林业科学  2017, Vol. 53 Issue (4): 166-174   PDF    
DOI: 10.11707/j.1001-7488.20170419
0

文章信息

陈锦平, 曾成城, 马文超, 刘媛, 贾中民, 魏虹, 刘永贤
Chen Jinping, Zeng Chengcheng, Ma Wenchao, Liu Yuan, Jia Zhongmin, Wei Hong, Liu Yongxian
水淹和非水淹条件下秋华柳扦插苗镉积累特征比较
Comparisons on the Accumulation Characteristic of Cadmium in Cuttings of Salix variegata under Flooding and Non Flooding Conditions
林业科学, 2017, 53(4): 166-174.
Scientia Silvae Sinicae, 2017, 53(4): 166-174.
DOI: 10.11707/j.1001-7488.20170419

文章历史

收稿日期:2015-10-16
修回日期:2017-02-10

作者相关文章

陈锦平
曾成城
马文超
刘媛
贾中民
魏虹
刘永贤

水淹和非水淹条件下秋华柳扦插苗镉积累特征比较
陈锦平1,2, 曾成城1, 马文超1, 刘媛1, 贾中民1,3, 魏虹1, 刘永贤2    
1. 三峡库区生态环境教育部重点实验室 重庆市三峡库区植物生态与资源重点实验室 西南大学生命科学学院 重庆 400715;
2. 广西农业科学院农业资源与环境研究所 南宁 530007;
3. 重庆市地质矿产勘查开发局川东南地质大队 重庆 400038
摘要:【目的】研究秋华柳在水淹-镉胁迫下的生长适应性及其在水淹条件下的镉积累特征,探究秋华柳对镉污染土壤的修复潜力变化及其适应性管理途径,为更好利用该植物改善三峡库区消落带土壤环境提供理论依据。【方法】以秋华柳扦插苗为材料,采取向土壤添加外源镉(CdCl2·2.5H2O)的形式,共设0、0.5、2,10 mg·kg-1 4个镉处理浓度,每个镉处理浓度下又设置常规供水和水淹2个水分条件,研究秋华柳植株各组分生物量及镉含量的变化。【结果】1)秋华柳在水淹-镉胁迫下的总生物量、地上生物量和茎、叶生物量与对照无显著差异(P > 0.05);在相同镉处理浓度时,水淹条件下秋华柳根生物量均小于常规供水。2)常规供水下秋华柳植株地上各组分具有较高镉含量,在2 mg·kg-1镉处理时秋华柳萌枝、叶片、插条木质部和插条树皮镉含量分别为12.98、10.08、7.47和17.2 mg·kg-1。3)水淹显著影响秋华柳植株各组分的镉含量(P < 0.05),其中地上各组分(萌枝、叶、插条树皮和木质部)的镉含量明显降低,4个镉处理浓度(0、0.5、2、10 mg·kg-1)萌枝镉含量分别为常规供水的39.0%、23.7%、34.0%和51.8%。但根隔含量显著增加(P < 0.05),为常规供水下的133.0%~390.0%。4)在水淹条件下,秋华柳镉的根-枝转移系数显著小于常规供水(P < 0.05)。5)在水淹条件下,秋华柳镉积累能力明显降低,包括地上部分和整株。在2 mg·kg-1镉处理浓度时,常规供水下秋华柳整株和地上部分镉积累量分别是146.40、125.35 μg·plant-1,该数值水淹时分别是常规供水时的56.7%和35.2%。【结论】秋华柳在水淹-镉胁迫下具有良好的生长适应性,但水淹条件下秋华柳地上各组分镉含量明显降低,地上部分和整株镉积累量下降。为了提高秋华柳对土壤镉的清除效果,防止部分枝叶在水淹情况下腐烂造成水体二次污染,建议在每年水淹前对其地上部分进行收割。
关键词:秋华柳    水淹    镉污染    三峡库区    消落带    
Comparisons on the Accumulation Characteristic of Cadmium in Cuttings of Salix variegata under Flooding and Non Flooding Conditions
Chen Jinping1,2, Zeng Chengcheng1, Ma Wenchao1, Liu Yuan1, Jia Zhongmin1,3, Wei Hong1 , Liu Yongxian2    
1. Key Laboratory of Eco-Environments in Three Gorges Reservoir Region of Ministry of Education Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region School of Life Sciences, Southwest University Chongqing 400715;
2. Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural Sciences Nanning 530007;
3. Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration Chongqing 400038
Abstract: 【Objective】This study aimed at revealing variation in the phytoremediation ability of the cadmium-contaminated soil and providing theoretical basis on the adaptive management strategies of Salix variegata under flooding in the water-level-fluctuation zone of the Three Gorges Reservoir Region. For this end, the growth adaptability of S. variegata to flooding-and-Cd stress and its Cd accumulation characteristic under flooding were studied.【Method】The biomass and cadmium concentrations in various parts of cuttings of S. variegata were determined. The plants were treated by four concentrations of cadmium (0, 0.5, 2 and 10 mg·kg-1 individually, achieved by adding CdCl2·2.5H2O to soil), interacted with two water conditions (Control group, CK; Flooding group, FL).【Result】1) The total biomass, aboveground, stem and leaf biomass of S. variegata were not significantly influenced by flooding-and-Cd stress treatments (P > 0.05), while the root biomass under flooding was less than that of control at the same cadmium concentration. 2) The Cd contents in the aboveground parts of S. variegata were higher in the control groups than in the corresponding flooding groups. Under the concentration of 2 mg·kg-1 Cd, the Cd contents in branch, leaf, bark and xylem were 12.98, 10.08, 7.47 and 17.2 mg·kg-1, respectively. 3) Flooding significantly influenced the cadmium contents in various parts of S. variegata (P < 0.05). The Cd contents in branch, leaf, bark and xylem were obviously decreased by flooding. With the increasing of Cd concentration (from 0, 0.5, 2 to 10 mg kg-1), the Cd contents in those tissues were 39.0%, 23.7%, 34.0% and 51.8% of the corresponding control treatment, respectively. However, the Cd contents of root increased significantly under flooding as compared to the controls, accounting for 133.0% to 390.0%. 4) Cd translocation ability from root to branch in flooding was decreased significantly compared to control (P < 0.05). 5) Cd accumulations in the aboveground and whole plant of S. variegata were obviously reduced by flooding. For instance, with treatment of 2 mg·kg-1 Cd, the Cd accumulations of total plant and aboveground part under flooding accounted for 56.7% and 35.2% of the control, which were 146.40 μg·plant-1 and 125.35 μg·plant-1, respectively.【Conclusion】S. variegata had a high growth adaptation under flooding-and-Cd stress. Cd contents of aboveground parts, Cd accumulations of aboveground parts and total plant of S. variegata were reduced under flooding. In order to enhance the efficiency of phytoremediation in Cd contaminated area of the Three Gorges Reservoir Region, and to prevent the secondary pollution caused by decayed litter, it is necessary to harvest the shoots of S. variegata before flooding every year.
Key words: Salix variegata    flooding    Cd pollution    Three Gorges Reservoir Region    water-level-fluctuation zone    

2014年4月公布的全国土壤污染状况调查公报显示,镉的超标率最高,达到7%,为中国土壤的首要污染物(环境保护部等,2014)。三峡库区段早期研究表明,镉也是当地表层土壤的首要污染物,部分地区已达中度污染(0.6~1 mg·kg-1)(唐将,2005),高镉异常地区自然土壤中镉含量可达8.5 mg·kg-1(刘意章等,2013)。目前,三峡库区消落带土壤已呈现镉污染加剧趋势,若不及时采取措施进行控制,将会带来严重的环境和社会问题(贾旭威等,2014)。另外,消落带的反季节和长时间水淹已造成库区消落带很多原生陆生植物物种的消失,引起了严重的环境问题(Singh et al., 2006)。开展人工植被修复是近年来治理三峡库区消落带环境问题的一项重要措施(Ye et al., 2012)。为了更加有效地改善消落带的土壤环境,消落带植被构建所需的物种不仅需要具有耐水淹的能力(李昌晓等,2005),还要有较强的耐受重金属胁迫的能力,并具有较好的重金属富集和积累能力(贾中民等,2011)。

秋华柳(Salix variegata)是三峡库区乡土物种,在消落带具有较广泛的分布。已有研究表明,秋华柳具有较强的耐受水淹能力(Schreiber et al., 2011李娅等,2008罗芳丽等,20082007) 和一定的镉耐受及积累能力(贾中民等,2011An et al., 2015),在消落带植被重建中具有较大应用潜力。在三峡库区消落带植被构建的研究中,很多学者建议将秋华柳等乡土灌木作为170 m水位以上区域植被恢复的推荐物种之一(杜立刚等,2012谭淑端等,2008黄世友等,2013)。但有关秋华柳的研究均仅局限在单一水淹或单一镉胁迫的处理上,秋华柳能否同时应对水淹-镉胁迫尚不清楚,水淹是否会改变秋华柳的镉富集积累作用也有待进一步研究。鉴于此,本研究以秋华柳扦插苗为对象,通过水淹盆栽模拟试验,了解秋华柳在水淹-镉胁迫下的生长适应性以及在水淹条件下的镉富集积累特征,探究其在特殊水文环境中对镉污染土壤的修复差异并据此寻找适应性管理途径,为更好地利用该物种改善库区消落带的土壤镉污染提供参考。

1 材料与方法 1.1 试验材料与设计

试验材料为秋华柳扦插苗。2013年10月从重庆市嘉陵江同兴街段河岸(29°41′2″N,106°26′56″E)采集秋华柳枝条,用超纯水冲洗干净后统一剪成15 cm的小段,将各小段枝条扦插到小型育苗袋中进行预培养,期间采用常规田间管理,适时浇水除草。

2014年2月中旬,将风干过筛土壤装入试验用花盆(上径18 cm×下径13 cm×高15 cm),每盆2 kg(盆内土壤高度约8.5 cm)。土壤为生态试验园地中的一般性壤土,pH7.18,有机质含量2.52%,元素含量为全氮1.41 g·kg-1、全磷1.01 g·kg-1、全钾17.82 g·kg-1、碱解氮132.82 mg·kg-1、有效磷31.72 mg·kg-1、速效钾129.54 mg·kg-1、总镉0.23 mg·kg-1,田间持水量为33.6%。根据三峡库区土壤镉污染情况(唐将,2005刘意章等,2013),共设0、0.5、2和10 mg·kg-1(Cd2+/土壤)4个镉处理浓度,以CdCl2·2.5H2O溶液形式加入,土壤加入镉溶液后拌匀陈化1个月待用。

2014年3月中旬,选取生长基本一致的秋华柳扦插苗,随机栽入经镉处理的花盆中,每盆1株,栽入幼苗后将镉处理植株随机平均分成2组,一组为常规供水组(对照组),常规供水为保持田间持水量70%~80%,另一组则放入塑料盆(上径26 cm×下径19.5 cm×高17 cm)进行水淹处理(水淹组),水淹组始终保持水位高出土壤表面5 cm处。试验设计见表 1

表 1 试验设计 Tab.1 Experimental design

所有植株均置于生态试验园地(海拔249 m)的遮雨棚(棚顶透明,4面敞开)下进行培养,试验期间每天按时检查,适时补充水分,保证各处理水分条件处于试验所设置的水平。处理60天后进行取样测试,每处理15株,生物量和镉含量测定以随机抽取的5株苗木的平均值作为1次重复,共3次重复。

1.2 生物量测定

处理60天后将样品采回,分为根、叶、萌枝、插条木质部和插条树皮5部分,在80 ℃下烘干至恒质量,用电子天平称量各部分生物量。茎生物量=萌枝生物量+插条木质部生物量+插条树皮生物量;地上生物量=茎生物量+叶生物量;总生物量=地上生物量+根生物量。

1.3 植株各组分镉含量的测定

用球磨仪粉碎烘干的样品,样品消解定容后用电感耦合等离子体发射光谱仪(iCAP6300型)测定植株各组分镉含量并计算镉积累量。

1.4 数据分析

采用转移系数分析镉在秋华柳植株中的迁移特征,根-枝转移系数是指萌枝镉含量与根镉含量的比值(程龙玲等,2012)。

植株各组分镉积累量=植株各组分生物量×相应镉含量;插条积累量=插条木质部积累量+插条树皮积累量。

利用SPSS22.0双因素方差分析法,揭示水分和镉处理及其交互作用对秋华柳生物量、镉含量和镉积累量的影响。采用Duncan多重比较检验不同镉浓度之间镉含量和生物量的差异显著性以及相同处理下植株不同组分隔积累量的差异显著性,以t检验比较相同镉浓度下不同水分处理间生物量、镉含量及转移系数的差异显著性。

2 结果与分析 2.1 秋华柳在水淹-镉胁迫下的生物量变化

双因素方差分析显示,水分和镉处理的交互作用对秋华柳总生物量、地上生物量和根、茎、叶生物量均无显著效应(P > 0.05)(表 2)。从图 1可以看出,秋华柳在经历60天的水淹或镉胁迫后,其总生物量、地上生物量和茎、叶生物量与对照相比无显著差异(P> 0.05)。对照组根生物量随着镉处理浓度增加呈现出降低趋势,水淹组不同镉处理浓度间根生物量无显著差异(P> 0.05)。在相同镉处理浓度下,水淹组秋华柳根生物量均小于对照组。总体来看,秋华柳对镉或水淹都有很好的耐受性,秋华柳对镉-水淹胁迫表现出较强的生长适应性。

表 2 不同水分和镉处理对秋华柳生物量的影响 Tab.2 Effects of water treatments and Cd treatments on biomass of S. variegata
图 1 水淹-镉胁迫对秋华柳生物量的影响 Fig.1 Effects of flooding-and-Cd stress on biomass of S. variegata
图中数值为平均值±标准误。不同大写字母表示相同水分条件各镉处理组之间差异显著(P < 0.05),不同小写字母表示相同镉处理组不同水分组之间差异显著(P < 0.05)。下同。
Values in the figures are means±SE. Values with the different capital letters are significantly different at P < 0.05 among different Cd treatments at the same water condition. The same below.
2.2 水淹对秋华柳各组分镉含量的影响

从试验结果可看出,无论在水淹还是常规供水条件下,秋华柳根、枝、叶、插条木质部和插条树皮镉含量均随镉浓度增加而增大(图 2)。水淹组4个镉处理浓度(0、0.5、2、10 mg·kg-1)根镉含量依次是6.05、16.43、56.00、124.46 mg·kg-1,分别是对照组的133.0%、120.9%、308.8%、390.0%,其中,在中、高镉浓度时根镉含量显著升高(P < 0.05)(图 2A)。相同镉浓度下水淹组地上部分(萌枝、叶、插条树皮和木质部)的镉含量小于对照组。4个镉处理浓度(0、0.5、2、10 mg·kg-1),水淹组萌枝镉含量分别是对照组的39.0%、23.7%、34.0%和51.8%,叶、插条树皮和木质部的结果与萌枝类似(图 2BCDE)。双因素方差分析结果显示,水分和镉处理交互作用显著影响秋华柳根、萌枝、叶和插条树皮镉含量(表 3);相同镉处理浓度下,2种水分处理间秋华柳根、萌枝、叶和插条树皮与木质部的镉含量均差异极显著(P < 0.01),尤其是地上部分的镉含量明显降低(表 3)。

图 2 水淹对秋华柳各器官镉含量的影响 Fig.2 Effects of flooding on Cd concentration in organs of S. variegata
表 3 不同水分和镉处理对秋华柳镉含量的影响 Tab.3 Effects of water treatments and Cd treatments on Cd content of S. variegata
2.3 水淹对秋华柳镉的根-枝转移系数的影响

水淹组4个镉处理浓度秋华柳镉的根-枝转移系数均显著小于对照组(P < 0.05),并随着镉浓度升高而降低;对照组的根-枝转移系数在所有镉处理浓度一直处于较高水平(图 3)。

图 3 水淹对秋华柳镉转移系数的影响 Fig.3 Effects of flooding on Cd translocation factors of S. variegata
2.4 水淹对秋华柳各组分镉积累量的影响

经双因素方差分析得知,水淹和镉处理交互作用显著或极显著影响秋华柳的插条镉积累量、地上部分镉积累量、整株镉积累量和根、叶镉积累量(表 4)。综合考虑秋华柳各组分生物量和镉含量,在常规供水条件下,4个镉处理浓度秋华柳各组分镉积累量由大到小依次为萌枝>插条>根>叶,除T0常规供水外,萌枝和插条的镉积累量均显著高于根和叶(P < 0.05)。T0、T1、T2和T3处理秋华柳地上部分镉积累量分别占整株积累量的75.1%、82.6%、85.6%和82.7%(表 5),高比例的地上部分积累量有利于通过定期收割其地上部分而移除镉污染。在水淹条件下,秋华柳各组分镉积累量的大小顺序与常规供水相比变化较大。WT2和WT3处理秋华柳根镉积累量大于萌枝、插条和叶,4个处理中秋华柳萌枝、插条和叶的镉积累量相近,三者间无显著差异(P > 0.05)(表 5)。4个镉处理浓度对照组地上部分镉积累量和总镉积累量均大于相同镉浓度处理水淹组的相应值。4个镉处理浓度(0、0.5、2,、0 mg·kg-1)秋华柳地上部分镉积累量水淹组分别是组的61.5%、28.6%、35.2%、43.0%,总镉积累量则分别是61.0%、32.8%、56.7%、95.8%(表 5)。由此可见,水淹减少了秋华柳的总镉积累量和地上部分镉积累量。

表 4 不同水分和镉处理对秋华柳镉积累量的影响 Tab.4 Effects of water treatments and Cd treatments on Cd accumulations of S. variegata
表 5 水淹对秋华柳镉积累量的影响 Tab.5 Effects of flooding on Cd accumulation of S. variegata

综合考虑秋华柳植株的生物量及镉含量,并与已有研究中其他镉富集备选物种相比较(表 6)可知,秋华柳在消落带镉污染土壤的治理方面具有较大潜力,可应用于消落带退化生态系统的重建。

表 6 秋华柳与其他镉富集备选物种镉积累的比较 Tab.6 Comparison of cadmium (Cd) accumulation between S. variegata and other candidate plant species for Cd phytoremediation
3 讨论

秋华柳在水淹-镉胁迫下的生长适应性对其在水淹条件下以及非水淹期的镉积累能力具有重要影响,良好的应对胁迫能力为其度过水淹期后发挥富集土壤镉的作用提供了良好基础。从本研究结果来看,水淹-镉胁迫对秋华柳根生物量具有不利影响,但对其他生长指标的影响不显著。秋华柳经过水淹-镉胁迫后,其总生物量、地上生物量与常规供水均无显著差异。由此可见,秋华柳在水淹-镉胁迫同时存在的情况下具有良好的生长适应性,这为其应用于消落带170 m水位以上区域镉污染土壤的治理提供了良好基础。

秋华柳作为柳属树种,具有生长速度快和可定期收割等特点,能有效提高植株对土壤污染元素(包括重金属元素)的吸收(Pulford et al., 2003)。将重金属富集于植物体内作为净化土壤的一种方法,除了受限于植物生物量外,植物体内的重金属浓度和积累位置对土壤修复效果也具有重要影响(Punshon et al., 1995Ebbs et al., 1997)。在2 mg·kg-1镉处理水平下,秋华柳萌枝、叶片、插条木质部和插条树皮的镉含量分别达到12.98、10.08、7.47和17.2 mg·kg-1,其地上各组分镉含量均高于相近土壤镉浓度(1~5 mg·kg-1)下某些镉富集植物(如牛膝菊、毛枝柳和蒿柳等)的相应值,其树皮镉含量达到牛繁缕在25 mg·kg-1镉浓度下地上部分镉含量的45.3%(表 6),可见秋华柳对土壤镉的清除具有较大潜力。但是,水淹对秋华柳各组分镉含量具有显著影响,尤其显著地降低地上各组分的镉含量。水淹条件下秋华柳的地上各组分(萌枝、叶、插条树皮和插条木质部)镉含量显著小于常规供水,其中水淹条件下萌枝镉含量仅为常规供水条件下的23.7%~51.8%。水淹不仅使新生器官(萌枝和叶)的镉浓度降低,而且使原有生物量(插条木质部和树皮)中的镉流失。与常规供水相比,水淹显著影响秋华柳植株不同组分的镉含量,尤其是降低植株地上部分的镉含量,这与水稻(Oryza sativa)的镉富集研究结果类似(Sun et al., 2014)。同时,各镉处理浓度下水淹时镉的根-枝转移系数均显著低于常规供水,水淹显著降低了镉在秋华柳植株内向地上部分转移,Li等(2015)的研究也发现持续水淹条件下镉向稻米的转移能力明显减弱。由此可见,在水淹条件下秋华柳地上部分对镉的富集能力受到明显抑制。

水淹除了改变秋华柳的镉富集特征外,也显著影响秋华柳的整株镉积累水平。已有研究表明,植物对土壤重金属的积累能力一方面与物种特性密切相关,另一方面也受到土壤因素尤其是土壤重金属生物有效性的限制(Hu et al., 2013)。土壤水分是影响土壤重金属化学形态的最重要因素之一,水淹条件下土壤理化性质的改变对重金属形态特性具有决定性作用(Vodyanitskii et al., 2014)。水淹条件下,土壤氧化还原电位(Eh)降低,土壤中的硫元素容易被还原成负二价硫S2-,S2-易与Cd2+结合成难溶于水的CdS,从而降低植物对镉的吸收,但当积水排除后,CdS又能迅速被氧化,从而恢复植物对镉的吸收(Bingham et al., 1976)。综合考虑秋华柳各组分生物量和镉含量,在常规供水条件下秋华柳地上各组分镉积累量和总镉积累量均处于较高水平,萌枝是其最大镉富集部位,地上部分镉积累量占整株积累量的比值高达75.1%~85.6%,其中2 mg·kg-1镉处理地上部镉积累量达到125.35 μg·plant-1,远高于牛繁缕在25 mg·kg-1镉处理地上部镉积累量(82.74 μg·plant-1)(张潇等,2015),体现了木本植物在植物修复上拥有较大生物量的优势。秋华柳这种积累特征有利于在每年落叶前对其地上部分进行收割,从而提高对土壤镉的清除效率。水淹条件下2 mg·kg-1镉处理秋华柳的地上部分镉积累量只有44.08 μg·plant-1,仅是非水淹条件下的35.2%。水淹条件下各镉处理浓度秋华柳整株总镉积累量也均小于常规供水,在2 mg·kg-1镉处理时,水淹条件下秋华柳整株镉积累量(82.94 μg·plant-1)仅是常规供水(146.40 μg·plant-1)的56.7%。由此可见,水淹总体上降低了秋华柳对土壤镉的吸收和积累,这与Zhao等(2010)Kawasaki等(2011)对水稻的研究结果一致。

4 结论

综上所述,秋华柳在水淹-镉胁迫下具有良好的生长适应性,可为其在度过水淹期后发挥高效的镉富集能力提供良好保障。但水淹会明显降低秋华柳地上各器官的镉含量,使得地上部分和整株秋华柳对土壤镉的积累量下降,即在水淹条件下秋华柳对镉的富集积累能力明显下降,在土壤镉治理方面的应用潜力受到一定抑制。本研究结果对在三峡库区野外应用秋华柳移除土壤镉污染具有一定的启发作用。对于三峡库区170 m水位以上区域来说,水淹期较短且主要处于植物生长缓慢的冬季,为了提高秋华柳对土壤镉的清除效果,防止原有生物量中的镉流回土壤,也为了防止部分枝叶在水淹条件下腐烂造成水体及土壤的二次污染,建议在每年9月水淹前,对秋华柳地上部分进行收割处理。

参考文献(References)
[] 程龙玲, 周守标, 吴晓艳, 等. 2012. 弯囊苔草对Cd胁迫的响应及其Cd富集能力的研究. 中国草地学报, 34(2): 16–22.
( Cheng L L, Zhou S B, Wu X Y, et al. 2012. Studies on responses of Carex dispalata to Cd stress and its accumulation ability. Chinese Journal of Grassland, 34(2): 16–22. [in Chinese] )
[] 杜立刚, 方芳, 郭劲松, 等. 2012. 三峡库区城市消落带生态规划与保护探讨. 长江流域资源与环境, 21(6): 726–731.
( Du L G, Fang F, Guo J S, et al. 2012. Ecological planning and protection of urban water-level-fluctuation zone in the Three Gorges Reservoir. Resources and Environment in the Yangtze Basin, 21(6): 726–731. [in Chinese] )
[] 黄世友, 马立辉, 方文, 等. 2013. 三峡库区消落带植被重建与生态修复技术研究. 西南林业大学学报, 33(3): 74–78.
( Hang S Y, Ma L H, Fang W, et al. 2013. Study on the reconstruction and ecological restoration techniques of vegetation in hydro-fluctuation belt of the Three Gorge Reservoir. Journal of Southwest Forestry University, 33(3): 74–78. [in Chinese] )
[] 贾中民, 魏虹, 孙晓灿, 等. 2011. 秋华柳和枫杨幼苗对镉的积累和耐受性. 生态学报, 31(1): 107–114.
( Jia Z M, Wei H, Sun X C, et al. 2011. Accumulation and tolerance of Salix variegate and Pterocarya stenoptera seedlings to cadmium. Acta Ecologica Sinica, 31(1): 107–114. [in Chinese] )
[] 贾旭威, 王晨, 曾祥英, 等. 2014. 三峡沉积物中重金属污染累积及潜在生态风险评估. 地球化学, 43(2): 174–179.
( Jia X W, Wang C, Zeng X Y, et al. 2014. The occurrence, accumulation and preliminary risk assessment of heavy metals in sediments from the main tributaries in the Three Gorges Reservoir. Geochimica, 43(2): 174–179. [in Chinese] )
[] 环境保护部, 国土资源部. 2015. 全国土壤污染状况调查公报. www.mlr.gov.cn/xwdt/jrxw/201404/P020140417573876167417.pdf.
( Ministry of Environmental Protection, Ministry of Land and Resources. 2015. Bulletin of the national soil pollution survey. www.mlr.gov.cn/xwdt/jrxw/201404/P020140417573876167417.pdf. [in Chinese])
[] 李昌晓, 钟章成, 刘芸. 2005. 模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响. 生态学报, 25(8): 1953–1959.
( Li C X, Zhong Z C, Liu Y. 2005. Effect of soil water change on photosynthetic characteristics of Taxodium distichum seedlings in the hydro-fluctuation belt of the Three Gorges Reservoir Area. Acta Ecologica Sinica, 25(8): 1953–1959. [in Chinese] )
[] 罗芳丽, 曾波, 叶小齐, 等. 2008. 水淹对三峡库区两种岸生植物秋华柳(Salix variegata Franch. )和野古草(Arundinella anomala Steud.)水下光合的影响.生态学报, 28(5): 1964–1970.
( Luo F L, Zeng B, Ye X Q, et al. 2008. Underwater photosynthesis of the riparian plants Salix variegate Franch. and Arundinella anomala Steud. in Three Gorges reservoir region as affected by simulated flooding. Acta Ecologica Sinica, 28(5): 1964–1970. [in Chinese] )
[] 罗芳丽, 曾波, 陈婷, 等. 2007. 三峡库区岸生植物秋华柳对水淹的光合和生长响应. 植物生态学报, 31(5): 910–918.
( Luo F L, Zeng B, Chen T, et al. 2007. Response to simulated flooding of photosynthesis and growth of riparian plant Salix variegate in the Three Gorges reservoir region of China. Journal of Plant Ecology, 31(5): 910–918. DOI:10.17521/cjpe.2007.0115 [in Chinese] )
[] 林立金, 罗丽, 杨代宇, 等. 2014. 混种富集植物对牛膝菊镉积累的影响. 水土保持学报, 28(6): 319–324.
( Lin L J, Luo L, Yang D Y, et al. 2014. Effects of intercropping with accumulator on cadmium accumulation of Galinsoga parviflora. Journal of Soil and Water Conservation, 28(6): 319–324. [in Chinese] )
[] 李娅, 曾波, 叶小齐, 等. 2008. 水淹对三峡库区岸生植物秋华柳(Salix variegata Franch.)存活和恢复生长的影响. 生态学报, 28(5): 1923–1930.
( Li Y, Zeng B, Ye X Q, et al. 2008. The effect of flooding on survival and recovery growth of the riparian plant Salix variegate Franch. in Three Gorges reservoir region. Acta Ecologica Sinica, 28(5): 1923–1930. [in Chinese] )
[] 刘意章, 肖唐付, 宁增平, 等. 2013. 三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究. 环境科学, 34(6): 2390–2398.
( Liu Y Z, Xiao T F, Ning Z P. 2013. Cadmium and selected heavy metals in soils of Jianping area in Wushan County, the Three Gorges Region: Distribution and source recognition. Environmental Science, 34(6): 2390–2398. [in Chinese] )
[] 唐将. 2005. 三峡库区镉等重金属元素迁移富集及转化规律. 成都: 成都理工大学博士学位论文.
( Tang J. 2005. Study on the regularity of move, enrichment, and translation of cadmium and other heavy metals in the district of the Three Gorges Reservoir. Chengdu:PhD thesis of Chengdu University of Technology. [in Chinese])
[] 谭淑端, 王勇, 张全发. 2008. 三峡水库消落带生态环境问题及综合防治. 长江流域资源与环境, 17(Z1): 101–105.
( Tan S D, Wang Y, Zhang Q F. 2008. Environmental challenges and countermeasures of the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir. Resources and Environment in the Yangtze Basin, 17(Z1): 101–105. DOI:10.3969/j.issn.1004-8227.2008.z1.018 [in Chinese] )
[] 张潇, 林立金, 廖明安, 等. 2015. 牛繁缕对镉的积累特性研究. 土壤通报, 46(3): 615–620.
( Zhang X, Lin L J, Liao M A, et al. 2015. Cadmium accumulation characteristics of Malachium aaquaticum. Chinese Journal of Soil Science, 46(3): 615–620. [in Chinese] )
[] An H, Liu Y, Zhao X, et al. 2015. Characterization of cadmium-resistant endophytic fungi from Salix variegata Franch. in Three Gorges Reservoir Region, China. Microbiological Research, 176: 29–37. DOI:10.1016/j.micres.2015.03.013
[] Bingham F T, Page A L, Mahler R J, et al. 1976. Cadmium availability to rice in sludge-amended soil under "flood" and "nonflood" culture. Soil Science Society of America Journal, 40(5): 715–719. DOI:10.2136/sssaj1976.03615995004000050030x
[] Ebbs S D, Kochian L V. 1997. Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. Journal of Environmental Quality, 26(3): 776–781.
[] Hu P, Li Z, Yuan C, et al. 2013. Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Journal of Soils and Sediments, 13(5): 916–924. DOI:10.1007/s11368-013-0658-6
[] Kawasaki A, Arao T, Ishikawa S. 2011. Reducing cadmium content of rice grains by means of flooding and a few problems. Japanese Journal of Hygiene, 67(4): 478–483.
[] Li J, Xu Y. 2015. Immobilization of Cd in a paddy soil using moisture management and amendment. Chemosphere, 122: 131–136. DOI:10.1016/j.chemosphere.2014.11.026
[] Meers E, Vervaeke P, Tack F M G, et al. 2003. Field trial experiment: phytoremediation with Salix sp. on a dredged sediment disposal site in Flanders, Belgium. Remediation Journal, 13(3): 87–97. DOI:10.1002/(ISSN)1520-6831
[] Pulford I D, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4): 529–540. DOI:10.1016/S0160-4120(02)00152-6
[] Punshon T, Lepp N W, Dickinson N M. 1995. Resistance to copper toxicity in some British willows. Journal of Geochemical Exploration, 52(1/2): 259–266.
[] Schreiber C M, Zeng B, Temperton V M, et al. 2011. Dynamics of organic acid occurrence under flooding stress in the rhizosphere of three plant species from the water fluctuation zone of the Three Gorges Reservoir, PR China. Plant and Soil, 344(1/2): 111–129.
[] Sun L, Zheng M, Liu H, et al. 2014. Water management practices affect arsenic and cadmium accumulation in rice grains. The Scientific World Journal, 2014. DOI:10.1155/2014/596438
[] Singh S, Eapen S, D'souza S F. 2006. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere, 62(2): 233–246. DOI:10.1016/j.chemosphere.2005.05.017
[] Vodyanitskii Y N, Plekhanova I O. 2014. Biogeochemistry of heavy metals in contaminated excessively moistened soils (Analytical review). Eurasian Soil Science, 47(3): 153–161. DOI:10.1134/S1064229314030090
[] Vervaeke P, Luyssaert S, Mertens J, et al. 2003. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environmental Pollution, 126(2): 275–282. DOI:10.1016/S0269-7491(03)00189-1
[] Vandecasteele B, Meers E, Vervaeke P, et al. 2005. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58(8): 995–1002. DOI:10.1016/j.chemosphere.2004.09.062
[] Ye C, Cheng X, Zhang Y, et al. 2012. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir, China. Ecological Engineering, 38(1): 37–44. DOI:10.1016/j.ecoleng.2011.10.005
[] Ye C, Li S, Zhang Y, et al. 2011. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. Journal of hazardous materials, 191(1): 366–372.
[] Zhao F J, McGrath S P, Meharg A A. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61: 535–559. DOI:10.1146/annurev-arplant-042809-112152