文章信息
- 鲍咏泽, 周永东
- Bao Yongze, Zhou Yongdong
- 柳杉锯材过热蒸汽干燥与常规干燥的比较
- Comparation between Superheated Steam Drying and Conventional Drying of Chinese Cedar Lumber
- 林业科学, 2017, 53(1): 88-93
- Scientia Silvae Sinicae, 2017, 53(1): 88-93.
- DOI: 10.11707/j.1001-7488.20170111
-
文章历史
- 收稿日期:2015-11-10
- 修回日期:2016-01-13
-
作者相关文章
干燥是木材加工利用中的重要工序,关系到最终产品质量、木材加工过程中的能源利用及木材综合利用效率(张璧光等,2008)。柳杉(Cryptomeria fortunei) 是我国主要人工林树种之一,具有生长快、寿命长等优点,广泛用于房屋建筑、家具和农具等(阮兴盛,2004)。国外对柳杉锯材干燥的研究及应用较早(Obataya et al., 2006a; 2006b;Kuroda,2007;Yamashita et al., 2012),国内也有采用常规干燥、高温干燥和联合干燥对柳杉干燥特性进行研究的报道(韦鹏练等,2012;高利祥,2014)。过热蒸汽干燥是最近发展起来的一项干燥新技术,是指利用过热蒸汽直接与被干物料接触而去除水分的一种干燥方式,其单位热耗仅为1 000~1 500 kJ·kg-1水,为普通热风干燥热耗的1/3,(Mujumdar,2010),其在橡胶木(Hevea brasiliensis)(Bovornsethanan et al., 2007)、辐射松(Pinus radiata)(Haque et al., 2008)、人工林杉木(Cunninghamia lanceolata)(马世春等,2006) 等材种的研究表明,过热蒸汽干燥质量较好,干燥周期短,干燥速率高。本文对柳杉锯材的过热蒸汽干燥与常规干燥进行研究,比较2种干燥方法后柳杉锯材的干燥质量、微观构造和力学性能,探讨过热蒸汽干燥柳杉锯材的适用性,以期为柳杉木材的高附加值利用、降低加工过程能耗和提高生产效率提供依据。
1 材料与方法 1.1 试验材料柳杉采自四川,树龄30年。采伐后原木的长度截为2.0 m,端头涂石蜡乳液,防止端裂。锯解成50 mm厚规格板材后放入冷藏库中保存(温度保持在-6 ℃),以保持其生材的高含水率状态。在干燥前将其加工锯解成规格为900 mm×130 mm×50 mm (轴向×弦向×径向) 的锯材,初含水率为120%~140%。2种干燥方法的试样数均为42块。
1.2 仪器设备木材干燥机:日本产HD74/TAⅡ小型干燥试验机,采用电热锅炉产生蒸汽为干燥机热源,通过翅片管式加热器加热,并可通过喷蒸管将蒸汽导入干燥机进行加湿,可进行常规干燥及过热蒸汽干燥试验。试验风速约为2.5 m·s-1,最高温度可达130 ℃,满足过热蒸汽干燥要求。试验过程参数由电脑进行全自动控制,并自动记录干燥过程参数。
检测仪器:采用精度为0.01 g的电子天平测量含水率试片质量;采用精度为0.01 mm的数显游标卡尺测量木材应力试片;采用AG-2000A型电子万能力学试验机测量MOE和MOR;采用TU-213木材切片机制作木材切片;采用Hitachi-S4800型扫描电镜进行木材显微构造观察。
1.3 试验方法干燥前从试材中锯取含水率试片,采用绝干法测量试片的初含水率。过热蒸汽干燥与常规干燥材料取自同一批木材,一块锯材分为2段,其中一段用于常规干燥试验,另一段用于过热蒸汽干燥试验,干燥工艺如表 1和表 2所示。常压过热蒸汽干燥工艺,要求干燥室内的湿球温度控制在100 ℃,以确保干燥介质全为蒸汽,干球温度则在100~115 ℃之间变化,干球温度越高,相对湿度越低,干燥介质吸收水蒸气的能力就越大;而常规干燥中干燥介质属于湿空气的性质,湿空气的物理特性与常压过热蒸汽不同,其热含量低于常压过热蒸汽(马世春,2004)。
干燥过程结束后按GB/T 6491-2012《锯材干燥质量》规定,从试件上截取含水率试片和应力试片,用绝干法测量木材终含水率和分层含水率,用叉齿法测量木材干燥残余应力,并检测横弯、顺弯、翘弯和扭曲等干燥缺陷,对干燥质量进行评价;过热蒸汽干燥和常规干燥后的试件依据GB/T 1936.1-2009《木材抗弯强度实验方法》和GB/T 1936.2-2009《木材抗弯弹性模量测定方法》加工成规格为300 mm×20 mm×20 mm (轴向×径向×弦向) 的试件,使用电子万能力学试验机测量木材的抗弯强度和抗弯弹性模量。干燥后的锯材沿顺纹方向用带锯机截取10 mm×10 mm (弦向×径向) 的木条,然后进行水煮软化。用刀片将软化好的木条切成长度10 mm的样块。用木材切片机将软化好的试材切成厚度2~3 mm的切片,烘至绝干后表面进行喷金并使用SEM观察微观结构。
1.4 数据分析使用IBM SPSS Statistics 19.0对干燥后的干燥质量和力学性能进行数据分析,求出平均值和标准差;在95%的置信区间内(P=0.05) 使用T检验检测均值的显著性。
2 结果与分析 2.1 干燥过程曲线图 1为柳杉锯材过热蒸汽干燥和常规干燥过程曲线。2种干燥方法初含水率的差异是由于使用相同的干燥设备要先进行过热蒸汽干燥,再进行常规干燥,因此进行常规干燥时柳杉锯材含水率稍有下降。2种干燥方法的锯材干燥至含水率为8%~9%时进行终了处理,使锯材厚度上水分分布均匀并释放残余干燥应力。结果发现,虽然过热蒸汽干燥锯材初含水率高于常规干燥锯材,但干燥周期远远少于常规干燥,过热蒸汽干燥的干燥周期为110 h,而常规干燥的干燥周期为193 h, 干燥周期缩短约43%。表 3列出了柳杉锯材不同含水率阶段的干燥速率和平均干燥速率。干燥初期,柳杉锯材的含水率较高,木材内自由水在毛细管张力作用下,由内部迅速移动至表层蒸发;随着含水率降低,自由水逐渐蒸发完毕,结合水开始蒸发,干燥速率逐渐降低。综合来看,过热蒸汽干燥速率一直大于常规干燥,这是由对流传热系数以及蒸汽-固体之间的温度差决定的(Pakowski et al., 2011),过热蒸汽干燥过程中温度高于常规干燥,因此在干燥前期,蒸汽-木材的温差较大,干燥速率较快;在干燥后期,木材与周围环境温度趋于一致,而过热蒸汽的传热系数大于湿热空气(Pang,2004),使得热量和水分的传递速度加快,宏观上干燥速率提高。
2种干燥方法干燥后,锯材的含水率及残余应力检测结果如表 4所示。数据显示,2种干燥方法干燥后锯材的平均终含水率、厚度上含水率偏差以及残余应力均达到标准规定的二级干燥质量要求。终含水率均值存在显著性差异,而厚度上含水率偏差和残余应力差异不显著。相比常规干燥,过热蒸汽干燥柳杉心层含水率低于表层,这是由于在干燥结束后,终了调湿处理使得表层含水率较高所致。
锯材外观质量检测结果如表 5所示。2种干燥方法干燥后锯材的外观质量均达到标准规定的二级干燥质量要求,但翘弯程度存在显著性差异。这是由于过热蒸汽干燥过程中水分蒸发强度高,厚度上含水率偏差大导致干燥应力大,从而使翘弯较大。2种干燥方法干燥后锯材的表面和端面均产生细小裂纹,但开裂宽度小于2 mm,根据标准可不计;而原先有的细裂纹在干燥后都有所扩展,锯材干燥后均无内裂和皱缩现象。
2种干燥方法干燥后锯材的抗弯弹性模量(MOE) 及抗弯强度(MOR) 结果如表 6所示。过热蒸汽干燥锯材的抗弯弹性模量(5 508.37 MPa) 略高于常规干燥(5 237.52 MPa),而抗弯强度(32.35 MPa) 略低于常规干燥(34.13 MPa),这可能是因为经高温过热蒸汽干燥处理后,木材的综纤维素量有所减小,木质素含量相对增加,木材的刚度有所增加,弹性模量增大;但由于温度较高,木材细胞壁结构物质出现一定程度的软化,抗弯强度有所降低(齐华春等,2005)。
经过热蒸汽干燥的柳杉锯材微观构造如图 2a所示,其径切面纹孔塞大量脱落,纹孔打开,孔隙大规模增加,与常规干燥后锯材微观构造(图 2b) 的对比明显。这可能是因为木材内水分蒸发产生的作用力以及热应力打开了木材内的闭塞纹孔,破坏了纹孔膜(Zhang et al., 2008),而且在汽蒸过程中,木材内部水分迅速被加热至沸点并发生汽化,木材内部会产生一个蒸汽压力作用于纹孔膜等较薄弱的组织,也会破坏闭塞的纹孔膜,打通了木材内部水分移动的通道;同时随着汽蒸处理温度的升高,水分汽化越剧烈,蒸汽压力对纹孔膜的破坏程度也在加剧,增大、增多了有效渗透路径的半径和数量,从而在一定程度上提高了木材渗透性,增大了水分传导途径,导致木材干燥速率加快,有助于木材的干燥(彭毅卿,2013)。
1) 干燥方法对锯材干燥速率有极其显著的影响,过热蒸汽干燥比常规干燥的干燥周期缩短了43%,干燥速率提高了84%。
2) 从干燥后的终含水率及残余应力分析,过热蒸汽干燥和常规干燥后锯材均达到干燥质量二级指标要求。2种干燥方法干燥后锯材的终含水率存在显著性差异,厚度上含水率的偏差以及残余应力无显著差异。
3) 从干燥后的干燥缺陷角度分析,过热蒸汽干燥和常规干燥后锯材的外观质量均达到干燥质量二级指标要求。2种干燥方法的翘弯翘曲度差异性显著,其余无显著差异。
4) 从干燥后的力学性能分析,过热蒸汽干燥锯材的MOE大于常规干燥,而MOR小于常规干燥,但差别不大,二者无显著差异。
5) 从干燥后的微观构造角度分析,过热蒸汽干燥柳杉锯材的纹孔发生大量破裂,孔隙程度增加,远远大于常规干燥,是造成过热蒸汽干燥速率显著提升的原因之一。
总体来看,采用过热蒸汽干燥柳杉锯材的干燥质量与常规干燥差别不大,能满足国家标准二级以上质量要求,且干燥效率显著提高。
[] |
高利祥.2014.柳杉木材干燥工艺及其对物理性能的影响.北京:中国林业科学研究院硕士学位论文. ( Gao L X. 2014 Drying and its influence to physical properties of Cryptomeria fortuneilumber. Beijing: MS thesis of Chinese Academy of Forestry. [in Chinese][in Chinese]) |
[] |
马世春. 2004. 荷木厚板材干燥工艺的探索. 林业科学, 40(1): 189–192.
( Ma S C. 2004. Research on drying technology forSchima superba thick timber. Scientia Silvae Sinicae, 40(1): 189–192. [in Chinese] ) |
[] |
马世春, 杨文斌. 2006. 人工林杉木板材高温和常温组合干燥研究. 林业科学, 42(3): 125–128.
( Ma S C, Yang W B. 2006. Study of high temperature and normal temperature drying of Chinese fir board in plantation. Scientia Silvae Sinicae, 42(3): 125–128. [in Chinese] ) |
[] |
彭毅卿. 2013.汽蒸预处理对杨木性质及真空干燥速率的影响.北京:北京林业大学硕士学位论文. ( Peng Y Q. 2013. Effects of pre-steaming on the characteristics and vacuum drying rate of poplar. Beijing: MS thesis of Beijing Forestry University. [in Chinese][in Chinese]) |
[] |
齐华春, 程万里, 刘一星. 2005. 高温高压过热蒸汽处理木材的力学特性及化学成分变化. 东北林业大学学报, 33(3): 44–46.
( Qi H C, Cheng W L, Liu Y X. 2005. Mechanical characteristics and chemical compositions of superheated steam-treated wood under high temperature and pressure. Journal of Northeast Forestry University, 33(3): 44–46. [in Chinese] ) |
[] |
阮兴盛. 2004. 柳杉的生态学特性及栽培技术. 林业勘察设计(1): 12–13.
( Ruan X S. 2004. Ecological characteristics and cultivation technology of Cryptomeria fortunei. Forestry Prospect and Design(1): 12–13. [in Chinese] ) |
[] |
韦鹏练, 李永忠, 符韵林, 等. 2012. 柳杉木材干燥特性研究. 林业实用技术, 5(2): 54–56.
( Wei P L, Li Y Z, Fu Y L, et al. 2012. Study on drying characteristics ofCryptomeria fortunei. Forest Science and Technology, 5(2): 54–56. [in Chinese] ) |
[] |
张璧光, 谢拥群. 2008. 国际干燥技术的最新研究动态与发展趋势. 木材工业, 22(2): 5–7.
( Zhang B G, Xie Y Q. 2008. Progress of research and development of drying technology in the world. China Wood Industry, 22(2): 5–7. [in Chinese] ) |
[] | Bovornsethanan S, Wongwise K. 2007. Drying parawood with superheated steam. American Jounral of Applied Science, 4(4): 215–219. DOI:10.3844/ajassp.2007.215.219 |
[] | Haque M N, Sargent R. 2008. Standard and superheated steam schedules for radiata pine single-board drying: model prediction and actual measurements. Drying Techonlogy, 26(2): 186–191. DOI:10.1080/07373930701831416 |
[] | Kuroda N. 2007. Development of fundamental research on drying of boxed-heart square timber of Sugi (Cryptomeria japonica). Journal of the Japan Wood Research Society, 53(5): 243–253. DOI:10.2488/jwrs.53.243 |
[] | Mujumdar A S, Law C L. 2010. Drying technology: trends and applications in postharvest processing. Food & Bioprocess Technology, 3(6): 843–852. |
[] | Obataya E, Shibutani S, Hanata K, et al. 2006a. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeria japonica) I: changes in hygroscopicity due to heating. Journal of Wood Science, 52(1): 33–38. DOI:10.1007/s10086-005-0716-9 |
[] | Obataya E, Shibutani S, Hanata K, et al. 2006b. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeria japonica) Ⅱ: changes in mechanical properties due to heating. Journal of Wood Science, 52(2): 111–114. DOI:10.1007/s10086-005-0748-1 |
[] | Pang S S. 2004. External heat transfer in moist air and superheated steam for softwood drying. Chinese Journal of Chemical Engineering, 6(6): 762–766. |
[] | Pakowski Z, Adamski R. 2011. On prediction of the drying rate in superheated steam drying process. Drying Technology, 29(13): 1492–1498. DOI:10.1080/07373937.2011.576320 |
[] | Yamashita K, Hirakawa Y, Saito S, et al. 2012. Internal-check variation in boxed-heart square timber of sugi (Cryptomeria japonica) cultivars dried by high-temperature kiln drying. J Wood Sci, 58(5): 375–382. DOI:10.1007/s10086-012-1272-8 |
[] | Zhang Y L, Cai L P. 2008. Impact of heating speed on permeability of sub-alpine fir. Wood Science and Technology, 42(3): 241–250. DOI:10.1007/s00226-007-0172-3 |