文章信息
- 杨柳, 孙慧珍
- Yang Liu, Sun Huizhen
- 兴安落叶松水分利用对策
- Analysis of Water Management Strategy for Larix gmelinii
- 林业科学, 2016, 52(6): 149-156
- Scientia Silvae Sinicae, 2016, 52(6): 149-156.
- DOI: 10.11707/j.1001-7488.20160618
-
文章历史
- 收稿日期:2015-05-04
- 修回日期:2016-04-25
-
作者相关文章
近几十年以来,在全球气候变暖的大背景下,干旱强度、频度和持续时间明显增加(Huntington,2006;IPCC,2007)。这种极端干旱天气以前所未有的速度加剧,不仅致使年降水量小于400 mm的半干旱区,且扩展至年降水量大于3 000 mm湿润区的主要生物群区树木个体或大片森林相继死亡(Allen et al.,2010)。水力衰竭机制解释干旱导致树木死亡的研究,主要关注树木水分利用对策。Tardieu等(1998)根据植物中午水势及气孔对土壤水分胁迫的响应划分为:等水植物(isohydric species),即干旱条件下关闭气孔、保持相对稳定且较高的中午水势);非等水植物(anisohydric species),即降低中午水势以保持相对稳定的气孔开度(McDowell et al.,2008;Nardini et al.,2014)。
树木水分利用对策研究大多是在温室中的盆栽幼苗(Bonal et al.,2001;Almeida-Rodriguez et al.,2010;Gorai et al.,2015)、室外(Palliotti et al.,2014;Poni et al.,2014)或利用树木生存的自然干旱环境 (Franks et al.,2007;Klein et al.,2013;Meinzer et al.,2014)进行。世界范围内湿润区有限的野外控雨试验中,采用接雨槽去除部分林下穿透雨(Nepstad et al.,2007;Ripullone et al.,2009)或使用塑料布覆盖林冠上方去除全部降雨达到单一干旱强度处理(Pangle et al.,2012)。以上方法因树冠或多或少接触雨水,或因塑料布覆盖产生的温室效应显著增加样地空气温度、土壤温度和水汽压差,致使研究结果不理想。目前仍缺乏野外不同干旱强度树木水分应对策略研究实例。
木材生产与生态功能具有重要地位的兴安落叶(Larix gmelinii)分布于我国平均增温速率和夏季干旱强度和频度明显偏高的地区(孙凤华等,2005;张耀存等,2005)。兴安落叶松占整个大兴安岭地区的70%以上,落叶松林所产的木材占全国木材总产量的30%左右。根据世界各地统计数据表明,针叶林区的多年干旱和季节干旱死亡事件次数均处较高水平(Allen et al.,2010)。以往模型预测及实地演替调查均表明兴安落叶松对暖干生境不适应,将有可能北移出境(周晓峰等,2002)。在自然干旱过程中兴安落叶松的水分应对策略,是值得思考和研究的科学问题。本研究通过基本保持树木自然生长环境条件的野外原地定位控雨试验,就地系统地监测不同干旱强度兴安落叶松木质部水势、相对含水量、压力-容积曲线水分参数及针叶气孔导度和水分利用效率动态变化过程,为揭示兴安落叶松水分利用对策提供直接有力的野外试验支持。
1 研究区概况及样地设置试验地位于黑龙江省帽儿山森林生态系统定位研究站(45°24′N,127°39′E)。属温带大陆性季风气候区,四季分明,夏季短而湿热,冬季寒冷干燥。平均海拔为400 m。年均气温3.1 ℃,1月、7月平均气温分别为-18.5 ℃和22.0 ℃,年均日照时数1 857 h。据观测,2012年5—9月降水量516 mm,其中78%的降雨集中在6~8月。
样地设置在2004年栽植在立地条件均一、平坦的弃耕地上的兴安落叶松人工林,现已成林。在样地内设置3个10 m×10 m的样方,样方间距离为5 m。每个样方内有25株兴安落叶松,株行距为1.5 m×1.5 m。控水采用降雨控制和样方土壤周围侧向控水相结合的方式。具体方法为:样方周围土壤侧向控水是在2011年10月每个样方四周挖沟至80 cm,立置厚塑料薄膜,并高于地表10cm以上,然后回填土壤,以阻隔样方与四周的水分交换。2012年5月搭建完成减雨装置。减雨100%处理(100%RE)采用略高于树冠的镀锌管架支撑的透明有机玻璃薄板,截流整个林冠上部的降雨排出样地;减雨50%处理(50%RE)考虑到树干茎流、树冠截留的影响,采用林下镀锌管架支撑的30 cm宽的条状透明有机玻璃薄板凹槽,间隔20 cm截流60%穿透雨,即近50%左右降雨导出样地;而对照(CK)不做任何处理。
2 研究方法 2.1 枝条水势根据样地内兴安落叶松胸径、树高、树冠等指标,在每个样方中心位置选取3株长势一致、生长状况良好的平均木为样木。在5—9月每月晴朗无云天气,分别在清晨(4:30)、中午(12:00—14:00)采集每株样木树冠南向中部外侧1~2年生10~15 cm长4个枝条,放入装有湿润滤纸的黑色塑料袋内,快速带回生态站实验室,置入压力室(SKPM 1405,Skye Instruments,UK)缓慢加压,当小枝切口出现第1滴水时,即为清晨(Ψpd)或中午(Ψmid)水势。某处理样木中午水势季节变幅是生长季Ψmid最大值与最小值之差,清晨与中午水势梯度值为Ψpd和Ψmid之差。
2.2 枝条PV曲线及相对含水量测定清晨水势的同时,另取树冠相同位置小枝,在实验室测定PV曲线及相对含水量(RWC)。首先使用万分之一电子天平称取小枝鲜质量(FW),随即将小枝底部置于装有清水的容器,在阴暗高湿条件下吸水。当小枝达到饱和状态时(水势大于-0.1 MPa),测量小枝饱和鲜质量(SW)。随后将小枝放入压力室,用逐步加压法(Tyree et al., 1972),分次测定每个平衡压及该点的出水量。测定完成后,把样品置于75 ℃烘干至恒质量(DW)。以每个平衡压挤压水量为横坐标,相应的平衡压倒数为纵坐标,绘制PV曲线并求得以下参数:质壁分离渗透势(Ψtlp)、饱和渗透势(Ψπ100)、质壁分离相对含水量(RWCtlp)、质壁分离相对渗透水含量(SWCtlp)、质外体水相对含量(AWC)及细胞最大体积的弹性模量(ε)。样枝相对含水量RWC(%)=(FW-DW)/(SW-DW)×100(Morgan,1984)。每个处理重复3次。
2.3 针叶气孔导度与水分利用效率针叶气孔导度采用LI-6400便携式光合作用测定系统(LI-Cor Inc,USA)在晴好天气(5月29日、6月29日、8月31日和9月22日)测定树冠中部南向的同龄完好针叶。校正叶面积后的气孔导度(gs,molH2O·m-2s-1)、净光合速率(A,μmolCO2·m-2s-1)和蒸腾速率(Tr,mmolH2O·m-2s-1)由系统测出。依据以上数据计算瞬时水分利用效率(WUEinst,μmolCO2·mmol-1H2O)=A/T,潜在水分利用效率(WUEi,μmolCO2·mol-1H2O)= A/gs。每个处理重复3次。
2.4 土壤湿度及空气温湿度测定试验期间采用CS620/CD620便携式土壤水分传感器测定各样方中心部位10 cm深土壤湿度。6月15日以后通过数据采集器(CR10X,Campbell Scientific,Logan Utah,USA)测定各样方中心位置1.5 m处空气温湿度(RH1,Vaisala,UT,USA)。每15 s采集1次数据,储存10 min平均值。
2.5 数据处理利用SPSS20.0对处理间参数进行单因素方差分析。通过方差齐性检验的数据,运用LSD检验进行多重比较;未通过方差齐性检验的数据,则运用Tamhane检验进行多重比较(P <0.05)。利用SigmaPlot12.0作图。
3 结果与分析 3.1 空气温湿度及土壤湿度变化特征3 个处理样方空气温湿度变化趋势一致,数值相似(图 1A)。随着控雨时间延长,减雨100%样方土壤湿度最低,其次是减雨50%,对照最高(图 1B)。
减雨100%、减雨50%样木枝条Ψpd和Ψmid随控雨时间延长而逐渐下降(图 2);而对照Ψpd变化平缓,Ψmid呈现出6月和7月较高,其余月份较低的格局。减雨100%、减雨50%和对照Ψmid季节变幅依次为0.81,0.68和0.54。以上处理样木Ψpd和Ψmid之差范围相似,平均值依次为0.71,0.70和0.71。
3个处理Ψpd、Ψmid排序均为减雨100% <减雨50%<对照(图 2)。除了6月三者间Ψpd差异显著外(P <0.05),其他月份2个减雨处理Ψpd差异不显著,并均显著低于对照(P <0.05)。除了5月三者Ψmid值相似,9月份减雨50%Ψmid显著低于对照外,其他月份均为减雨100%Ψmid显著低于对照(P <0.05),减雨50%与对照、减雨100%差异均不显著(P>0.05)。减雨100%和减雨50%枝条Ψpd与对照之差最高分别为0.50和0.30 MPa;以上控雨处理Ψmid与对照之差最高分别为0.49和0.37 MPa。
3.3 气孔导度及水分利用效率对照gs值最高,且季节变化较小。而减雨100%和减雨50%gs值始终低于对照,较同期对照下降最高百分比分别为84%和79%(图 3A)。
生长旺盛且控雨中期的6—8月,减雨100%样木WUEinst(图 3B)、WUEi(图 3C)最高,以上2个指标较对照均上升140%。5—8月减雨50%以上2个指标与对照相似,9月升至最大,分别较对照上升42%和58%。
测定期间,减雨100%和减雨50%兴安落叶松RWC值相似。在5—6月2个减雨处理RWC较对照低2%~4%(P>0.05);7—9月低9%~11%(P <0.05)(图 4)。整个生长季内,2个减雨处理样木RWC平均值较对照下降均为7%。且3个处理RWC季节变幅相似,在16.4%~18.4%之间。
减雨100%样木Ψπ100、Ψtlp值分别在6—8月和5—6月明显低于对照外,其他时期3个处理间2个指标无差异(图 5)。减雨100%、减雨50%样木Ψπ100与对照之差最高值分别为0.65和0.38 MPa;以上控雨处理Ψtlp与对照之差最高值依次是0.46和0.23 MPa。减雨100%、减雨50%和对照Ψπ100季节变幅分别为0.62,0.36和0.16 MPa;以上3个处理Ψtlp季节变幅相应为0.16,0.39和0.33 MPa。测定期间除了6月减雨100%和减雨50%样木RWCtlp和AWC,7月ε值与对照差异显著外,3个处理其他时期及SWCtlp指标均无差异(P>0.05)。减雨100%、减雨50%样木RWCtlp均值与对照之差绝对值分别为1%和7%;SWCtlp为9%和7%;AWC是1%和18%。
判断等水/非等水行为可依据中午水势和气孔导度(Tardieu et al., 1998)、相对含水量(Sade et al.,2012)及PV曲线水分参数变化程度(Meinzer et al.,2014)。
4.1 中午水势已有研究表明,在自然或人为干旱过程中,非等水植物叶片或枝条中午水势变幅或与对照相差1.3~5.0 MPa之间。如葡萄品种西拉(Vitis vinifera cv. Syrah)(Schultz,2003)、西拉子(V. vinifera cv. Shiraz)(Hochberg et al.,2013)、北美红栎(Quercus rubra)(Thomsen et al.,2013)、赛美蓉(V. vinifera cv. Semillon)(Rogiers et al.,2012)、麻黄(Ephedra alata subsp. alenda)(Gorai et al.,2015)、香桃木(Myrtus communis)(Quero et al.,2011)、樱桃圆柏(Juniperus monosperma)(Meinzer et al.,2014)、岩蔷薇(Cistus ladanifer)(Quero et al.,2011)、犹他圆柏(Juniperus osteosperma)(West et al.,2008)和油橄榄(Olea europaea var. sylvestris)(Quero et al.,2011)中午水势变幅依次是1.5,1.5,1.8,2.0,2.0,3.0,3.6,3.8,4.4,4.8 MPa。有些非等水植物如箱花欧石南(Erica pyxidiflora)、亚头状欧石南(E. subcapitata)和热非欧石南(E. ericoides)枝条中午水势变化范围分别达到了5.8,9.8和10.0 MPa(West et al.,2012)。
等水植物中午水势变化范围一般在1.0 MPa以下。例如欧美杨(Populus euramericana cv.I-2014)在土壤水分充足、中度和重度干旱时,中午叶水势之差近乎于0(Tardieu et al.,1998)。Schultz(2003)也得到干旱胁迫与对照植株歌海娜(V. vinifera cv. Grenache)中午叶片水势变化趋势一致,且与对照无差异。再如夏季干旱期球冠银齿树(Leucadendron laureolum)、叉开双星山龙眼(Diastella divaricata)中午水势保持在相对稳定的-1.0 MPa左右(West et al.,2012)。其他的等水植物如乳香黄连木(Pistacia lentiscus)(Quero et al.,2011)、蒙特布查诺(V. vinifera cv. Montepulciano)(Palliotti et al.,2014)、红花槭(Acer rubrum)(Thomsen et al.,2013)、蒙特布查诺(Poni et al.,2014)、杨树(Populus simonii × balsamifera)(Almeida-Rodriguez et al.,2010)、白花欧瑞香(Daphne gnidium)(Quero et al.,2011)、食松(Pinus edulis)(West et al.,2008)、赤霞珠(V. vinifera cv. Cabernet Sauvignon)(Hochberg et al.,2013)、食松(Meinzer et al.,2014)、冬青栎(Q. ilex)(Quero et al.,2011)中午水势变幅依次是0.3,0.4,0.5,0.5,0.6,0.6,0.7,0.8,0.9和1.0 MPa。Franks等(2007)发现棒头桉(Eucalyptus gomphocephala)中午水势季节变幅为1.3 MPa,与经典的非等水行为一致。但其清晨与中午水势之差在生长季内保持稳定,为0.67 MPa。Franks等(2007)称之为类等水(quasi-isohydry)或等水动态行为(isohydrodynamic)。本研究随着减雨处理土壤水分降低,虽然兴安落叶松枝条清晨、中午水势逐步下降,但中午水势季节变幅最高是0.81 MPa,与对照中午水势只相差0.49 MPa。同时减雨100%、减雨50%及对照清晨与中午水势差保持基本稳定。依据水势指标表明兴安落叶松具有等水行为。
4.2 气孔导度及水分利用效率一般在土壤水分亏缺条件下,与非等水植物相比,等水植物gs低,且gs随叶片或枝条中午水势下降而减少幅度高。即等水植物gs对土壤干旱的响应较非等水植物更快、更强、更为敏感(Bonal et al.,2001;Sade et al.,2009;Pou et al.,2012;Hochberg et al.,2013;Klein et al.,2013;Palliotti et al.,2014;Tombesi et al.,2014;Gorai et al.,2015)。且伴随着干旱加剧,等水植物WUEi较非等水植物显著升高(Hochberg et al.,2013;Klein et al.,2013)。但也有例外,如非等水的西拉与等水的歌海娜在自然干旱过程中,gs数值及变化趋势一致,且降低值相似(Schultz,2003)。尽管干旱末期3种非等水植物中午水势显著低于3种等水植物,但非等水植物gs降低百分比高于等水植物,且干旱末期6种植物gs值较低且相近(Quero et al.,2011)。对于水分利用效率,干旱末期等水的蒙特布查诺WUEinst并未升高,而与对照相似(Poni et al.,2014);干旱处理的等水歌海娜和非等水的霞多丽(V. vinifera cv. Chardonnay)WUEinst升高百分比相近(Pou et al.,2012)。Palliotti等(2014)得到干旱处理的非等水桑娇维塞(V. vinifera cv. Sangiovese)WUEi较对照升高45%,而等水的蒙特布查诺较对照下降6%。以上研究结果意味着等水或非等水植物在特定条件下,都会限制气孔导度,提高水分利用效率,避免水力衰竭(McDowell et al.,2008)。已有结果表明:以对照或干旱初期为参照,干旱末期等水植物gs下降80%~90%,WUEi升高140%~170%(Tardieu et al.,1998;Pou et al.,2012;Klein et al.,2013;Poni et al.,2014;Palliotti et al.,2014)。非等水植物gs下降70%~87%,WUEi升高110%~238%(Tardieu et al.,1998;Pou et al.,2012;Klein et al.,2013;Palliotti et al.,2014;Gorai et al.,2015)。本研究中,减雨100%兴安落叶松针叶气孔导度较对照降低最高为84%,水分利用效率较对照上升最高为140%。与相关文献对比,较难判定兴安落叶松归属等水或非等水行为。
4.3 相对含水量Sade等(2012)建议判断等水/非等水行为的关键生理参数阈值是RWC。该研究认为植物基本需求是保持其水分含量。具有相对稳定中午水势的等水植物,是保持较高RWC的表现。即等水/非等水行为最终体现在RWC。如正常灌溉的等水番茄(Lycopersicon esculentum)和非等水行为番茄RWC分别为68%和72%。而干旱胁迫的等水植株RWC只下降3%,非等水植株RWC降低达13%,RWC值为59%(Sade et al.,2009)。另外,非等水植物麻黄在干旱处理14天时RWC从84%下降到58%,降低幅度达26%。这是耐旱植物RWC低于60%的典型特征(Gorai et al.,2015)。本试验减雨处理样木RWC始终高于60%,较对照下降最低为11%,平均为7%,并且3个处理兴安落叶松的RWC季节变幅相似。因此,从RWC来看,兴安落叶松表现接近等水行为。
4.4 水分参数Meinzer等(2014)提出等水/非等水植物水分参数组成的可塑性不同的假设,并在非等水的樱桃、圆柏Ψπ100、Ψtlp及ε随着枝条水势降低而急剧下降,而等水食松保持相对稳定得到验证。本研究中,减雨100%、减雨50%兴安落叶松Ψtlp季节变幅较小,分别只有0.16和0.39 MPa,与对照相差最高0.46 MPa。该值低于等水植物食松(0.9 MPa)(Meinzer et al.,2014),远远小于非等水植物麻黄(约为2 MPa)(Gorai et al.,2015)、三齿拉氏木(Larrea tridentata)(3.0 MPa)(Meinzer et al.,1988)和樱桃圆柏(3.2 MPa)(Meinzer et al.,2014),这表明兴安落叶松在干旱过程中,可溶性糖浓度上升,增加渗透调节物质的浓度,具有一定的渗透调节作用(杜尧等,2014)。同时3个处理兴安落叶松RWCtlp,SWCtlp,AWC值相近。说明该种在降雨减少导致土壤含水率降低时,水分参数指标保持基本稳定。
5 结论本研究表明,在自然环境减雨致使土壤水分降低的条件下,兴安落叶松会降低气孔开度,减少水分损失,提高水分利用效率,进行一定程度的渗透调节,来保持相对稳定的水势梯度和RWC。在等水/非等水行为连续体中(Klein,2014),兴安落叶松具有近等水特性
[1] |
杜尧, 韩轶, 王传宽. 2014. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响. 生态学报 , 34 (21) : 6090–6100.
( Du Y, Han Y, Wang C K.2014. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecologica Sinica , 34 (21) : 6090–6100. [in Chinese] ) (0) |
[2] |
孙凤华, 杨素英, 陈鹏狮. 2005. 东北地区近44年的气候暖干化趋势分析及可能影响. 生态学杂志 , 24 (7) : 751–755.
( Sun F H, Yang S Y, Chen P S.2005. Climatic warming-drying trend in Northeastern China during the last 44 years and its effects. Chinese Journal of Ecology , 24 (7) : 751–755. [in Chinese] ) (0) |
[3] |
张耀存, 张录军. 2005. 东北气候和生态过渡区近50年来降水和温度概率分布特征变化. 地理科学 , 25 (5) : 561–566.
( Zhang Y C, Zhang L J.2005. Precipitation and temperature probability characteristics in climatic and ecological transition zone of northeast China in recent 50 years. Scientia Geographica Sinica , 25 (5) : 561–566. [in Chinese] ) (0) |
[4] |
周晓峰, 张远东, 孙慧珍, 等. 2002. 气候变化对大兴安岭北部蒙古栎种群动态的影响. 生态学报 , 22 (7) : 1035–1040.
( Zhou X F, Zhang Y D, Sun H Z, et al.2002. The effect on climate change on population dynamics of Quercus mongolica in North Greater Xing'an Mountain. Acta Ecologica Sinica , 22 (7) : 1035–1040. [in Chinese] ) (0) |
[5] | Allen C D, Macalady A K, Chenchouni H, et al.2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management , 259 (4) : 660–684. (0) |
[6] | Almeida-Rodriguez A M, Cooke J E K, Yeh F, et al.2010. Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii×balsamifera clones with different drought resistance strategies. Physiologia Plantarum , 140 (4) : 321–333. (0) |
[7] | Bonal D, Guehl J M.2001. Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Functional Ecology , 15 (4) : 490–496. (0) |
[8] | Franks P J, Drake P L, Froend R H.2007. Anisohydric but isohydrodynamic:seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell and Environment , 30 (1) : 19–30. (0) |
[9] | Gorai M, Laajili W, Santiago L S, et al.2015. Rapid recovery of photosynthesis and water relations following soil drying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments. Environmental and Experimental Botany , 109 : 113–121. (0) |
[10] | Hochberg U, Degu A, Fait A, et al.2013. Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar. Physiologia Plantarum , 147 (4) : 443–452. (0) |
[11] | Huntington T G.2006. Evidence for intensification of the global water cycle:review and synthesis. Journal of Hydrology , 319 (1) : 83–95. (0) |
[12] | IPCC. 2007. Climate Change. The physical science basis//Solomon S, Qin D, Manning M, et al. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK:Cambridge University Press. |
[13] | Klein T, Shpringer I, Fikler B, et al.2013. Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. Forest Ecology and Management , 302 : 34–42. (0) |
[14] | Klein T.2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviors. Functional Ecology , 28 (6) : 1313–1320. (0) |
[15] | Meinzer F C, Sharifi M R, Nilsen E T, et al.1988. Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Oecologia , 77 (4) : 480–486. (0) |
[16] | Meinzer F C, Woodruff D R, Marias D E, et al.2014. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. Plant, Cell and Environment , 37 (11) : 2577–2586. (0) |
[17] | McDowell N, Pockman W T, Allen C D, et al.2008. Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought? New Phytologist, 178(4):719-739. New Phytologist, , 178 (4) : 719–739. (0) |
[18] | Morgan J M.1984. Osmoregulation and water stress in higher plants. Annual Review Plant Physiology and Plant Molecular Biology , 35 (1) : 299–319. (0) |
[19] | Nardini A, Lo Gullo M A, Trifilò P, et al.2014. The challenge of the Mediterranean climate to plant hydraulics:responses and adaptations. Environmental and Experimental Botany , 103 (5) : 68–79. (0) |
[20] | Nepstad D C, Tohver I M, Ray D, et al.2007. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology , 88 (9) : 2259–2269. (0) |
[21] | Palliotti A, Tombesi S, Frioni T, et al.2014. Morpho-structural and physiological response of container-grown Sangiovese and Montepulciano cvv. (Vitis vinifera) to re-watering after a pre-veraison limiting water deficit. Functional Plant Biology , 41 (6) : 634–647. (0) |
[22] | Pangle R E, Hill J P, Plaut J A, et al.2012. Methodology and performance of a rainfall manipulation experiment in a piñon-juniper woodland. Ecosphere , 3 (4) : 1–20. (0) |
[23] | Poni S, Galbignani M, Magnanini E, et al.2014. The isohydric cv. Montepulciano (Vitis vinifera L.) does not improve its whole-plant water use efficiency when subjected to pre-veraison water stress. Scientia Horticulturae , 179 : 103–111. (0) |
[24] | Pou A, Medrano H, Tomàs M, et al.2012. Anisohydric behavior in grapevines results in better performance under moderate water stress and recovery than isohydric behavior. Plant and Soil , 359 (1/2) : 335–349. (0) |
[25] | Quero J L, Sterck F J, Martínez-Vilalta J, et al.2011. Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia , 166 (1) : 45–57. (0) |
[26] | Ripullone F, Borghetti M, Raddi S, et al.2009. Physiological and structural changes in response to altered precipitation regimes in a Mediterranean macchia ecosystem. Trees , 23 (4) : 823–834. (0) |
[27] | Rogiers S Y, Greer D H, Hatfield J M, et al.2012. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiology , 32 (3) : 249–261. (0) |
[28] | Sade N, Gebremedhin A, Moshelion M.2012. Risk-taking plants:anisohydric behavior as a stress-resistance trait. Plant Signaling and Behavior , 7 (7) : 767–770. (0) |
[29] | Sade N, Vinocur B J, Diber A, et al.2009. Improving plant stress tolerance and yield production:is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion? New Phytologist, 181(3):651-661. New Phytologist , 181 (3) : 651–661. (0) |
[30] | Schultz H R.2003. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant, Cell and Environment , 26 (8) : 1393–1405. (0) |
[31] | Tardieu F, Simonneau T.1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand:modelling isohydric and anisohydric behaviours. Journal of Experimental Botany , 49 (2) : 419–432. (0) |
[32] | Thomsen J E, Bohrer G, Matheny A M, et al.2013. Contrasting hydraulic strategies during dry soil conditions in Quercus rubra and Acer rubrum in a sandy site in Michigan. Forests , 4 (4) : 1106–1120. (0) |
[33] | Tombesi S, Nardini A, Farinelli D, et al.2014. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiologia Plantarum , 152 (3) : 453–464. (0) |
[34] | Tyree M T, Hammel H T.1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. Journal of Experimental Botany , 23 (1) : 267–282. (0) |
[35] | West A G, Dawson T E, February E C, et al.2012. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytologist , 195 (2) : 396–407. (0) |
[36] | West A G, Hultine K R, Sperry J S, et al.2008. Transpiration and hydraulic strategies in a piñon-juniper woodland. Ecological Applications , 18 (4) : 911–927. (0) |