林业科学  2016, Vol. 52 Issue (7): 165-169   PDF    
DOI: 10.11707/j.1001-7488.20160720
0

文章信息

苏筱雨, 王婧, 任晓婧, 李会平
Su Xiaoyu, Wang Jing, Ren Xiaojing, Li Huiping
美国白蛾高毒力白僵菌菌株的紫外线诱变选育
Ultraviolet Mutation Breeding for High Toxicity Strains of Beauveria bassiana against Larvae of Hyphantria cunea (Drury)
林业科学, 2016, 52(7): 165-169
Scientia Silvae Sinicae, 2016, 52(7): 165-169.
DOI: 10.11707/j.1001-7488.20160720

文章历史

收稿日期:2015-10-09
修回日期:2015-11-06

作者相关文章

苏筱雨
王婧
任晓婧
李会平

美国白蛾高毒力白僵菌菌株的紫外线诱变选育
苏筱雨, 王婧, 任晓婧, 李会平    
河北农业大学 河北省林木种质资源与森林保护重点实验室 保定 071000
摘要【目的】 对分离自美国白蛾幼虫虫尸的1株白僵菌菌株BH01进行紫外线诱变,以获得高毒力突变株,为美国白蛾的生物防治提供新的工程菌株。 【方法】 将白僵菌的孢子悬浮液置于紫外灯下进行诱变处理,诱变处理后获得的菌株进行培养后以产孢量超过原始菌株2倍以上作为依据筛选正向突变菌株,测定其对美国白蛾5龄幼虫的致病力,筛选高毒力突变株进行继代培养,研究其产孢量和致病力的稳定性。 【结果】 对原始菌株BH01经紫外线诱变处理后获得28个菌落,孢子校正死亡率为85.5%,将获得的菌落重新接种于PDA平板上得到产孢量高于原始菌株2倍以上的正突变株BH01-5、BH01-12、BH01-25。其中诱变菌株BH01-5对美国白蛾5龄幼虫的校正死亡率明显低于原始菌株,BH01-25与原始菌株相当,而BH01-12的校正死亡率和LT50值分别为原始菌株的1.30和0.68倍,具有显著差异。将突变株BH01-25和BH01-12继代培养6次,发现诱变菌株BH01-25菌株在继代过程中产孢量和致病力明显降低,表现出与原始菌株类似的趋势,但其产孢量始终高于原始菌株,另外,原始菌株培养第4代时即开始降低,BH01-25至第6代时才出现明显的降低,表现出了更好的稳定性。诱变菌株BH01-12在试验的6代继代培养过程中,无论产孢量还是对美国白蛾幼虫的致病力方面均未出现下降,且均明显优于原始菌株。 【结论】 经过对分离自美国白蛾幼虫的1株球孢白僵菌BH01进行紫外诱变,得到了产孢量和致病力均高于原始菌株的突变株BH01-12,该菌株经过继代培养后,其产孢量和致病力均未出现降低,表现出一定的遗传稳定性,具有很好的生产和应用前景。
关键词: 白僵菌     紫外诱变     致病力     产孢量     美国白蛾    
Ultraviolet Mutation Breeding for High Toxicity Strains of Beauveria bassiana against Larvae of Hyphantria cunea (Drury)
Su Xiaoyu, Wang Jing, Ren Xiaojing, Li Huiping    
Key Laboratory for Forest Tree Germplasm and Forest Protection of Hebei Province Agricultural University of Hebei Baoding 071000
Abstract: 【Objective】 In this study, ultraviolet irradiation was used to mutate Beauveria bassiana BH01, isolated from an infested larvae of Hyphantria cunea (Drury) (Lepidoptera:Arctiidae), to select high virulent mutants and provide new engineered strains for the biocontrol of H. cunea. 【Method】 The spore suspension of BH01 was put under UV lamp to mutagenize, positive mutant strain was first selected based on the mutation strains' spore yield which was more than 2 times of original strains. Then the pathogenicity of positive mutant strains to 5th instar larvae of H. cunea was determined. The screened high virulent mutant strains were subculture to determine the stability of the sporulation yield and pathogenicity. 【Result】 We obtained 28 colonies after UV treatment, and the corrected mortality of spore was 85.5%. The colonies acquired after UV treatment were cultured on PDA plate and three positive mutant strains of BH01-5, BH01-12, and BH01-25 with more than 2 times higher spore yield than the original strain were obtained. Contrast to the original strains, the corrected mortality of 5th instar larvae of H. cunea caused by the mutant strain BH01-5 was significantly lower, and BH01-25 caused the almost equivalent mortality. However, the BH01-12 caused the significantly higher mortality, and the corrected mortality and LT50 values were 1.30 and 0.68 times higher than that of the original strain, respectively, and the differences are statistically significant. The mutant strains BH01-12 and BH01-25 were subcultured 6 generations. The results showed that the spore yield and pathogenicity of BH01-25 decreased gradually, with the same trend with the original strain. But the spore yield was always higher than that of the original strain. In addition, the pathogenicity of original strain decreased from the 4 generation, while that of BH01-25 decreased from the 6 generation, indicating the better stability of the mutant. In contrast, both the amount of spore production and the pathogenicity to the larvae of H. cunea of the mutant strain BH01-12 were not declined during the 6 generation of subculture, indicating the mutant was significantly better than that of original strain. 【Conclusion】 After the UV mutagenizing to B. bassiana BH01 isolated from diseased larvae of H. cunea, a mutant strain BH01-12 with higher spore yield and pathogenicity was obtained. During 6 generation sub-culture of the mutant, the spore production and pathogenicity of BH01-12 had no any reduction, showing to a certain degree genetic stability and good production and application prospects.
Key words: Beauveria bassiana     UV mutagenizing     sporulation yield     pathogenicity     Hyphantria cunea (Drury)    

美国白蛾[Hyphantria cunea (Drury)]又名美国灯蛾、秋幕毛虫,属鳞翅目(Lepidoptera)灯蛾科 (Arctiidae),是举世瞩目的世界性检疫害虫,主要危害果树和观赏树木,尤其以阔叶树为重,对园林树木、经济林、农田防护林等造成严重的危害,已被列入我国首批外来入侵物种(杨宝山等,2012Yang et al., 2008刘子欢等,2015杨忠岐等,2007Sullivan et al., 2011)。生物防治因其优良的环境友好性及可持续性等优点越来越受到人们的关注和认可。白僵菌作为一类广谱性昆虫病原真菌,已有许多研究证实其对多种害虫表现出较强的致病力(Zibaee et al., 2013; 刘永清等,2013陆秀君等,2008刘世建等,2008Özdikmen et al., 2004; Aurelien et al., 2004; Edison et al., 2006; Eken et al., 2006; Li et al., 2007韩慧等,2011Feng et al., 2004)。而不同菌株在营养生长、产孢量、致病力、抗逆性及稳定性等方面存在着相当大的差异,筛选性状优良的菌株是提高白僵菌杀虫效果及应用前景的重要手段之一。优良菌株的获得有自然分离、诱变和基因构建等手段。紫外线能使微生物发生变异,菌株DNA 吸收紫外光后正常的复制受到影响,引起基因突变,是一种可在短时间内获得大量突变株的常用诱变方法(靳磊等,2011Cagáň et al., 2001田志来等,2011曹伟平等,2007)。

本试验以教研室保存的自僵死的美国白蛾幼虫虫尸分离纯化得到的一株白僵菌菌株BH01进行紫外线诱变,以选育产孢量高、致病力强、性能稳定的突变菌株,以期为美国白蛾的生物防治提供新的工程菌株。

1 材料与方法 1.1 试验材料

1) 球孢白僵菌BHO1菌株,由河北农业大学林木病理实验室提供。该菌株于2010年9月分离自河北省秦皇岛市的僵死美国白蛾幼虫。

2) 供试昆虫 野外采集美国白蛾卵置于室内待其孵化后,以经表面消毒的毛白杨叶片在人工气侯室内(温度25 ℃,湿度80%,光暗比12∶12光照条件下)饲养至5龄幼虫用于致病性测定。

1.2 试验方法

1) 紫外线诱变处理 将盛有107 个·mL-1 白僵菌孢子悬浮液的培养皿打开皿盖置于磁力搅拌器上,放置在预先预热30 min的15 W紫外灯下(28 cm)。20 min后将经过诱变处理的孢子悬浮液稀释成200个孢子·mL-1的孢悬液,取0.1 mL接种于PDA培养基上,用灭菌的玻璃刮棒涂布均匀,使每皿大约有20个孢子,然后用黑布包裹培养皿,放入恒温培养箱培养8天。共接种10个培养皿,以未经紫外诱变处理的悬浮液为对照。

2) 产孢量测定及正突变株筛选 将经过上述诱变处理及黑暗培养的PDA平板上出现的菌落重新接种到新的PDA平板上进行培养,每个菌株接种3皿,待其充分产孢后,参照(卢振启等,2013)测定各菌株产孢量,以未经诱变处理的BH01原始菌株作对照,以产孢量超过原始菌株2倍以上作为正向突变菌株,计算正突变率。

正突变率=产孢量超过原始菌株2倍的单菌落数/总菌落数

3) 正突变株对美国白蛾致病性测定 将经紫外线诱变处理获得的正突变菌株和原菌株的1×108·mL-1的孢子悬液,用POTTER喷雾塔对5龄美国白蛾幼虫进行定量喷雾,每个菌株4个重复,每重复50头供试幼虫,每个处理喷雾3 mL,以含0.05%吐温-80的无菌水处理作对照。喷雾接种后的虫体被转移至透明塑料盒中置于自然光照下饲喂灭菌毛白杨叶片,每天更换叶片并观察记载幼虫死亡情况,共调查记录8天。将死亡虫体保湿培养,通过检查僵死虫体表面的菌丝和孢子确定其是否因白僵菌感染致死。计算校正死亡率和致死中时LT50

$\begin{array}{l} \;\;\;\;\;\;校正死亡率 = \\ \frac{{处理组死亡率 - 对照组死亡率}}{{1 - 对照组死亡率}} \times 100\% \circ \end{array}$

4) 诱变株的继代培养及其稳定性测定 将经过产孢量和致病力筛选获得的突变菌株接种于PDA 斜面培养基上,继代培养6代,每代培养10天,测定各代产孢量及对美国白蛾幼虫的致病力,以确定诱变株的稳定性。

2 结果与分析 2.1 正突变株的获得

原始菌株经紫外线诱变处理,稀释分离并涂布PDA平板后,得到28个单菌落,对照得到186个菌落,孢子校正死亡率为85.5%。将获得的菌落重新接种于PDA平板上测定各诱变菌株的产孢量结果见表 1

表 1可以看出,通过诱变获得的菌株其产孢量变化情况不同,19个诱变菌株产孢量低于原始菌株,9个菌株产孢量高于原始菌株,其中高于菌株2倍以上的正突变菌株3株,分别为BH01-5、BH01-12、BH01-25。

表 1 紫外诱变菌株的产孢量 Tab.1 Sporulation yield of strains by ultraviolet ray mutation
2.2 正突变株对美国白蛾幼虫的致病力测定

经过紫外线诱变获得的正突变菌株对美国白蛾5龄幼虫的校正死亡率见表 2

表 2 正突变株对美国白蛾幼虫的校正死亡率 Tab.2 Corrected mortalities and LT50 of H. cunea larvae treated with positive mutant strains

表 2可以看出,经初筛获得的3株正突变菌株对美国白蛾5龄幼虫均表现出了一定的致病力,无论是原始菌株还是诱变菌株,校正死亡率均随着处理时间的延长逐渐增大,至第8天时原始菌株处理组的校正死亡率为69.34%,LT50值为5.971天。诱变菌株BH01-5的校正死亡率明显低于原始菌株,BH01-25与原始菌株相当,而BH01-12的校正死亡率和LT50值分别为原始菌株的1.30和0.68倍,具有显著差异。

2.3 正突变高毒力株的继代稳定性

将经过产孢量及其致病力测定的诱变菌株BH01-25和BH01-12继代培养6次,测定各代菌株的产孢量和致病力,结果见表 3

表 3 BH01-25和BH01-12菌株继代培养后产孢量和校正死亡率测定 Tab.3 Sporulation yields and corrected mortality of subcultured BH01-25 and BH01-12 strains

表 3可以看出,随着继代次数的增加,原始菌株BH01的产孢量和对美国白蛾幼虫的校正死亡率逐渐下降,表现出退化的趋势。诱变菌株BH01-25菌株在继代过程中表现出与原始菌株类似的趋势,但其产孢量始终高于原始菌株,另外,就对美国白蛾幼虫的校正死亡率而言,原始菌株培养第4代时即开始降低,BH01-25至第6代时才出现明显的降低,表现出了更好的稳定性。诱变菌株BH01-12在试验的6代继代培养过程中,无论产孢量还是对美国白蛾幼虫的致病力方面均未出现下降,且均明显优于原始菌株,表现出了更大的应用潜力。

3 结论与讨论

紫外诱变设备简单、效果好,是获得真菌突变体的常用方法,其诱变效应为引起真菌DNA结构或碱基序列的变化,导致基因发生突变。本课题组2015 年9月分离自美国白蛾幼虫一株球孢白僵菌BH01菌株,该菌株1×108 conidia·mL-1的悬浮液处理8天后对美国白蛾5龄幼虫的致死率为84.78%,致死中时为4.94天,致死中浓度为1.39 × 106个·mL-1,田间防治试验7天后,BH01的防治效果达88.84%,与4.5% 高效氯氢菊酯无明显差异(李会平等,2015)。经过对该菌株进行紫外诱变,得到了产孢量和致病力均高于原始菌株的突变株BH01-12,该菌株经过继代培养后,其产孢量和致病力均表现出极好的稳定性,显示出很好的生产和应用前景。

但试验中发现,随着继代时间的延长,诱变菌株亦表现出营养生长速度降低、菌苔变薄且凹凸不平等现象,这与靳磊等(2011)的研究结果是一致的。说明白僵菌在继代培养过程中确实发生了一定变异,但在本试验研究的6代范围内,诱变菌株在产孢量和致病力方面表现稳定,没有回复亲本菌株的迹象,明显优于原始亲本菌株,但其更长继代时间后的表现还有待进一步研究。另外,在保证该菌株实验室表现优良的前提下,还需对其在田间的表现及其抗紫外线能力、耐热性、耐干旱性以及与化学药剂的相容性等方面进行深入探讨。

另外,本试验的试验菌株BH01在本次的研究中对美国白蛾幼虫的致病力明显低于李会平等(2015)的研究,分析原因一方面可能是因为菌株在保存过程中致病力下降,另一方面则主要是因为本次试验中将饲喂美国白蛾的透明塑料盒置于自然光下以模拟自然条件,在此过程中白僵菌的孢子萌发或致病力受到部分抑制所致,这也说明太阳光中的紫外照射确实是影响白僵菌田间应用效果的一个主要因素。

参考文献(References)
[] 曹伟平, 王金耀, 冯书亮, 等. 2007. 球孢白僵菌HFW-05 的诱变筛选及其对烟粉虱若虫的毒力测定. 中国生物防治 , 23 (2) : 133–137.
( Cao W P, Wang J Y, Feng SL, et al.2007. Selection of HFW-05 strain by UV mutagenesis of Beauveria bassiana and its virulence to Bemisia tabaci nymph. Chinese Journal of Biological Control , 23 (2) : 133–137. [in Chinese] ) (0)
[] 韩慧, 吴小虎, 李益, 等. 2011. 紫外线诱变选育苜蓿叶象甲高毒力白僵菌. 新疆农业科学 , 48 (7) : 1273–1276.
( Han H, Wu X H, Li Y, et al.2011. Screening highly virulent strains of Beauveria bassiana to Hypera postica Gyllenhal by UV mutagenesis. Xinjiang Agricultural Sciences , 48 (7) : 1273–1276. [in Chinese] ) (0)
[] 靳磊, 贺月林, 刘红, 等. 2011. 紫外诱变选育球孢白僵菌高产菌株. 湖南农业科学, (11):30-31 , 35 .
( Jin L, He Y L, Liu H, et al.2011. Selection of high-yield strain for Beauveria bassiana by UV mutagenesis. Hunan Agricultural Sciences, (11):30-31 , 35 . [in Chinese] ) (0)
[] 李会平, 黄秋娴, 王婧, 等. 2015. 应用白僵菌防治美国白蛾的潜力. 林业科学 , 51 (9) : 65–70.
( Li H P, Huang Q X, Wang J, et al.2015. Potential of entomopathogen Beauveria bassiana for controllng fall webworm Hyphantria cunea.. Scientia Silvae Sinicae , 51 (9) : 65–70. [in Chinese] ) (0)
[] 刘世建, 张亚素, 宋希伯, 等. 2008. 美国白蛾在咸阳的发生及其防除. 植物检疫 , 22 (3) : 197–198.
( Liu S H, Zhang Y S, Song X B, et al.2008. The occurrence and control of Hyphantria cunea in Xianyang. Plant Quarantine , 22 (3) : 197–198. [in Chinese] ) (0)
[] 刘永清, 毕拥国, 牛亚燕, 等. 2013. 美国白蛾高致病性白僵菌的筛选及田间应用. 河北林果研究 , 28 (2) : 157–160.
( Liu Y Q, Bi Y G, Niu Y Y, et al.2013. The screening and field application of highly pathogenic Beauveria bassiana of Hyphantria cunea. Hebei Journal of Forestry and Orchard Research , 28 (2) : 157–160. [in Chinese] ) (0)
[] 陆秀君, 李瑞军, 董立新, 等. 2008. 美国白蛾高毒白僵菌菌株筛选及其与高效氯氰菊酯的相容性. 植物保护学报 , 35 (6) : 575–576.
( Lu X J, Li R J, Dong L X, et al.2008. The screening of high toxicity Beauveria strains against Hyphantria cunea(Drury) and compatible with cypermethrin. Acta Phytophylacica Sinica , 35 (6) : 575–576. [in Chinese] ) (0)
[] 刘子欢, 陆秀君, 李瑞军, 等. 2015. 苏云金杆菌致死浓度对美国白蛾及其寄生蜂生长发育的影响. 植物保护学报 , 42 (2) : 278–282.
( Liu Z H, Lu X J, Li R J, et al.2015. Effects of sublethal concentration of Bt on development of Hyphantria cunea and the parasitic wasp Chouioia cunea Yang. Journal of Plant Protection , 42 (2) : 278–282. [in Chinese] ) (0)
[] 卢振起, 黄秋娴, 李会平. 2103. 桑天牛生物防治专用高毒力球孢白僵菌菌株紫外线诱变选育. 蚕业科学 , 39 (6) : 53–56.
( Lu Z Q, Huang Q X, Li H P.2103. Breeding of high toxicity Beauveria bassiana strains for biocontrol of Apriona germari through ultraviolet mutagenesis. Science of Sericulture , 39 (6) : 53–56. [in Chinese] ) (0)
[] 田志来, 孙光芝, 温嘉伟, 等. 2011. 玉米螟高毒力白僵菌菌株紫外线诱变选育. 玉米科学 , 19 (4) : 128–130.
( Tian Z L, Sun G Z, Wen J W, et al.2011. Ultraviolet ray mutation breeding for high toxicity strains of Beauveria bassiana against Ostrinia nubilacis. Journal of Maize Sciences , 19 (4) : 128–130. [in Chinese] ) (0)
[] 杨宝山, 王惠, 邵凤娈, 等. 2012. 2008年美国白蛾造成的济南市环境功能损失评估. 济南大学学报:自然科学版 , 26 (2) : 179–182.
( Yang B S, Wang H, Shao F L, et al.2012. Tne valuation of environmental function loss results from Hyphantria cunea in Jinan in 2008. Journal of University of Jinan:Science and Technology , 26 (2) : 179–182. [in Chinese] ) (0)
[] 杨忠岐, 张永安. 2007. 重大外来入侵害虫——美国白蛾防治技术研究. 昆虫知识 , 44 : 465–471.
( Yang Z Q, Zhang Y A.2007. Researches on techniques for biocontrol of the fall webworm, Hyphantria cunea, a severe invasive insect pest to China. Chinese Bulletin of Entomology , 44 : 465–471. [in Chinese] ) (0)
[] Aurelien T, Drion G B.2004. A pilot-scale expressed sequence tag analysis of Beauveria bassiana gene expression reveals a tripeptidyl peptidase that is differentially expressed in vivo. Mycopathologia , 158 (2) : 201–209. DOI:10.1023/B:MYCO.0000041905.17948.42 (0)
[] Cagáň L, Svercel M.2001. The influence of ultraviolet light on pathogenicity of entomopathogenic fungus Beauveria bassiana(Balsamo) Vuillemin to the European corn borer, Ostrinia nubilalis Hbn (Lepidoptera:Crambidae). . J Cent Eur Agr , 2 (3/4) : 227–233. (0)
[] Edison T L, James M L, Edison V P.2006. Sublethal effects of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina:Hyphomycetes) on the whitefly Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) under laboratory conditions. Mycopathologia , 162 (1) : 411–419. (0)
[] Eken C, Tozlu G, Dane E, et al.2006. Pathogenicity of Beauveria bassiana (Deuteromycotina:Hypomycetes) to larvae of the small poplar longhorn beetle, Saperda populnea (Coleoptera:Cerambycidae). Mycopathologia , 162 (1) : 69–71. DOI:10.1007/s11046-006-0035-8 (0)
[] Feng M G, Chen B, Ying S H.2004. Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera:Aleyrodidae) on greenhouse grown lettuce. Biocontrol Science and Technology , 14 (6) : 531–544. DOI:10.1080/09583150410001682269 (0)
[] Li H P, Huang D Z, Wang Z G, et al.2007. Screening test of highly virulent strains of entomopathogenic fungi Beauveria bassiana against Apriona germari larvae. Scientia Silvae Sinicae , 43 (11) : 66–71. (0)
[] Özdikmen H, Çaglar U.2004. Contribution to the knowledge of longhorned beetles (Coleoptera, Cerambycidae) from Turkey Subfamilies Prioninae, Lepturinae, Spondylidinae and Cerambycinae. Journal of Entomology Research Society , 6 (1) : 39–69. (0)
[] Sullivan G T, Karaca I, Ozman-Sullivan S K, et al.2011. Chalcidoid parasitoids of overwintered pupae of Hyphantria cunea (Lepidoptera:Arctiidae) in hazelnut plantations of Turkey's central Black Sea region. Canadian Entomologist , 143 (4) : 411–414. DOI:10.4039/n11-014 (0)
[] Yang Z Q, Wang X Y, Wei J R, et al.2008. Survey of the native insect natural enemies of Hyphantria cunea(Drury)(Lepidoptera:Arctiidae)in China. Bulletin of Entomological Research , 98 (3) : 293–302. (0)
[] Zibaee I, Bandani A R, Sendi J J.2013. Pathogenicity of Beauveria bassiana to fall webworm (Hyphantria cunea) (Lepidoptera:Arctiidae) on different host plants. Plant Protect Science , 49 : 169–176. (0)