
DOI: 10.11707/j.1001-7488.20170518
0

文章信息

王会来, 刘娟, 姜培坤, 周国模, 李永夫, 吴家森
Wang Huilai, Liu Juan, Jiang Peikun, Zhou Guomo, Li Yongfu, Wu Jiasen
营林措施对森林土壤甲烷吸收的影响
Effect of Management Practices on Methane Uptake in Forest Soils
林业科学, 2017, 53(5): 156-163.
Scientia Silvae Sinicae, 2017, 53(5): 156-163.
DOI: 10.11707/j.1001-7488.20170518

文章历史

收稿日期:2015-11-18
修回日期:2017-01-19

作者相关文章

王会来
刘娟
姜培坤
周国模
李永夫
吴家森

营林措施对森林土壤甲烷吸收的影响
王会来, 刘娟, 姜培坤, 周国模, 李永夫, 吴家森   
浙江农林大学 亚热带森林培育国家重点实验室 浙江省森林生态系统碳循环与固碳减排重点实验室 临安 311300
摘要: 以期为全球气候变暖背景下的林地合理经营管理提供依据。利用Scopus,Web of Science,SDOS,CNKI等数据库,查询林地土壤CH4的相关文献,对不同营林措施(施肥、采伐、火烧、林下植被管理)森林土壤CH4吸收通量方面的研究进行综述。施加N肥对于富氮森林土壤CH4吸收有抑制作用,但可以显著促进贫氮森林土壤CH4吸收;火烧后土壤CH4吸收通量受到多种因素的影响,因此存在一定的不确定性,多数研究表明,火烧减少土壤CH4吸收通量;皆伐改变土壤温度、含水量、有机碳的分解和利用等,从而减弱森林土壤CH4吸收能力;择伐对森林土壤CH4吸收的影响表现为抑制、促进和无影响;剔除林下植被提高土壤温度,加快土壤水分蒸发散失,增强CH4氧化菌的活性,促进土壤CH4吸收;种植固氮植物使森林土壤转变为CH4的排放源。目前经营措施对森林土壤CH4吸收影响的研究结果还存在较大差异,对营林措施影响森林土壤CH4吸收的内在机理的认识还不充分。随着研究方法和观测手段的不断发展,今后应深入研究多种因素和气候变化对林地土壤CH4吸收影响的内在机理以及甲烷氧化菌对各种干扰因素的响应机制。
关键词:人为干扰    土壤甲烷吸收    经营管理    施肥    采伐    火烧    林下植被管理    
Effect of Management Practices on Methane Uptake in Forest Soils
Wang Huilai, Liu Juan , Jiang Peikun, Zhou Guomo, Li Yongfu, Wu Jiasen    
State Key Laboratory of Subtropical Silviculture Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration Zhejiang A & F University Lin'An 311300
Abstract: Forest soils are the main sinks of atmospheric CH4. This study is aimed to provide a basis for forest management practices under climate change. The databases of Scopus, Web of Science, SDOS and China National Knowledge Infrastructure (CNKI) were used to review current status of studies on CH4 uptake from forest soils. The review highlighted the effect of forest management practices (fertilization, cutting, burning, and understory management) on soil CH4 uptake, and explained its main mechanism. Fertilization tended to inhibit soil CH4 uptake in N-rich forest soils, but obviously promoted soil CH4 uptake in N-poor forest soils. It was generally believed that slash burning reduced soil CH4 uptake. Clear-cutting changed soil temperature, water content, decomposition of organic carbon, and thus weakened the capability of methanotrophs to oxidize methane. Selective-cutting could stimulate, suppress, or show no effect on forest soil CH4 uptake. Understory removal increased soil temperature, sped up evaporation of soil water and increased the activity of methanotrophs, which promoted soil CH4 uptake. Nitrogen fixing plants reduced soil CH4 uptake. There were significant differences of management practices on forest soil CH4uptake among the previous studies. Additionally, the inherent mechanism is still not sufficient. With the development of research theory and technology, the interactive effects of various factors and climate change on forest soil CH4 uptake and its mechanism, the response model of methanotrophs to various interference factors will become the main direction in the future.
Key words: human disturbance    soil CH4 uptake    management practices    fertilization    cutting    burning    understory management    

甲烷是引起全球气候变化的第二大温室气体,单位质量CH4的增温潜势是CO2的25倍(IPCC,2007),对全球气候变暖的贡献率约为20%(Dutta et al., 2015)。截止到2011年,大气中CH4的浓度相较于工业革命前提高了150%(IPCC,2013),目前仍以每年0.8%的速度不断递增(IPCC,2007)。大气中CH4通常来源于水稻田、湿地、海洋以及化石燃料的开采和燃烧,全球大气CH4年排放量为548 Tg·a-1,其中湿地、水稻田等自然排放源占30%~50%(Heimann,2010Kirschke et al., 2013)。森林土壤是大气CH4的重要吸收汇,全球土壤CH4年吸收量为26~36 Tg·a-1,其中森林土壤CH4年吸收量占52%(Denman et al., 2007Borken et al., 2009)。中国森林覆盖面积为2.08×108hm2,占国土总面积的22%,蕴含着巨大的CH4吸收能力。据统计,我国森林土壤CH4年吸收量为0.675 Tg·a-1,其中东部湿润、半湿润地区土壤CH4年吸收量占82%(Cai,2012Wang et al., 2014)。

施肥、采伐、火烧、林下植被管理等营林措施改变了土壤含水量、土壤pH值、土壤碳含量和土壤氮含量等基本理化性质和土壤微生物的群落组成、活性等,显著影响了森林土壤CH4吸收。近年来,开展了大量营林措施对森林土壤CH4吸收影响研究,但因管理措施、森林类型、土壤状况以及气候因素的不同,营林措施对林地土壤CH4吸收影响的研究结果存在较大差异;同一种营林措施在不同森林类型、土壤状况和气候条件下,也会产生抑制、促进和不变3种结果。这种研究结果的差异性及其作用机理的认识还不充分(Zhang et al., 2015; Iwata et al., 2015Hoyos-Santillan et al., 2016)。本文综述了营林措施(施肥、采伐、火烧和林下植被管理)影响林地土壤甲烷(CH4)吸收通量的研究进展,探讨了营林措施影响土壤CH4吸收的主要机理,并提出未来研究的重点,以期对全球气候变暖背景下林地的合理经营管理起到借鉴和启示作用。

1 施肥

施肥直接改变土壤有机碳含量和植物根系生物量,同时影响土壤微生物活性、土壤pH值等土壤理化性质,从而显著影响森林土壤CH4吸收。施肥特别是施加N肥对森林土壤CH4吸收的影响机制主要包括:氮素累积产生的抑制作用、土壤酸化、代谢产物的毒害作用、NH4+和CH4竞争甲烷单氧酶等(程淑兰等,2012)。施肥对林地土壤CH4吸收的影响受植被类型、施肥种类和地带气候等因素的共同影响,因此产生抑制、促进和不变3种结果,但以抑制的研究结果居多(表 1)。

表 1 不同林分土壤CH4吸收对增氮的响应 Tab.1 Responses of CH4 uptake flux to N fertilizer addition in typical stand soils

一般而言,在非N限制的热带森林和温带森林土壤CH4吸收对N肥施加的反应较为敏感(Zhang et al., 2011陈朝琪等,2014)。施加N肥增加了土壤中NH4+-N和NO3-N浓度,NH4+通过与CH4竞争甲烷单氧酶抑制土壤CH4氧化(Kim et al.,2012),土壤NH4+-N的累积降低土壤pH值,进而减弱甲烷氧化菌的活性(Zhang et al., 2012);NO3--N不仅能直接抑制甲烷氧化菌活性,而且与阳离子结合后对甲烷氧化菌产生更强的抑制作用(Shrestha et al., 2015)。Kim等(2012)研究发现施加N肥后日本落叶松(Larix kaempferi)人工林土壤CH4吸收下降了48%。张蛟蛟等(2013)对板栗(Castanea mollissima)林的研究发现,单施无机肥、单施有机肥和有机无机肥混施1个月后,土壤CH4吸收量分别减少了7.0%,1.6%和4.4%。N肥施用对林地土壤CH4的影响还随施肥量的变化而变化。Aronson等(2010)通过整合归纳发现,低剂量的N输入增强土壤CH4氧化能力,高剂量的N输入则会减弱土壤CH4氧化能力,并把100 kg N·hm-2 a-1作为土壤CH4吸收速率转变的临界值。Zhang等(2011)发现中国亚热带季雨林土壤CH4吸收速率随N肥用量的增加而减少。Zhang等(2008)发现热带常绿阔叶林土壤CH4 吸收速率在高氮、中氮和低氮处理后的下降幅度分别为32%,14%和6%。

与此相反的是,在贫N的森林土壤中,N肥施用对土壤CH4吸收通量的影响多表现为不变或促进(表 1)。贫N的寒温带森林土壤,外源氮很容易被植被和土壤微生物吸收利用(高文龙等,2013),而且地表长期覆盖冻土导致外源氮难以穿透到土壤CH4氧化区域(Sjögersten et al., 2007),从而导致施加N肥后土壤CH4氧化速率没有显著变化(Whalen et al., 2000)。高文龙等(2013)对寒温带针叶林和Whalen等(2000)对北方针叶林的研究表明,N肥的输入没有显著改变土壤CH4吸收能力。贫N森林土壤由于缺乏矿质氮,土壤CH4氧化能力较弱,施加少量N肥后,Ⅰ,Ⅱ和X型甲烷氧化菌的活性增强(Auman et al., 2001),从而促进林地土壤CH4的吸收。少数研究表明,短时间N肥的施加促进了土壤CH4的吸收(Veldkamp et al., 2013)。

2 火烧

火烧一方面释放大量的温室气体,造成森林生态系统碳损失,另一方面影响森林生态系统的形成与演化,改变森林生态系统的碳、氮循环过程。火烧改变土壤温度、湿度和pH值,并通过有机碳燃烧和改变黏土矿物来影响土壤结构,使得土壤CH4吸收通量发生改变(任乐等,2014)。此外,火烧后土壤微生物以及土壤酶活性也会影响土壤CH4吸收(Zhao et al., 2015)。

多数研究表明,火烧抑制土壤CH4吸收通量(表 2)。火烧抑制土壤CH4吸收的主要原因有:1) 火烧产生的灰分为土壤产甲烷菌提供丰富底物,促进CH4产生(李攀,2014);2) 火烧后土壤pH值的增加有利于产甲烷菌的繁殖,对甲烷氧化菌不利3) 火烧后土壤表层NH4+-N浓度增加,抑制了土壤CH4的氧化(王海淇,2011Fernández-Fernández et al., 2015)。Inclán等(2012)研究表明,火烧后欧洲赤松(Pinus sylvestris)林土壤中NH4+-N含量增加以及高温造成的土壤结构破坏和土壤养分含量降低导致了土壤CH4吸收速率下降。Kim等(2003)发现火烧后阿拉斯加北方森林土壤温度上升,永冻土解冻使土壤含水量增加,形成厌氧环境,CH4吸收通量减少了7%~142%。

表 2 不同林分土壤CH4吸收对火烧的响应 Tab.2 Responses of CH4 uptake to burning in typical forest soils

Fest等(2015)在澳大利亚硬叶桉(Eucalyptus)林和Kim等(2011)在日本白桦(Betula platyphylla)林的研究发现,火烧后土壤NH4+-N含量的显著增加并未对土壤CH4吸收通量产生明显的抑制作用。也有研究发现火烧降低土壤腐殖质层厚度,土壤孔隙度增加,加速了土壤中CH4与O2的流通,促进了林地土壤CH4吸收(Sullivan et al., 2011Morishita et al., 2015)。

3 采伐

森林采伐后,地表植被和凋落物减少,土壤裸露在地表,土壤侵蚀和淋溶作用加强,加快有机碳分解速率,减弱森林碳汇能力(闫美芳等,2010Zhou et al., 2015)。采伐改变森林土壤水热条件,树木对土壤水分吸收能力的减弱使得地下水位上升,从而减弱土壤的通气透水性,进而影响森林土壤CH4吸收(Gao et al., 2015)。

研究发现,皆伐一般抑制土壤CH4的吸收(表 3)。皆伐后土壤NH4+-N浓度的增加和氮素周转速率的加快减弱了土壤CH4的氧化能力(Becker et al.,2015);同时皆伐时机械的使用增加了土壤密度,土壤孔隙度减小,从而降低了土壤CH4的扩散速率(Yashiro et al.,2008)。Kulmala等(2014)对挪威云杉(Picea abies)林和高升华等(2013)对美洲黑杨(Populus deltoides)人工林的研究发现,皆伐导致土壤CH4吸收通量减少。Yashiro等(2008)发现马来西亚热带雨林CH4吸收速率的减少与皆伐后土壤温度的升高及土壤氮的增加有关。Sundqvist等(2014)发现,由于皆伐后土温和土壤含水量的变化瑞典北方森林土壤CH4吸收速率显著减少。少数研究发现,皆伐后甲烷产生菌的活性因土壤pH值的提高而增强,从而使得土壤CH4吸收速率加快(Lavoi et al., 2013)。

表 3 不同林分土壤CH4吸收对皆伐的响应 Tab.3 Responses of CH4 uptake to clear-cutting in typical stand soils

择伐是森林采伐中最常见方式之一。择伐可以优化森林林龄结构,提高林木生产力,增加光照利用率,改善土壤水热条件,维持植物根系和微生物群落的稳定,减少林火风险,是维持森林健康的重要措施。目前,择伐对土壤CH4吸收速率影响的研究还没有统一的结论(表 4)。Bradford等(2000)研究发现,温带山毛榉(Quercus robur)人工林择伐2年后土壤CH4吸收速率增加。Yoshiyuki等(2004)发现日本扁柏(Chamaecyparis obtusa)人工林择伐8个月后土壤密度增加,土壤通气性减弱导致土壤CH4吸收通量下降。Sundqvist等(2014)发现择伐1年后土壤CH4吸收速率下降了50%。Sullivan等(2008)发现择伐1年后促进了林下植被生长,森林土壤有机碳没有显著减少,对甲烷氧化菌影响较小(Wu et al., 2011),土壤CH4吸收速率没有显著变化。由此可见,择伐后采样时间可能是影响土壤CH4吸收速率变化的原因之一。

表 4 不同林分土壤CH4吸收对择伐的响应 Tab.4 Responses of CH4 uptake to thinning in typical stand soils
4 林下植被管理

林下植被是林下生态系统的重要组成部分,林下植被管理通过改变土壤有机物的输入、小气候和土壤理化性质,对土壤CH4吸收有着重要的影响(表 5)。林下种植固氮植物能增强植物根系活性,提高作物生产力,同时增加了土壤凋落物输入,促进土壤碳的积累(Wang et al., 2014)。在土壤湿度较高的条件下,林下种植固氮植物,刺激了CH4产生菌的活性,使森林土壤转变为CH4的排放源(Qiao, et al., 2011)。Li(2010)发现种植翅荚决明(Cassia alata)后抑制了尾叶桉(Eucalyptus urophylla)林土壤CH4吸收。

表 5 不同林分土壤CH4吸收对林下植被管理的响应 Tab.5 Responses of CH4 uptake to understory management in typical stand soils

剔除尾叶桉林下灌草增大森林表层土的通透度,地表温度升高加快土壤水分蒸发散失,使土壤湿度降低刺激了甲烷氧化菌的活性,从而增加土壤CH4吸收(Wu et al., 2011; Wang et al., 2011)。刘娟等(2015)研究发现,留养杂草和剔除杂草的山核桃(Carya cathayensis)林均表现为土壤CH4的汇,剔除杂草后土壤CH4吸收通量显著增加。

除草剂改变土壤微生物数量和群落活性,进而影响土壤CH4吸收(丁洪等,2011张仕颖等,2013)。如Chen等(2009)发现,丁草胺加快了土壤甲烷吸收速率。

5 展望

目前,国内外学者已经开展了大量关于森林土壤CH4吸收的研究,但仍存在很多研究不足和不确定性。主要包括:1) 对营林措施影响土壤CH4吸收通量的内在机理认识不足,例如,森林土壤CH4吸收对不同施氮时期的响应存在明显差异,而代谢产物的毒害作用、NH4+和CH4竞争甲烷单氧酶等假说无法全面揭示施肥对土壤CH4吸收影响的内在机理;2) 目前的研究多集中于单一营林措施对土壤CH4吸收通量的影响,而多种因素的交互作用及甲烷氧化菌对各种干扰因素的响应机制研究相对较少;3) 近年来,部分学者利用微生物学和分子生物学的手段研究甲烷氧化菌数量、群落结构变化对土壤CH4吸收通量的影响,而影响森林土壤CH4吸收的微生物学机理尚缺乏系统研究;4) 温度和水分是影响土壤CH4吸收的主要环境因素,全球变暖和干旱对林地土壤CH4吸收影响研究还很鲜见。

今后应加强以下4方面研究:1) 森林土壤CH4吸收对N输入响应机制的研究;2) 多种因素对林地土壤CH4吸收影响的长期定位试验的研究;3) 甲烷氧化菌对各种干扰因素响应模式的研究;4) 气候变化对林地土壤CH4吸收的影响及其响应机制的研究。

参考文献(References)
[] 陈雪双. 2014. 施肥及林下杂草管理对山核桃林地土壤温室气体排放的影响. 临安: 浙江农林大学硕士学位论文.
( Chen X S.2014.Effects of fertilization and understory management on soil Greenhouse gases emissions in Chinese Carya cathayensis stands. Lin'an:MS thesis of Zhejiang A & F University.[in Chinese])
[] 陈朝琪, 杨智杰, 刘小飞, 等. 2014. 中亚热带天然林土壤CH4吸收速率对模拟N沉降的响应. 生态学报, 34(10): 2498–2508.
(Chen Z Q, Yang Z J, Liu X F, et al. 2014. Responses of CH4uptake rates to simulated N deposition in a nature forest in mid-subtropical China. Acta Ecologica Sinca, 34(10): 2498–2508. [in Chinese])
[] 程淑兰, 方华军, 于贵瑞, 等. 2012. 森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展. 生态学报, 32(15): 4914–4923.
(Cheng S L, Fang H J, Yu G R, et al. 2012. The primary factors controlling methane uptake from forest soils and their responses to increased atmospheric nitrogen deposition:a review. Acta Ecologica Sinica, 32(15): 4914–4923. [in Chinese])
[] 丁洪, 张玉树, 郑祥洲. 2011. 除草剂对土壤氮素循环的影响. 生态环境学报, 20(4): 767–772.
(Ding H, Zhang Y S, Zheng X Z, et al. 2011. Review on the effect of herbicides on soil nitrogen cycle. Ecology and Environmental Sciences, 20(4): 767–772. [in Chinese])
[] 高升华, 张旭东, 汤玉喜, 等. 2013. 滩地美洲黑杨人工林皆伐对地表甲烷通量的短期影响. 林业科学, 49(1): 7–13.
(Gao S H, Zhang X D, Tang Y X, et al. 2013. Short-term effects of clear-cutting of Populus deltoides plantation on methane flux on the beach land of Yangtze River. Scientia Silvae Sinicae, 49(1): 7–13. DOI:10.11707/j.1001-7488.20130102[in Chinese])
[] 高文龙, 程淑兰, 方华军, 等. 2013. 寒温带针叶林土壤CH4吸收对模拟大气氮沉降增加的初期响应. 生态学报, 33(23): 7505–7515.
(Gao W L, Cheng S L, Fang H J, et al. 2013. Early responses of soil CH4 uptake to increased atmospheric nitrogen deposition in a cold-temperate coniferous forest. Acta Ecologica Sinica, 33(23): 7505–7515. [in Chinese])
[] 李海防, 夏汉平, 傅声雷, 等. 2009. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响. 植物生态学报, 33(6): 1015–1022.
(Li H F, Xia H P, Fu S L, et al. 2009. Emissions of soil greenhouse gases in response to under-story removal and Cassia alata addition in Eucalyptus urophylla plantation in Guangdong Province, China. Chinese Journal of Plant Ecology, 33(6): 1015–1022. [in Chinese])
[] 李海防, 张杏锋. 2010. 剔除灌草和添加翅荚决明对厚荚相思林土壤温室气体排放的影响. 应用生态学报, 21(3): 563–568.
(Li H F, Zhang X F. 2010. Soil greenhouse gases emission from an Acacia crassicarpa plantation under effects of under-story removal and Cassia alata addition. Chinese Journal of Applied Ecology, 21(3): 563–568. [in Chinese])
[] 李攀. 2014. 寒温带针叶林火烧迹地土壤温室气体通量研究. 呼和浩特: 内蒙古农业大学博士学位论文.
( Li P.2014.Soil greenhouse gases effluxes and its relationships with effect factors in the burned areas of Daxing'an Mountain. Hohhot:PhD thesis of Inner Mongolia Agricultural University.[in Chinese])
[] 刘娟, 陈雪双, 吴家森, 等. 2015. 剔除杂草对山核桃林地土壤温室气体排放的影响. 应用生态学报, 26(3): 666–674.
(Liu J, Chen X S, Wu J S, et al. 2015. Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands. Chinese Journal of Applied Ecology, 26(3): 666–674. [in Chinese])
[] 任乐, 马秀枝, 李长生. 2014. 林火干扰对土壤性质及温室气体通量的影响. 生态学杂志, 33(2): 502–509.
(Ren L, Ma X Z, Li C S. 2014. Effects of forest fire on soil property and greenhouse gas flux. Chinese Journal of Ecology, 33(2): 502–509. [in Chinese])
[] 王海淇. 2011. 大兴安岭北部实验林火影响下土壤碳、氮、水的时空变化. 长春: 东北林业大学硕士学位论文.
( Wang H Q.2011.Special and temporal variations of soil carbon, nitrogen and water as affected by an experimental forest fire in the Great Xing'an Mountains. Changchun:MS thesis of Northeast Forestry University.[in Chinese])
[] 闫美芳, 张新时, 江源, 等. 2013. 主要管理措施对人工林土壤碳的影响. 生态学杂志, 29(11): 2265–2271.
(Yan M F, Zhang X S, Jiang Y, et al. 2013. Effects of management practices on forest plantation soil carbon:a review. Chinese Journal of Ecology, 29(11): 2265–2271. [in Chinese])
[] 张蛟蛟, 李永夫, 姜培坤, 等. 2013. 施肥对板栗林土壤CH4吸收通量动态的影响. 植物营养与肥料学报, 19(6): 1428–1437.
(Zhang J J, Li Y F, Jiang P K, et al. 2013. Effects of fertilization on seasonal variations of soil CH4 uptake fluxes in Chinese chestnut stands. Plant Nutrition and Fertilizer Science, 19(6): 1428–1437. DOI:10.11674/zwyf.2013.0617[in Chinese])
[] 张凯, 郑华, 欧阳志云, 等. 2015. 施氮对桉树人工林生长季和非生长季土壤温室气体通量的影响. 生态学杂志, 34(7): 1779–1784.
(Zhang K, Zheng H, Ouyang Z Y, et al. 2015. Effects of nitrogen fertilization on greenhouse gas fluxes of soil-atmosphere interface in growing and non-growing season in eucalyptus plantations in southern China. Chinese Journal of Ecology, 34(7): 1779–1784. [in Chinese])
[] 张仕颖, 夏运生, 肖炜, 等. 2013. 除草剂丁草胺对高产水稻土微生物群落功能多样性的影响. 生态环境学报, 22(5): 815–819.
(Zhang S Y, Xia Y S, Xiao W, et al. 2013. Effects of butachlor on the functional diversity of microbial communities in high-yield paddy soil. Ecology and Environmental Sciences, 22(5): 815–819. [in Chinese])
[] Aronson E L, Helliker B R. 2010. Methane flux in non-wetland soils in response to nitrogen addition:a meta-analysis. Ecology, 91(11): 3242–3251. DOI:10.1890/09-2185.1
[] Auman A J, Speake C C, Lidstrom M E. 2001. nifH sequences and nitrogen fixation in type I and type Ⅱ methanotrophs. Applied & Environmental Microbiology, 67(9): 4009–4016.
[] Becker H, Uri V, Aosaar J, et al. 2015. The effects of clear-cut on net nitrogen mineralization and nitrogen losses in a grey alder stand. Ecological Engineering, 85: 237–246. DOI:10.1016/j.ecoleng.2015.10.006
[] Borken W, Brumme R.2009.Methane uptake by temperate forest soils//functioning and management of european beech ecosystems. Berlin Heidelberg:Springer, 369-385.
[] Bradford M A, Ineson P, Wookey P A, et al. 2000. Soil CH4oxidation:response to forest clearcutting and thinning. Soil Biology & Biochemistry, 32(7): 1035–1038.
[] Cai Z C. 2012. Greenhouse gas budget for terrestrial ecosystems in China. Science China Earth Sciences, 55(2): 173–182. DOI:10.1007/s11430-011-4309-8
[] Castro M S, Gholz H L, Clark K L, et al. 2000. Effects of forest harvesting on soil methane fluxes in florida slash pine plantations. Canadian Journal of Forest Research, 30(10): 1534–1542. DOI:10.1139/x00-084
[] Chen W C, Yen J H, Chang C S, et al. 2009. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. Ecotoxicology & Environmental Safety, 72(1): 120–127.
[] Denman K L, Brasseur G, Chidthaisong A, et al. 2007. Couplings between changes in the climate system and biogeochemistry. London, Cambridge University Press: 499-587.
[] Dutta M K, Ray R, Mukherjee R, et al. 2015. Atmospheric fluxes and photo-oxidation of methane in the mangrove environment of the Sundarbans, NE coast of India:a case study from Lothian Island. Agricultural & Forest Meteorology, 213: 33–41.
[] Fender A C, Birgit P, Gansert D, et al. 2012. The inhibiting effect of nitrate fertilisation on methane uptake of a temperate forest soil is influenced by labile carbon. Biology & Fertility of Soils, 48(6): 621–631.
[] Fernández-Fernández M, Gómez-Rey M X, González-Prieto S J. 2015. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years. Science of the Total Environment, 515/516: 92–100. DOI:10.1016/j.scitotenv.2015.02.048
[] Fest B J, Livesley S J, Fischer J C V, et al. 2015. Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest. Agricultural & Forest Meteorology, 201: 17–25.
[] Gao S H, Chen J Q, Tang Y X, et al. 2015. Ecosystem carbon (CO2 and CH4) fluxes of a Populus deltoides plantation in subtropical China during and post clear-cutting. Forest Ecology & Management, 357: 206–219.
[] Heimann M. 2010. How stable is the methane cycle. Science, 327(5970): 1211–1212. DOI:10.1126/science.1187270
[] Hoyos-Santillan J, Lomax B H, Large D, et al. 2016. Quality not quantity:organic matter composition controls of CO2, and CH4, fluxes in neotropical peat profiles. Soil Biology & Biochemistry, 103: 86–96.
[] Inclán R, Uribe C, Sánchez L, et al. 2012. N2O and CH4 fluxes in undisturbed and burned Holm oak, Scots pine and Pyrenean oak forests in central Spain. Biogeochemistry, 107(1/3): 19–41.
[] Intergovemental Panel on Climate Change (IPCC). 2007. Climate change 2007:the physical science basis. Cambridge, Cambridge University Press.
[] Intergovemental Panel on Climate Change (IPCC). 2013. Climate change 2013:the physics science basis. Cambridge, Cambridge University Press.
[] Iwata H, Harazono Y, Ueyama M, et al. 2015. Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique. Agricultural & Forest Meteorology, 214/215: 157–168.
[] Jassal R S, Black T A, Roy R, et al. 2011. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma, 162(1/2): 182–186.
[] Jiang J Y, Chen L M, Sun Q, et al. 2015. Application of herbicides is likely to reduce greenhouse gas (N2O and CH4) emissions from rice-wheat cropping systems. Atmospheric Environment, 107: 62–69. DOI:10.1016/j.atmosenv.2015.02.029
[] K ster E, K ster K, Berninger F, et al. 2015. Carbon dioxide, methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in Värri, Finnish Lapland. Geoderma Regional, 5: 181–187. DOI:10.1016/j.geodrs.2015.07.001
[] Kim Y S, Makoto K, Takakai F, et al. 2011. Greenhouse gas emissions after a prescribed fire in white birch dwarf bamboo stands in Northern Japan, focusing on the role of charcoal. European Journal of Forest Research, 130(6): 1031–1044. DOI:10.1007/s10342-011-0490-8
[] Kim Y, Tanaka N. 2003. Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska. Journal of Geophysical Research:Atmospheres, 108(1): 1–12.
[] Kim Y S, Imori M, Watanabe M, et al. 2012. Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmospheric Environment, 46: 36–44. DOI:10.1016/j.atmosenv.2011.10.034
[] Kirschke S, Bousquet P, Ciais P, et al. 2013. Three decades of global methane sources and sinks. Nature Geoscience, 6(10): 813–823. DOI:10.1038/ngeo1955
[] Krause K, Niklaus P A, Schleppi P. 2013. Soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O in a mountain spruce forest subjected to long-term N addition and to tree girdling. Agricultural & Forest Meteorology, 181: 61–68.
[] Kulmalaa L, Aaltonen H, Berninger F, et al. 2014. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agricultural & Forest Meteorology, 188: 33–44.
[] Lavoie M, Kellman L, Risk D. 2013. The effects of clear-cutting on soil CO2, CH4, and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada. Forest Ecology & Management, 304: 355–369.
[] Li H F. 2010. Soil CH4 fluxes response to understory removal and N-fixing species addition in four forest plantations in Southern China. Journal of Forestry Research, 21(3): 301–310. DOI:10.1007/s11676-010-0075-2
[] Maris S C, Teira-Esmatges M R, Arbonés A, et al. 2015. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Science of the Total Environment, 538: 966–978. DOI:10.1016/j.scitotenv.2015.08.040
[] Morishita T, Noguchi K, Kim Y, et al. 2015. CO2, CH4 and N2O fluxes of upland black spruce (Picea mariana) forest soils after forest fires of different intensity in interior Alaska. Soil Science & Plant Nutrition, 61(1): 98–105.
[] Nakano T.2006.Changes in surface methane flux after a forest fire in West Siberia//Hatano R, Guggenberger G. Symptom of environmental change in Siberian Permafrost Region. Sapporo:Hokkaido University Press, 55-63.
[] Qiao Y F, Miao S J, Silva L C R, et al. 2014. Understory species regulate litter decomposition and accumulation of C and N in forest soils:a long-term dual-isotope experiment. Forest Ecology & Management, 329: 318–327.
[] Shrestha R K, Strahm B D, Sucre E B. 2015. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems. New Forests, 46(2): 167–193. DOI:10.1007/s11056-014-9454-4
[] Sjögersten S, Melander E, Wookey P A. 2007. Depth distribution of net methanotrophic activity at a mountain birch forest-tundra heath ecotone, Northern Sweden. Arctic Antarctic & Alpine Research, 39(3): 477–480.
[] Sullivan B W, Kolb T E, Hart S C, et al. 2008. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests. Forest Ecology & Management, 255(12): 4047–4055.
[] Sullivan B W, Kolb T E, Hart S C, et al. 2011. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry, 104(1/3): 251–265.
[] Sundqvist E, Vestin P, Crill P, et al. 2014. Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences, 11(21): 4637–4667.
[] Takakai F, Desyatkin A R, Lopez C M L, et al. 2008. Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia. Soil Science & Plant Nutrition, 54(6): 938–949.
[] Veldkamp E, Koehler B, Corre M D. 2013. Indications of nitrogen limited methane uptake in tropical forest soils. Biogeosciences, 10(3): 5367–5379.
[] Wang F M, Zou B, Li H F, et al. 2014. The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations. Journal of Forest Research, 19(1): 238–243. DOI:10.1007/s10310-013-0395-0
[] Wang Q K, Wang S L. 2011. Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Applied Soil Ecology, 47(3): 210–216. DOI:10.1016/j.apsoil.2010.12.004
[] Wang Y F, Chen H, Zhu Q, et al. 2014. Soil methane uptake by grasslands and forests in China. Soil Biology & Biochemistry, 74: 70–81.
[] Wang Y S, Cheng S L, Fang H J, et al. 2014. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China. Plos One, 9(4): e93571. DOI:10.1371/journal.pone.0093571
[] Whalen S C, Reeburgh W S. 2000. Effect of nitrogen fertilization on atmospheric methane oxidation in boreal forest soils. Chemosphere-Global Change Science, 2(2): 151–155. DOI:10.1016/S1465-9972(00)00003-9
[] Wu J P, Liu Z F, Wang X L, et al. 2011. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Functional Ecology, 25(4): 921–931. DOI:10.1111/fec.2011.25.issue-4
[] Wu X, Nicolas B, Rainer G, et al. 2011. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany. Environmental Pollution, 159(10): 2467–2475. DOI:10.1016/j.envpol.2011.06.025
[] Yashiro Y, Wan R K, Okuda T, et al. 2008. The effects of logging on soil greenhouse gas (CO2, CH4, N2O) flux in a tropical rain forest, Peninsular Malaysia. Agricultural & Forest Meteorology, 148(5): 799–806.
[] Yoshiyuki I, Shigehiro I, Masamichi T, et al. 2004. The effect of thinning on carbon dioxide emission and methane uptake by forest soils in Hinoki cypress (Chamaecyparis obtusa) plantations. Applied Forest Science, 13(2): 91–96.
[] Zerva A, Mencuccini M. 2005. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation. Soil Biology & Biochemistry, 37(11): 2025–2036.
[] Zhang J J, Li Y F, Chang S X, et al. 2015. Understory management and fertilization affected soil greenhouse gas emissions and labile organic carbon pools in a Chinese chestnut plantation. Forest Ecology & Management, 337: 126–134.
[] Zhang T, Zhu W, Mo J M, et al. 2011. Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China. Biogeosciences, 8(9): 2805–2813. DOI:10.5194/bg-8-2805-2011
[] Zhang W, Mo J M, Zhou G Y, et al. 2008. Methane uptake responses to nitrogen deposition in three tropical forests in southern China. Journal of Geophysical Research:Atmospheres, 113(11): 1–10.
[] Zhang W, Zhu X, Liu L, et al. 2012. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species. Journal of Geophysical Research:Biogeosciences, 117(4): 1–9.
[] Zhao Y, Wang Y Z, Xu Z H, et al. 2015. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia. Biogeosciences, 12(21): 6279–6290. DOI:10.5194/bg-12-6279-2015
[] Zhou Y, Zheng L F, Zhou X N, et al. 2015. Greenhouse gas (GHG) emissions and the optimum operation model of timber production systems in Southern China. Fresenius Environmental Bulletin, 24(11): 3743–3753.