林业科学  2016, Vol. 52 Issue (4): 21-29   PDF    
DOI: 10.11707/j.1001-7488.20160403
0

文章信息

程中倩, 李国雷
Cheng Zhongqian, Li Guolei
氮肥和容器深度对栓皮栎容器苗生长、根系结构及养分贮存的影响
Effects of Nitrogen Supply and Container Size on Seedling Growth, Root Characteristics, and Nutrient Status in Quercus variabilis Container Seedlings
林业科学, 2016, 52(4): 21-29
Scientia Silvae Sinicae, 2016, 52(4): 21-29.
DOI: 10.11707/j.1001-7488.20160403

文章历史

收稿日期:2015-09-21
修回日期:2016-01-11

作者相关文章

程中倩
李国雷

氮肥和容器深度对栓皮栎容器苗生长、根系结构及养分贮存的影响
程中倩, 李国雷     
北京林业大学省部共建森林培育与保护教育部重点实验室, 城乡生态环境北京实验室 北京 100083
摘要[目的] 氮肥施用量或容器深度可有效调控苗木质量,本研究同时采用2种措施培育容器苗,探讨2种措施对苗木质量提升的叠加效应,为丰富苗木质量调控措施提供参考。[方法] 以1年生栓皮栎容器苗为试验材料,采用双因素完全随机试验设计,设置2个施肥水平(100 mgN·株-1)及2个容器深度(25,36 cm),通过测定第1年生长季末栓皮栎苗高、地径、生物量、养分浓度以及不同径级根系体积、表面积、长度。[结果] 施氮肥与容器长度交互效应对根氮浓度和中等径级根系(2~3 mm)的根体积、表面积显著,25 mgN-36 cm组合有利于中等根系径级生长,100 mgN-36 cm组合有利于根系氮浓度提高,这表明交互效应对地下部分的影响大于地上,2种措施交互作用通过影响根系来调控苗木质量。主效应表明,充足施肥量有利于地径生长、根氮和钾浓度提高;容器长度对根系结构的影响较施氮量显著,深容器可促进根系径级为3~4 mm的根系发育,否则造成窝根;长容器可促进苗高生长、茎生物量积累以及茎氮浓度提高。[结论] 苗木生长、养分、根系结构对施氮量与容器深度的交互效应与主效应响应规律证实2种措施相结合调控苗木质量的必要性。主根发达树种栓皮栎容器苗最佳组合为100 mgN和36 cm深的容器。
关键词容器苗    氮肥    容器深度    根系结构    苗木生长    养分浓度    
Effects of Nitrogen Supply and Container Size on Seedling Growth, Root Characteristics, and Nutrient Status in Quercus variabilis Container Seedlings
Cheng Zhongqian, Li Guolei     
Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University;Beijing Laboratory of Urban and Rural Ecological Environment Beijing 100083
Abstract: [Objective] Nitrogen(N) supply and container type have each proved to effectively regulate seedling quality. In this study, we tested if the combination of the two approaches couldimprove seedling quality and produce a superposition effect on seedling growthin order to provide a theoretical basis in the containerized seedling cultivation.[Method] Quercus variabilis, with a dominant taproot, was reared in two different depth containers(25 cm, 36 cm) with application of either deficient(25 mgN·seedling-1) or luxury(100 mgN·seedling-1) nitrogen supply, in a two factors completely randomize design. Seedling growth, root characteristics, and nutrient concentration were measured at the end of the growth season.[Result] N supply and container depth were significantly interacted on root N concentration, root volume, andsurface area for medium-class roots(2.0<D ≤ 3.0 mm), indicating that interactive effects of N supply and container depth were associated with underground rather than aboveground attributes. The combination of 25 mgN-36 cm container promoted root development with medium root classes while the combination of 100 mgN-36 cm container improved root N concentration. For the main effects, high N supply favored RCD, N and K concentration in roots. Container depth yielded more profound effects on root characteristics compared to N supply. Deep container facilitated root growth with root diameter between 3 and 4 mm whereas shallow one led to root spiraling. Additionally deep container increased seedling height, stem dry mass and N concentration.[Conclusion] Both the interactive and main effects of N supply and container depth indicated the necessity of combining the two approaches to improve seedling quality. The optimum combination of 100 mgN and 36 cm container was recommended for the container seedling production of this species with a dominant taproot.
Key words: container seedling    nitrogen supply    container depth    root architecture    seedling growth    nutrient concentration    

苗木质量是指在特定立地条件下能满足苗木成活和生长,并以最低成本来实现这种要求,是对造林目的的适合程度(李国雷等,2012)。目前,我国造林重点已由宜林地向干旱、高寒、瘠薄等困难立地转移,因此对苗木质量的要求越来越高。环境胁迫相关的苗木形态和生理指标,如苗木规格、根系结构、养分含量等是苗木造林后能够适应困难立地,提高造林成活率的关键指标(Boivin et al., 2004; Davis et al., Jacobs et al., 2005; Luis et al., 2009; Oliet et al., 2009; Salifu et al., 2009; Ceacero et al., 2012)。在苗圃培育苗木过程中,如何提高苗木自身的质量和抗性尤为重要。苗圃期营养加载以及育苗容器的筛选是2种较为常见的调控苗木质量的手段(Villar-Salvador et al., 2004; Cuesta et al., 2010)。合理施用氮肥可提高苗木养分贮存量继而提高翌年造林初期养分内转移,促进新根生长(Villar-Salvador et al., 2005Salifu et al., 2009),提高苗木造林效果(Luis et al., 2009; Villar-Salvador et al., 2012)。苗木根系是苗木吸收水分和养分的主要通道,根系结构,特别是根系长度与苗木的生长以及存活密切相关,根系结构越发达,苗木吸收水分和养分能力越强,耐干旱瘠薄能力也越强(Villar-Salvador et al., 2005)。季节性干旱立地造林效果低的原因是干旱季节来临时苗木根系过短,不能从含水量较多的深层次土壤中获取水分;而选用较深容器进行育苗,将会增加根系长度,干旱到来时,苗木根系长度已经进入深层次土壤,提高造林苗木从更深土壤中获取水分和养分的机会(Chirino et al., 2008),造林效果提高(Gonçalves et al., 2013)。因此,适当增加容器深度以提高根系深度可成为调控造林苗木质量的有效措施。

营养加载、选择深容器可调控苗木质量和造林效果,同时采用这2种措施培育苗木,对苗木质量的提升是否具有叠加效应值得探讨。容器深度的改变,可能改变苗木干物质积累、养分贮存及其分配规律,苗木对养分需求量也可能随之改变,因此,选用深容器育苗时,苗木需肥规律的变化是值得关注的又一关键问题。目前研究多从容器深度(Chirino et al., 2008; Tsakaldimi et al., 2005; Fernández et al., 2007)或养分施用量(Qu et al., 2003; Boivin et al., 2004; Villar-Salvador et al., 2005; Hernández et al., 2009; Oliet et al., 2009; Luis et al., 2010)单方面探讨对苗木质量的影响。

栓皮栎(Quercus variabilis)为典型的主根发达树种,耐干旱瘠薄能力强(罗伟祥等,2009李国雷等,2012),是我国暖温带大面积分布的主要造林树种,且树皮木栓层发达,为我国生产软木的主要原料,具有很高的生态及经济价值(罗伟祥等,2009)。笔者课题组前期研究对同一规格容器培育的对栓皮栎苗木的稳态养分加载规律进行了探讨(Li et al., 2014),本研究以栓皮栎1年生容器苗为试验材料,选用不同深度的容器培育苗木并进行施肥量试验,研究容器深度和施肥量对生物量和养分含量积累与分配规律、以及不同径级根系长度、表面积和体积等影响,定量分析容器深度和养分加载在调控苗木质量中作用,为丰富苗木质量调控措施提供参考。

1 材料与方法 1.1 试验地概况及试验材料

试验地位于中国林业科学研究院温室内(40.67°N,116.23°E)。2012年9月上旬在北京四座楼栓皮栎良种基地单株采集种子。所采集种子经过初期浸种筛选,除去瘪粒和杂质,再用46~50 ℃温水浸种。随后阴干10~16 h,选出无病虫且尚未萌芽的种子,于1~5 ℃的冷藏箱中越冬,贮藏期间进行反复翻转种子以使贮藏条件相似。2013年4月11日,将贮藏的种子取出。将泥炭(丹麦PindstrupMosebrug A/S 公司)、蛭石按3∶1混合,用多菌灵消毒后,装入容器中,将种实播种于容器,覆土厚度1 cm。播种后,每隔2天用喷雾器喷水,保持基质湿润直至出苗。

1.2 试验设计

试验采用双因素完全随机试验设计,因素A: 氮肥施用量。设置25和100 mg N·株-12个水平,使得苗木体内贮存的氮在生长季末分别处于亏缺和充足的状态(李国雷等,2011Li et al., 2014)。因素B: 容器深度。共设2个水平,容器类型分别为D40和D60,容器具体参数见表 1。由于栓皮栎属于主根发达树种,塑料袋容器育苗极易产生窝根,本研究采用的容器为硬质塑料容器,由美国Stuewe and Sons公司生产,容器底部有小孔以利于排水和空气修根,内表面均匀分布4条凸起的导根柱以防止窝根。试验共计4个处理,5个重复,每个重复20株,共计400株苗木。

表1 栓皮栎育苗容器参数 Tab.1 Characteristics of deepots TM containers for Q. variabilis

施肥方式采用目前最广泛应用的指数施肥模型(Timmer et al., 1996):

\[{N_T} = {N_S}({e^{rt}} - 1)\] (1)
式中,NT 为施肥总量,本研究中为25,100 mgN;Ns为每粒种子的氮含量(Salifu et al., 2006),从贮存的种子中随机挑去8粒种子设为1个重复,共设5个重复,测定种子内氮含量,经计算本研究中,Ns=24.5 mgN;t为施肥次数,本研究中,t=18; r 为相对增加率,本研究中分别为,25 mgN处理: r=3.9;100 mgN处理: r=9.0。

在相对增加率r下第t次施氮量(Nt)通过下式计算:

\[{N_t} = {N_s}({e^{rt}} - 1) - {N_{t - 1}}\] (2)
式中,Nt-1为包括第t-1次在内的氮肥施入总量。

出苗后,于5月11日起,进行随水施肥,每周1次,每次每株20 mL,共施18次,氮肥所用试剂为NH4NO3(上海化工研究院生产),同时每次等量施加磷钾肥和微量肥料)。磷钾肥施用KH2PO4(广东光华科技股份有限公司生产),每株累计施26 mgP,33 mgK;微量肥料施入EDTA(西陇化工有限公司生产)和DTPA(天津金科精细化工研究所生产),累计施入量分别为每株0.25,0.08 mg。

1.3 苗期管理

用JL-18空气温湿光记录仪(上海华嵒仪器设备有限公司生产)监测苗木生长环境,每隔15 min记录温度和湿度。本研究采取自然光照,温室湿度控制在65%~85%之间。从4月11日(播种)—9月8日(施肥结束),温室温度为25/18 ℃(日/夜),当基质含水量达到75%以下时,进行灌溉;从9月8日—10月19日(加速硬化),温室温度为25/21 ℃(日/夜),当基质含水量达到65%以下时,进行灌溉;于10月19日,将苗木移到室外,直至11月中旬(叶子全部枯落),此间室外温度为13/9 ℃(日/夜)。从幼苗期起至移到室外,每周定期移动苗床上的容器,以减少边缘效应,每2周用50%多菌灵可湿性粉剂600 倍液喷雾防治病害,并及时人工除草。

1.4 测定方法

2013年11月中旬,每个处理每个重复随机抽取8株苗木进行测定。单株测定苗高及地径后,进行破坏取样。将苗木根系洗净后采用Epson perfection V700 Photo/V750 PRO根系扫描仪对根系进行扫描(美国Epson公司),用WinRHIZO根系分析软件(加拿大Regent Instrument公司)对根系累计长度、表面积和体积等指标进行分析(岳龙等,2010),同时将根系按径级分为(D≤0.5,0.5~1.0,1.0~2.0,2.0~3.0,3.0~4.0及D> 4.0 mm)。分别将根系、地上部分在70 ℃下烘干24 h,测定生物量。

将每重复的8株苗木合并,粉碎、过0.5 mm筛,测定全氮、磷、钾。样品采取H2SO4-H2O2消煮法。采用凯氏定氮法(UDK-152,美国VelpScientifica公司)测定氮浓度;紫外分外光度计法(Model 722-分光光度计;德国Agilent 公司)测定磷浓度;原子吸收法(Spectra AA Varian 220原子吸收光谱仪;美国Varian公司)测定钾浓度。

1.5 数据分析

采用SPSS16.0 双因素方差分析,探究容器长度、氮肥施用量以及其交互效应对苗高、地径、生物量、根系结构(体积、表面积、长度)、氮磷钾浓度的影响。当存在交互效应时,探究4个处理组合对该指标的影响,并用Duncan(α=0.05)作为多重比较方法。若不存在交互效应,因素间差异性根据F检验(α=0.05)结果表示。形态指标采取以单株苗木为单位进行分析,即n=40;测定养分指标时将同一重复的8株苗木首先进行了合并,因此以每重复为单位进行分析,即n=5。

2 结果分析 2.1 容器深度和施氮量对栓皮栎容器苗生长的影响

从施氮量、容器深度对苗高、地径、茎和根生物量的F检验结果可知,氮肥和容器深度交互效应对这些指标影响均不显著(表 2)。从主效应来看,施氮量对苗高影响不显著,而容器深度对其影响极显著。深容器(36 cm)培育的苗木苗高比浅容器的高了22%;高肥(100 mgN)有利于地径增粗,比低肥(25 mgN)的增粗了13%。相对于浅容器,深容器苗木茎生物量增加19%,但根生物量减少25%。

表2 施氮量、容器深度以及其交互效应对苗高、地径、生物量的影响 Tab.2 Seedling height,root collar diameter(RCD) and dry mass of Q. variabilis in relation to N supply and container depth at the end of growing season
2.2 容器深度和施氮量对栓皮栎容器苗根系结构的影响

氮肥、容器深度对2~3 mm根系径级下的根体积、根表面积及根长度存在交互效应。 施氮量与容器深度的主效应对各径级根系结构的影响不同,且容器长度对这些指标的影响大于施氮量: 浅容器(25 cm)利于根系径级为0.5~1.0 mm,1.0~2.0 mm和>4 mm的根系体积、根系表面积和根系长度(虽容器深度对>4 mm径级的根系长度显著),深容器有利于根系径级为3.0~4.0 mm的根系体积、表面积及长度;而高肥有利于根系径级为>4 mm的根系体积和表面积、根系径级< 0.5mm的根系表面积和长度(表 3图 1)。4个处理组合表明,25 mgN-36 cm处理的径级为2.0~3.0 mm的根体积和表面积的数值最大,分别比100 mgN-25 cm处理增大26.3%,22.9%;100 mgN-36 cm处理增大33%,34.9%,25 mgN-25 cm处理增大85.6%,73.6%(表 4)。

表3 施氮量、容器长度及交互效应对根系结构影响 Tab.3 P value for nitrogen supply and container depth and their interaction on root architecture of Q. variabilis

图1 施肥量(左)、容器深度(右)对栓皮栎容器苗各径级根体积(A,D)根表面积(B,E)和根长度(C,F)的影响 Fig.1 Main effects of N supply(left) and container depth(right)on root volume(A,D),surface area(B,E) and length(C,F)of Q. variabilis seedlings based on root diameter classes 由于施氮量与容器深度对2~3 mm径级的根体积、表面积和长度的交互效应显著,主效应显著性不在图中标注。Because of the significant interaction effect between N supply and container depth,the mean separations for root volume,surface area and length with root diameter between 2 and 3mm were not presented.

表4 处理组合对栓皮栎根根系经级为2~3 mm体积和根表面积(2.0<D≤3.0 mm)的影响 Tab.4 Interaction of nitrogen supply(NS) and container depth(CD)on seedling root volume,surface area with root diameter between 2 and 3mm of Q. variabilis at the end of growing season

主效应统计结果表明,随着氮肥施用量的增加,根系总长度增加22%,随着容器深度的增加,根系总体积减少17%,根系总表面积减少16%(表 5)。

表5 施氮量、容器长度对根系总体积、总表面积及总长度的影响 Tab.5 Seedling total root volume(RV),total surface area(RSA) and total length(RL)of Q. variabilis in relation to N supply(NS) and container depth(CD)at the end of growing season
2.3 容器深度和施氮量对栓皮栎容器苗养分贮存的影响

施肥量与容器长度对根氮浓度的交互效应显著(表 6)。100 mgN-36 cm处理组合的根氮浓度最大,分别较100 mgN-25 cm组合、25 mgN-36 cm组合、25 mgN-25 cm处理增大了20.7%,20.7%和61.1%(表 7)。

表6 施氮量、容器深度及交互效应对氮磷钾浓度影响 Tab.6 P value for nitrogen supply and container depth and their interaction on N,P and K concentration of Q. variabili.

表7 处理组合对栓皮栎根氮浓度的影响 Tab.7 Interaction of nitrogen supply and container depth on seedling N concentration of Q. variabilis at the end of growing season

施氮肥和容器深度均对茎氮浓度、茎和根磷浓度以及根钾浓度的影响显著(表 6)。施高氮(100 mgN)有利于茎氮磷浓度及根钾浓度提高;施低氮(25 mgN)有利于根磷浓度提高。深容器(36 cm)有利于茎氮和根钾浓度提高,浅容器有利于(25 cm)根茎磷浓度提高(图 2)。

图2 施肥量、容器深度的主效应对栓皮栎容器苗氮(A)、磷(B)和钾(C)浓度的影响 Fig.2 Main effects of N supply and container depth on N(A),P(B) and K(C)concentration of Q. variabilis seedlings
3 讨论

以往研究表明,单方面采取深容器育苗或充足施肥量对苗木生长、根系结构、养分贮存有促进作用(Qu et al., 2003; Boivin et al., 2004; Jacobs et al., 2005; Tsakaldimi et al., 2005; Fernández et al., 2007; Chirino et al., 2008; Hernández et al., 2009; Oliet et al., 2009; Luis et al., 2010)。本研究发现,同时采取2种措施其叠加效果大于单方面施加,对落叶树种贮藏器官的作用尤为明显,表明通过改变根系结构以及养分浓度以更适宜困难立地造林,因此,在苗木生产时,应综合考虑2种措施对苗木质量的影响,采取最优组合培育高品质容器苗。本研究中,施氮肥与容器深度的交互效应对栓皮栎根系径级为2.0~3.0 mm的根表面积和体积以及根N浓度显著。25 mgN-36 cm处理组合的中等根系径级(2.0~3.0 mm)的根体积、表面积达到最大值,高于其他3个处理组合,说明采用长容器培育主根发达树种栓皮栎容器苗时,仅需施少量氮肥,有利于根系生长,用这样的苗木造林,有可能在造林初期根系生长速率大,有利于苗木及时获得水分与养分,从而可有效提高造林成活率(Chirino et al., 2008)。100 mgN-36 cm处理组合的根氮浓度,显著大于其他3个处理组合,除了可间接证明根系为栓皮栎的主要贮存器官外,更可表明采用深容器培育栓皮栎的同时施加充足氮肥,有利于生长季末养分N的贮存,翌年春季,根系活动较弱时,可通过植物体内养分再利用,从根系中转移更多的养分供给新器官生长(Salifu et al., 2001; 2003)。

氮肥施加量载与容器深度对栓皮栎容器苗生长的影响不同。本研究结果表明,低氮处理的苗木地上部分生物量大,这与Trubat等(2008)对胭脂虫栎(Quercus coccifera)的结果一致,但与Oliet等(2009)对冬青栎(Q.ilex)、Salifu等(2006)对北美红栎(Q.rubra)的结论相反。容器深度能改变栓皮栎干物质积累与分配,并且深容器育苗有利于栓皮栎苗高生长和地上部分干物质积累,这与冬青栎(Tsakaldimi et al., 2005)、胭脂虫栎(Tsakaldimi et al., 2005)和欧洲栓皮栎(Quercus suber)(Chirino et al., 2008)的研究结论一致;而深容器并不利于栓皮栎地下部分生物量,这与其他栎类的研究结论相反(Tsakaldimi et al., 2005; Chirino et al., 2008)。

施氮量和容器深度对栓皮栎苗木根系结构的影响不同。根生物量、根总体积、根总表面积以及根总长度不受施氮量的影响,但通过各根系径级的指标可知,施足量氮肥有利于粗根和细根发育,这说明在测定苗木根系结构时,划分径级是有必要的。一般来说,细根所占比例越大,根系吸收能力越强(张德健等,2011; 张金浩等,2014)。同时,施足量肥有利于栓皮栎根系伸长,这与Hernández等(2009)关于欧洲栓皮栎的结论一致。用施足量氮肥的苗木造林,苗木吸收水分和养分的能力强,能够更迅速地适应造林地环境,造林效果将比施少量氮的苗木好(Chirino et al., 2008)。另一方面,浅容器培育的栓皮栎根生物量、根总体积和表面积高于深容器,这一结果与Tsakaldimi等(2005)关于冬青栎和胭脂虫栎的结论相悖。从各根系径级的结果来看,浅容器有利于中等根系径级的发育,这是由于根系在浅容器中过早地接触到容器底部,而后分裂成小根系,形成窝根。主根发达栓皮栎的1年生苗木根系总长可达40~50 cm(杨自立,2011)。用这种根系的苗木造林,反而不利于苗木造林后的稳定性及成活率(Fernández et al., 2007)。综上所述,本研究不建议采用浅容器培育栓皮栎幼苗。

造林初期,由于苗木从外界获取水分和养分的能力较弱(Villar-Salvador et al., 2004; Millard et al., 2010; Sloan et al., 2012),供给苗木生长的养分大多来自于第1年贮存器官养分内转移与再利用(Trubat et al., 2010; Oliet et al., 2011)。例如,黑云杉(Picea mariana)对氮的再利用率为32%~50%(Salifu et al., 2001),挪威云杉(Picea abies)对氮的再利用率为72%~80%(Boivin et al., 2004),柿子(Diospyros kaki cv.Fuyu)树几乎全部贮存的氮将在第2年春季被 再利用率(Kim et al., 2009)。本研究中,施足量氮和用深容器育苗均可提高苗木体内养分贮存量,施足量氮肥可提高根系氮贮存量,这与其他大量研究一致(Timmer et al., 1987; Miller et al., 1994; Quoreshi et al., 2000; Qu et al., 2003; Salifu et al., 2003; Salifu et al., 2006; Salifu et al., 2009)。本研究中,虽然所有苗木的施磷、钾肥量相同,但生长季末各处理苗木的磷、钾贮存量不同,Oliet等(2013)在关于角豆树(Ceratonia siliqua)的研究中也发现了类似现象。这可能是因为施氮量的改变也同时造成氮磷钾的比例改变,进而影响苗木吸收磷钾肥造成(Jacobs et al., 2005)。总之,由于现阶段关于同时采取2种措施的研究较少,因此,建议以更多不同特性的树种为试验对象,例如选择生长速度(速生与慢生)、叶片特性(针叶与阔叶)等林学和生物学特性,或者生态学特性(先锋树种与顶级树种),从而更加深入了解施肥量与容器深度调控苗木质量的机制,将养分加载技术和育苗容器类型选择更好地应用到容器苗生产中。

4 结论

1)施氮量与容器深度交互效应对根氮浓度、径级2.0<D≤3.0mm的根体积与表面积存在显著影响,既验证了苗木质量的调控时考虑2种措施相结合的必要性,又表明两者交互效应对地下部分的影响大于地上。

2)施氮量与容器长度交互效应对栓皮栎容器苗根系结构和养分贮存影响存在变异性,25 mgN-36 cm组合有利于2.0<D≤3.0 mm径级根系生长,而100 mgN-36 cm组合有利于根系氮浓度提高。

3)容器深度相对于施肥量更能影响根系结构,且浅容器有利于细根(D≤2.0 mm)和粗根(D>3.0 mm)发育,而深容器有利于中等径级(2.0<D≤3.0 mm)根系发育。

4)培育主根发达树种栓皮栎容器苗时,选用深度为36 cm容器更适合,不仅可避免根系窝根,而且还有利于苗高生长、茎干物质积累、茎钾和根氮浓度提高。

5)充足施肥量(100 mgN)有利于根系氮和钾浓度提高,进一步证明了苗圃合理施肥对于苗木营养加载的必要性。

6)根据苗木生长、养分、根系结构对施氮量与容器深度的交互效应与主效应的总体响应规律,培育主根发达的栓皮栎最佳组合为100 mgN-36 cm深的容器,该组合可使苗木规格、根系结构以及养分浓度总体表现最优,对于提高翌年春季苗木造林效果可能具有促进作用。

参考文献(References)
[1] 李国雷, 刘 勇, 祝 燕, 等. 2011.苗木稳态营养加载技术研究进展. 南京林业大学学报:自然科学版, 35(2):117-123.
(Li G L, Liu Y, Zhu Y, et al. 2011. Study of techniques for steady-state nutrition supply of seedlings. Journal of Nanjing Forestry University:Natural Science Edition, 35(2):117-123.[in Chinese])(1)
[2] 李国雷, 刘 勇, 祝 燕, 等. 2012. 国外容器苗质量调控技术研究进展. 林业科学, 48(8):135-142.
(Li G L, Liu Y, Zhu Y et al. 2012. A review on the broad studies of techniques in regulating quality of container seedling. Scientia Silvae Sinicae, 48(8):135-142.[in Chinese])(2)
[3] 罗伟祥, 张文辉, 黄一钊, 等. 2009. 中国栓皮栎. 北京:中国林业出版社.
(Luo W X, Zhang W H, Huang Y Z, et al. 2009. Quercus variabilis in China. Beijing:China Forestry Publishing House.[in Chinese])(2)
[4] 杨自立. 2011. 栓皮栎播种苗水氮需求规律研究. 北京:北京林业大学博士学位论文.
(Yang Z L. 2011. Study on water and nitrogen demanding of Quercus variabilis seed seedlings. Beijing:PhD thesis of Beijing Forestry University.[in Chinese])(1)
[5] 张德健, 夏仁学, 曹 秀, 等. 2011. 生长调节剂和基质对枳根毛发育的影响. 应用生态学报, 22(6):1437-1442.
(Zhang D J, Xia R X, Cao X, et al. 2011.Effects of growth regulators and growth media on root-hair development of Poncirus trifoliate.Chinese Journal of Applied Eology, 22(6):1437-1442.[in Chinese])(1)
[6] 张金浩, 周再知, 杨晓清. 2014.氮素营养对肯氏南洋杉幼苗生长、根系活力及氮含量的影响. 林业科学, 50(2):31-36.
(Zhang J H, Zhou Z Z, Yang X Q. 2014. Effect of exponential nitrogen loading on growth, root activity and N content of Araucaria cunninghamiiseedlings.Scientia Silvae Sinicae, 50(2):31-36.[in Chinese])(1)
[7] Boivin J R, Salifu K F, Timmer V R. 2004. Late-season fertilization of Picea mariana seedlings, intensive loading and outplanting response on greenhouse bioassays. Annual of Forest Science, 61(8):737-745.(4)
[8] Ceacero C J, Díaz-Hernández J L, del Campo A D, et al. 2012. Interactions between soil gravel content and neighboring vegetation control management in oak seedling establishment success in Mediterranean environments. Forest ecology and management, 271:10-18.(1)
[9] Chirino E, Vilagrosa A, Hernandez E I, et al. 2008. Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. Forest Ecology and Management, 256(4):779-785.(7)
[10] Cuesta B, Vega J, Villar-Salvador P, et al. 2010. Root growth dynamics of Aleppo pine(Pinus halepensis Mill.) seedlings in relation to shoot elongation, plant size and tissue nitrogen concentration. Trees, 24(5):899-908.(1)
[11] Fernández M, Tejero J R, Pérez I, et al. 2007. Effect of copper coating nursery containers on plant growth and root morphology of Eucalyptus globulus Labill. cuttings and seedlings. Silva Lusitana, 15(2):215-227.(3)
[12] García-Cebrián F, Esteso-Martínez J, Gil-Pelegrín E. 2003. Influence of cotyledon removal on early seedling growth in Quercus robur L. Annals of forest science, 60(1):69-73.
[13] Gonçalves J L M, Alvares C A, Higa A R, et al. 2013. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management, 301:6-27.(1)
[14] Hernández E I, Vilagrosa A, Luis V C, et al. 2009. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environmental Experiment Botany, 67(1):269-276.(3)
[15] Jacobs D F, Salifu K F, Seifert J R. 2005. Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. Forest ecology and management, 214(1):28-39.(3)
[16] Kim Y K, Lim C S, Kang S M, et al. 2009. Root storage of nitrogen applied in autumn and its remobilization to new growth in spring of persimmon trees(Diospyros kaki cv. Fuyu). Scientia Horticulturae, 199(2):193-196.(1)
[17] Li G, Zhu Y, Liu Y, et al. 2014. Combined effects of pre-hardening and fall fertilization on nitrogen translocation and storage in Quercus variabilis seedlings. European Journal of Forest Research, 133(6):983-992.(2)
[18] Luis V C, Llorca M, Chirino E, et al. 2010. Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees, 24(6):1143-1150.(2)
[19] Luis V C, Puértolas J, Climent J, et al. 2009. Nursery fertilization enhances survival and physiological status in Canary Island pine(Pinus canariensis) seedlings planted in a semiarid environment. European Journal of Forest Research, 128(3):221-229.(2)
[20] Millard P, Grelet C. 2010. Nitrogen storage and remobilization by trees, ecophysiological relevance in a changing world. Tree Physiology, 30(9):1083-1095.(1)
[21] Miller B D, Timmer V R. 1994. Steady-state nutrition of Pinus resinosa seedlings:response to nutrient loading, irrigation and hardening regimes. Tree physiology, 14(12):1327-1338.(1)
[22] Oliet J A, Puértolas J, Planelles R, et al. 2013. Nutrient loading of forest tree seedlings to promote stress resistance and field performance:a Mediterranean perspective. New Forests, 44(5):649-669.(1)
[23] Oliet J A, Salazar J M, Villar R, et al. 2011. Fall fertilization of Holm oak affects N and P dynamics, root growth potential, and post-planting phenology and growth. Annual of Forest Science, 68(3):647-656.(1)
[24] Oliet J A, Tejada M, Salifu K F, et al. 2009. Performance and nutrient dynamics of holm oak(Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility. European Journal of Forest Research, 128(3):253-263.(4)
[25] Qu L, Quoreshi A M, Koike T. 2003. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant Soil, 255(1):293-302.(3)
[26] Quoreshi A M, Timmer V R. 2000. Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Canadian Journal of Forest Research, 30(5):744-752.(1)
[27] Salifu K F, Jacobs D F. 2006. Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Annual Forest Science, 63(3):231-237.(3)
[28] Salifu K F, Jacobs D F, Birge Z K. 2009. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine land. Restoration Ecology, 17(3):339-349.(3)
[29] Salifu K F, Timmer V R. 2003a. Nutrient retranslocation response of Picea mariana seedlings to nitrogen-15 supply. Soil Science Society of American Journal, 67(1):309-317.(2)
[30] Salifu K F, Timmer V R. 2003. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Canadian Journal of Forest Research, 33(7):1287-1294.(2)
[31] Sloan J L, Jacobs D F. 2012. Leaf physiology and sugar concentrations of transplanted Quercus rubra seedlings in relation to nutrient and water availability. New Forests, 43:779-790.(1)
[32] Tsakaldimi M, Zagas T, Tsitsoni T, et al. 2005. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil, 278(1):85-93.(5)
[33] Timmer V R, Aidelbaum A S. 1996. Manual for exponential nutrient loading of seedlings to improve outplanting performance on competitive forest sites. Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario. NODA/NFP Tech. Rep. TR-25.(1)
[34] Timmer V R, Armstrong G. 1987. Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions. Canadian Journal of Forest Research, 17(7):644-647.(1)
[35] Trubat R, Cortina J, Vilagrosa A. 2008. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. Journal of Arid Environments, 72(6):879-890.(1)
[36] Trubat R, Cortina J, Vilagrosa A. 2010. Nursery fertilization affects seedling traits but not field performance in Quercus suber(L.). Journal of Arid Environments, 74(4):491-497.(2)
[37] Villar-Salvador P, Planelles R, Enrıquez E, et al. 2004. Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. Forest Ecology and Management, 196(2):257-266.(1)
[38] Villar-Salvador P, Puertolas J, Cuesta B, et al.2012. Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New Forests, 43(5):755-770.(1)
[39] Villar-Salvador P, Puértolas J, Peñuelas J L, et al. 2005. Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Invest Agrar:Sist Recur For, 14(3):408-418.(3)