林业科学  2016, Vol. 52 Issue (4): 100-109   PDF    
DOI: 10.11707/j.1001-7488.20160412
0

文章信息

王微, 胡凯, 党成强, 陶建平
Wang Wei, Hu Kai, Dang Chengqiang, Tao Jianping
凋落物分解与细根生长的相互作用
Interaction of Litter Decomposition and Fine-Root Growth
林业科学, 2016, 52(4): 100-109
Scientia Silvae Sinicae, 2016, 52(4): 100-109.
DOI: 10.11707/j.1001-7488.20160412

文章历史

收稿日期:2015-03-21
修回日期:2016-02-25

作者相关文章

王微
胡凯
党成强
陶建平

凋落物分解与细根生长的相互作用
王微1, 2, 胡凯2, 党成强1, 陶建平1     
1. 三峡库区生态环境教育部重点实验室 重庆市三峡库区植物生态与资源重点实验室 西南大学生命科学学院 重庆 400715;
2. 重庆文理学院林学与生命科学学院 重庆 402168
摘要:本文综述了细根在凋落物层的觅食行为与策略,细根生长与凋落物数量、质量及分解过程的关系,细根生长与凋落物分解的相互作用机制及影响因素等以期为理解森林生态系统中细根对凋落物分解的作用机制以及凋落物分解对细根生长的影响提供依据。一方面,凋落物的数量和质量影响细根生长,地上凋落物的数量影响细根的觅食行为,并驱动细根在凋落物层的生长动态,凋落物质量的差异也对细根的生长产生影响,不同性质的地上凋落物对细根的生长是促进还是阻碍主要取决于分解过程中所产生的养分以及多酚含量的正平衡或负平衡;另一方面,生长进入凋落物层的细根通过根际激发效应、养分吸收以及共生真菌等作用综合影响凋落物的分解过程,生活的细根对凋落物分解的激发效应主要表现在根系分泌物控制微生物群落的活力及组成,进而加速或抑制凋落物分解;N的有效性是影响凋落物分解的重要因素,处于分解后期的凋落物层中生长的细根,通过吸收凋落物表面矿化形成的大量无机N,避免过量的N对微生物群落及其生境的不利影响;根系的共生伙伴——菌根真菌也对凋落物的分解产生重要影响,这与真菌类型及其分泌的酶和有机酸有关。未来该领域应注重全球变化背景下细根生长对凋落物分解作用机制以及细根的分支结构与其获取凋落物层养分功能的联系等方面的研究。
关键词凋落物    分解    细根生长    根系觅食    菌根真菌    地下生态过程    
Interaction of Litter Decomposition and Fine-Root Growth
Wang Wei1, 2, Hu Kai2, Dang Chengqiang1, Tao Jianping1     
1. Key Laboratory of Eco-Environments in Three Gorges Reservoir Region(Ministry of Education) Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region School of Life Science, Southwest University Chongqing 400715;
2. College of Forestry and Life Science, Chongqing University of Arts and Sciences Chongqing 402168
Abstract: In different forest ecosystems, fine roots commonly proliferate into litter layers, especially into those with favorable conditions for root growth. Our aim is to provide a basis for better understanding the role and mechanism of action in litter decomposition by fine roots and the influence of litter decomposition on fine root growth.We reviewed the advances of recent studies, including how roots forage into litter, the factors influencing this foraging, and the influence and possible mechanisms of fine root growth on litter decomposition. We put forward a conceptual module that enhances understanding of the interaction between fine-root growth and litter decomposition.Litter quantity on the soil surface affects the foraging behavior of fine-roots and drives their growth dynamics. Litter quality can also affect fine-root growth. Fine-root growth enhancement or inhibition could be the result of a positive or negative balance between nutrient and polyphenols concentrations generated during the decomposition of litter with different properties. By proliferating in litter, fine roots potentially influence litter decomposition through priming effects, N uptake, and symbiotic mycorrhizal fungi. The priming effects of live fine-roots on litter decomposition are mainly manifested by root exudate C inputs, which can regulate decomposition of litter by controlling the activity and composition of the microbial community. Nitrogen availability is critically important to litter decomposition, and low N availability can increase decomposition as microbes use labile substrates to acquire N from recalcitrant organic matter. Fine-roots grow into a decomposed litter layer, which avoid the adverse effects of excess N on microorganisms by absorbing a large amount of inorganic N during litter mineralization. In addition, root symbiotic partners, i.e., mycorrhizal fungi, have an important impact on litter decomposition through the types of fungi and enzymes and organic acids secretion.Key scientific issues for future research include the mechanism of combined effect of fine root growth on litter decomposition in the context of global climate change, as well as the connection of the fine root branching structure and function of nutrient acquisition in the litter layer.
Key words: litter    decomposition    fine root growth    root foraging    mycorrhizal fungi    underground processes    

陆地生态系统包括地上和地下两大组成部分,二者相互作用共同影响生态系统的结构和功能(Wardle et al., 2004)。地下生态过程包括根系生态、土壤养分过程、土壤动物生态、土壤微生物生态以及地下生物多样性等多个方面。长期以来,由于技术和方法的限制,作为“黑箱”的地下生态系统研究成为限制生态学发展的瓶颈(贺金生等,2004)。目前,地下生态过程已成为生态学研究的新兴方向和难点之一。

植物根系是森林生态系统中重要的碳库和矿质养分库,作为连接植物和土壤的关键通道,根系不但为植物生长提供养分和水分,同时根系的生长、细根周转、根系分泌物的释放、菌根的形成等生命活动与地下生态过程和功能紧密相联。细根是植物吸收水分和养分的主要器官(Pregitzer et al., 2002),它通过快速的生长和死亡适应土壤环境,在发挥植物功能以及生态系统碳和养分循环过程中起着重要作用。

植物通过根系生理生态活动和地上凋落物向地下输入有机质是影响地下生态过程的2种主要途径。地上凋落物的分解是陆地生态系统物质循环和能量流动的一个关键环节,影响土壤有机质的形成和植物养分的供应以及土壤碳吸存(陈玉平等,2012)。研究表明,多数生态系统中植物所吸收的90%以上的氮和磷以及60%以上的矿质元素都来自于凋落物分解后所归还给土壤的养分再循环(Chapin et al., 2002)。凋落物中主要养分含量影响养分归还的质量和速率,同时也影响植物根系对养分的吸收(潘复静等,2011)。地上凋落物的分解是凋落物的生物量损失和化学物质释放的过程(Mun,2009),进入养分净释放阶段的凋落物养分相对富集(Berg et al., 2008),为细根生长提供了有利环境。在地上凋落物积累量较多的生态系统中,根系生长进入凋落物层是一种常见现象(Subke et al., 2004Sayer et al., 2006Achat et al., 2008Hodge et al., 2010b马承恩等,2012)。凋落物分解过程受生物与非生物因素的共同驱动,植物根系作为重要的生物因子参与该过程,然而这一重要作用在凋落物分解的相关研究中长期被忽视。

目前,有关地上凋落物输入对地下过程和功能的影响已进行了较为深入和广泛的研究,而植物通过根系生命活动对地下生态过程的影响和调控机制研究甚少。根系生命活动特别是细根的活动与地上凋落物分解这二者之间存在怎样的相互作用过程,其作用强度和机制如何进一步影响地下生态系统的功能是尚未明确的科学问题。基于此,本文根据目前对细根在地下系统中的觅食策略及其生长动态和凋落物分解过程,对细根生长与地上凋落物分解之间相互作用过程和潜在机制进行综述,以期为复杂的地下生态过程研究提供新的思路,为阐明森林生态系统中细根对凋落物分解的作用机制以及凋落物对细根生长的影响提供依据。

1 凋落物层中细根的生长 1.1 凋落物层养分格局

处在不同分解阶段的凋落物,在垂直方向上形成连续的分层(Lindahl et al., 2007Hilli et al., 2008)。狭义的凋落物层仅包括新鲜凋落物,而更多的研究者倾向依据凋落物结构的完整性、产生时间的长短以及与矿质土层特征的差异等将其划分为数个层次。森林土壤学中常将凋落物分为3层(Baize et al., 1995Alarcon-Gutierrez et al., 2008): 表层为新鲜凋落物层,尚未分解和压缩,由当年产生; 中层为轻度破碎凋落物层,已分解但仍可辨认出凋落物的形状,且未压缩,产生时间为3~10年; 底层为严重破碎化的腐殖质层,已压缩成块状,产生时间大于10年。

不同分解阶段凋落物的化学组成及养分可利用性不同(Osono et al., 2006)。随着分解的进行(即从表层到底层),一般认为可利用性养分如N,P浓度呈逐渐增加的趋势(Berg et al., 2008陈莎莎等,2010),但由于各种元素在凋落物中含量不同,以及土壤微生物在凋落物分解过程中对C,N等元素的选择性代谢,导致这些元素在不同凋落物分解过程中的释放规律产生分异。凋落物分解过程中养分动态主要包括淋溶-富集(固定)-释放、富集-释放和直接释放等模式。表层的凋落物处于分解的早期阶段,前期的淋溶作用使凋落物结构更加松散、团粒化,更适宜微生物侵入,因此表层凋落物分解矿化的养分常被固持在微生物体内(Moore et al., 2006),可利用性养分少,并且表层较大孔隙度和较低的保水能力均不利于细根的定殖(Fujimaki et al., 2004)。但也有研究发现,覆盖在土壤表层密集的根垫上的根尖附着在新近产生的凋落叶中(Herrera et al., 1978),而在热带(Hertel et al., 2003)和温带(Fahey et al., 1994Coomes et al., 2000)地区一些演替后期的森林中也常发现新鲜凋落物层中有细根的分布。相对于表层凋落物和土壤层来说,中下层凋落物(轻度破碎凋落物层和严重破碎化的腐殖质层)保水能力强,可利用养分浓度高,是一个水分和养分相对富集的斑块(Fujimak et al., 2004),根系从该层获取养分比在土壤层中更有效率。

1.2 不同生态系统凋落物层中的细根生长

不同的生态系统中,细根生长时常进入凋落物层 。由于凋落物层质量、厚度及养分释放特征不同,生长进入凋落物层的细根生物量均显示出差异(表 1)。Manzoni等(2010)的研究表明,在凋落物分解初期,北方和温带气候控制区域中N,P倾向于被固持,而热带地区N常被释放,P可能被固持或释放。细根生长进入凋落物层被认为是对植物有利的生活策略。

表1 不同森林凋落物层细根生物量 Tab.1 Fine root biomass in litter layer in different forests
2 凋落物对细根生长的影响 2.1 凋落物数量与细根动态

地上凋落物数量影响细根的觅食行为。Sayer等(2006)研究表明,热带湿润森林中增加新鲜凋落叶的输入量会显著提高凋落物层中的细根产量,并降低土壤层中的细根产量,这是凋落物层具有细根更易获得的有效性养分的响应。Lima等(2010)发现地表凋落物的移除减少了亚马逊东部森林活根的质量和长度,同时增加了其死亡率,这与移除凋落物导致土壤氮矿化减少,从而造成土壤养分库的持续贫瘠有关。Tian等(2010)对中国中亚热带马尾松 (Pinus massoniana)人工林的研究显示地表凋落物的移除可减少凋落物层养分的输入,使生长于0~60 cm土层中的细根产量明显增加14%。汪思龙等(1992)对该地常绿阔叶林中地上凋落物对根系生长的影响研究也得出在已酸化的土壤环境中,地上凋落物数量对细根生长有一定的改善效果。由于所研究的森林生态系统中的土壤类型、气候条件及植被特征的差异以及对根系生长的测量方法的不同,细根在地下生态系统中不同层次的生长分布及动态特征的研究结果还存在诸多差异。结合根系分支结构和地上凋落物分解过程中的养分动态,探索细根生长进入凋落物层的过程和机制研究非常缺乏。

具有较高细根分配比率的热带森林生态系统常出现表层根垫和背地性根的特征(Benzing,1991),生长进入凋落物层的活根组织和凋落叶之间有完整的菌丝桥连接,从而实现P从凋落叶到细根的直接转移和快速循环过程(Herrera et al., 1978Stark et al., 1978Tobon et al., 2004Turner et al., 2011)。这对于土壤可利用P贫乏的热带雨林系统是一种有效的植物养分保持机制。目前,细根在凋落物层中的生长及拓展还仅仅被视为对矿质土层中养分不足的一种适应,叶凋落、分解和根动态三者间的反馈过程有望成为新的研究方向。全球气候变化可能会改变植物的生产力和凋落量,类似的反馈如果得到证实,将被应用于陆地生态系统的碳建模中(Cotrufo,2006)。

2.2 凋落物的质量与细根生长

高质量的凋落物通常具有较高的N含量和较低的C/N比,与低质量凋落物相比分解速率更快(Sanchez,2001)。高质量凋落物由相对容易降解的化学物质组成,可以在较短时间内释放出养分,而低质量凋落物往往包含高抗性或有毒成分,在分解初期经常从环境中固定养分,而且到达养分释放的时间较长(査同刚等,2012)。室内控制试验研究显示,凋落叶的添加阻碍了细根的生长(Bonanomi et al., 2011Bughio et al., 2013; Pérez-Corona et al., 2013),这主要与凋落叶的性质有关。凋落叶在分解过程中释放一些有毒的物质或产生化感作用,从而影响植物的生长及细根的生产。Lopez-Iglesias等(2014)通过研究21种木本植物凋落叶对植物生长和根发育的短期影响,认为不同性质的凋落叶对细根的生长是促进还是阻碍主要取决于凋落叶分解过程中所产生的养分以及多酚含量的正平衡或负平衡。因此,研究细根对凋落物层微生境的响应时,应综合考虑地上凋落物分解过程中作为“养分源”的供给作用和可能产生的化学毒害及其作用时间。

3 细根对凋落物分解过程的调控

细根作为地下系统一个关键的功能部件和一个主要的土壤形成剂(Jenny,1941),几乎和土壤的所有其他成分发生相互作用。细根的存在,直接和间接地影响了地上凋落物的产量及分解过程,这与其改变根际微生物的活力(Subke et al., 2004)以及细根觅食对养分的直接获取(Hertel et al., 2003Sayer et al., 2006)有关,并且根系及其共生真菌能进入凋落物不同层次的生长,也可一定程度改变凋落物质量和分解环境。但从目前的文献中不易直接获取细根与凋落物分解间相互关系的信息。

3.1 根际过程与凋落物分解

根际过程包括根的生产、周转、根际沉积、根呼吸以及根际微生物呼吸(Cheng et al., 2005)。在全球尺度上,植物-土壤间相互作用的根际过程控制着陆地生态系统CO2总释放量的50%(Schimel,1995Hopkins et al., 2013Cheng et al., 2014),并影响生态系统多个养分循环过程(Chapin et al., 2002)。早在20世纪,活根对土壤有机质分解的影响就引起了人们广泛的关注,对于其影响机制的研究形成了以下几个假说: 即干旱影响假说、聚集破坏假说、竞争假说、优先底物利用假说、微生物活力假说以及C利用假说。 根系对凋落物分解的激发效应表现在2个方面: 1)根系死亡后成为高能量C源,刺激微生物分解旧有机质(Fontaine et al., 2007Kuzyakov,2010); 2)根系分泌物富含糖、淀粉等非结构性碳,激活或改变分解者微生物群落的组成及生长,加速或抑制分解。研究表明,正的根际激发效应可促进有机质矿化增加3.8倍,而负的根际激发效应能减少50%的有机质矿化(Cheng et al., 2014)。

根际微生物活性和凋落物层养分的可利用性常处于动态变化中,因此根际激发效应的正与负也常常交替出现。Nottingham等(2013)对巴拿马低地热带森林的研究进一步证实根(而不是菌根)的活动能刺激土壤中微生物生物量及酶活性,使根际微生物活力增加,促进凋落叶的分解。de Graaff 等(2010)通过人工模拟根系分泌物添加试验,发现不稳定C添加的数量能控制真菌与细菌的相对丰富度和活性,从而调节激发效应的方向与强度,影响凋落叶分解。与此同时,相对矿质土层,凋落物层较高的温度也可使根际激发效应增强(Dijkstra et al., 2007Zhu et al., 2011)。

3.2 细根的养分吸收与凋落物分解

细根还可以通过对土壤矿质养分的直接吸收来调节凋落物的分解进程。N的有效性被认为是影响凋落物分解的重要因素(Berg et al., 2008)。大多数凋落物在分解初期受有效N的促进,而在分解后期受抑制(Hobbie,2005Knorr et al., 2005Janssens et al., 2010)。大量细根进入处于分解后期的中下层凋落物中 ,执行吸收功能的细根通过吸收凋落物表面矿化形成的大量无机N,避免过量矿质N对微生物群落的影响(Kuzyakov et al., 2013)。同时分解者可通过降低自身的C利用效率来利用具有低初始N浓度的凋落物,即“N mining”途径(Craine et al., 2007),从而促进凋落物的分解(Manzoni et al., 2008)。

多数研究显示根际激发效应主要与氮的有效性相关,而与磷有效性的关系不显著(Dijkstra et al., 2013Sullivan et al., 2013)。但Chen等(2013)最近研究表明,受P限制的热带森林凋落物分解过程中,磷添加可抑制凋落物分解,并且缓和过量的N对凋落物分解的抑制作用,N和P对凋落物的分解存在一个复杂的相互作用过程。另外,植物由凋落物到形成有机质,再到有机质分解释放养分供给植物利用存在时间上的滞后(Knops et al., 2002),细根对养分的吸收如何介导及调控分解者对凋落物的分解进程有待进一步研究。

3.3 菌根真菌与凋落物的分解

根系的共生伙伴——菌根真菌也对凋落物的分解产生影响。菌根真菌对凋落物分解的影响表现为促进(Rosling et al., 2004Rosling,2009)、抑制(Tiunov et al., 2005Kiers et al., 2011Orwin et al., 2011Fellbaum et al., 2012)和无影响(Mayor et al., 2006Nottingham et al,2013)3种效应,这取决于真菌类型(Koide et al., 2011)。

Gadgil等(1971)研究发现菌根真菌不是从凋落物中获取养分,而是利用根的分泌物进行生长,抑制土壤微生物的活性,从而减缓了凋落物的分解,这被称为“Gadgil效应”,这主要是由于菌根真菌和腐生微生物对营养物质产生竞争引起(Olsson et al., 1996),也有研究表明凋落物水分含量随着外生菌根真菌密度的增长而降低,从而影响凋落物的分解速率(Koide et al., 2003)。外生菌根真菌并不能有效利用凋落叶中的有机氮,因此它可能并非直接与腐生微生物竞争有机氮,而是依赖腐生微生物从难分解的有机物中获取氮(Colpaert et al., 1996)。然而一些丛枝菌根真菌能从分解的有机质中获取大量的无机N,除转运给植物根部吸收外,还使其菌丝增殖,具有促进凋落物降解的功能(Hodge et al., 2001)。Hodge等(2010a)Cheng等(2012)研究结果也支持这一结论,认为丛枝菌根真菌具有促进凋落物降解的功能,并且CO2浓度的升高还可加强这种功能。恶劣环境中有机质的分解通常相对较慢,植物生长发育还会借助于外生菌根菌的腐生特性来分解有机质而获得有机养分(Nasholm et al., 1998刘延滨等,2010)。

此外,菌根真菌还通过分泌多种胞外酶参与凋落物的分解(Read et al., 2003)。Went等(1968)就提出了“直接循环理论”,认为热带森林中的菌根真菌参与了凋落物层的酶降解过程。菌丝能迅速地响应并生长进入土壤养分相对富裕的斑块,还能通过释放胞外酶和有机酸,加速土壤中复杂有机物分解(Gavito et al., 2003Querejeta, et al., 2003 )。

4 问题与展望 4.1 细根的结构、功能及其对凋落物层养分的获取

目前根系生态学所面临的一个重要任务就是阐明细根结构与功能之间的关系。Kong等(2014b)通过对中国亚热带森林96种植物吸收根14种根性状特征变异的分析得出细根的直径和分支结构是2个很重要的度量维度,为更好地理解全球范围根经济谱和根生态对策提供了有效途径。生长在凋落物层中的细根不仅具有一定的生物量,而且在形态、分支构型上都有别于进入矿质土层中的根,不同根序等级的细根会表现不同的策略来适应所处凋落物层或土壤中资源有效性的改变。了解各级细根对资源有效性的可塑性反应对认识细根的功能发挥、预测C的地下分配特点具有重要意义。另外,研究表明根系中存在作用重大的短命根模块(Xia et al., 2010Kong et al., 2014a),它和吸收根均表现出无次生结构、周转快、共生真菌侵染率高的特征,它们如何迅速有效地从凋落物中获取养分以及驱动或调控凋落物的分解进程有待进一步研究。

4.2 细根生长对凋落物分解的作用机理

凋落物分解过程中,大量的养分元素被结合在难分解的化合物中(Parton et al., 2007Manzoni et al., 2010)。细根及共生真菌具有活化和吸收养分的能力,两者间还形成了以养分吸收和C供应为基础的反馈调节(Kiers et al., 2011Fellbaum et al., 2012),凋落物层的细根及其共生真菌在参与凋落物养分循环中的吸收功能和对分解的作用机制尚不明确。

根际激发效应的产生是植物根系、微生物以及土壤有机质之间相互作用的结果,并受其他生物与非生物因子的调控(Kemmitt et al., 2008Kuzyakov,2010)。阐明根际激发效应的微生物学机制及其控制因素已经成为根际生态学领域的核心科学问题。目前对根际激发效应在地下碳、氮转化过程中的作用机制及其生态重要性依然缺乏足够的理解,尤其是对凋落物层中根际激发效应的关注较少。凋落物层作为根际激发效应发生的重要部位,凋落物分解和根际激发效应间相互作用过程中的启动者和机制是什么?细根(特别是根尖)和微生物在其中分别扮演什么样的角色?这些问题亟待深入研究。

另外,细根通过物理作用和分泌的有机物在土体中进行穿插和缠绕,以此来分散、串联、固结土壤颗粒,有利于土壤有机物的积累和丰富土壤生物多样性(Kuchenbuch et al., 2006)。作为影响凋落物分解的一种重要生物因子,生活的细根具有非常复杂的分支结构和“游走能力”,它们能否像一些土壤动物(Bonkowski et al., 1998Seeber et al., 2005Yang et al., 2012)在其生长发育过程中对凋落叶的分解起到一定的机械碎裂作用,也是值得探讨的问题。

4.3 气候变化对根系活动与凋落物分解相互作用的影响

日益加剧的全球变化进程对地下生态系统的影响受到普遍关注。根际过程对CO2浓度和温度变化非常敏感(Kuzyakov et al., 2007Phillips et al., 2011Zhu et al., 2011Cheng et al., 2012)。气候变化不仅影响根系生长,还会通过根际作用影响地上凋落物的分解过程。Phillips等(2012)采用稳定性同位素技术研究发现由于CO2浓度升高而增加的根系C投入会快速周转释放,同时激发微生物对土壤有机质的加速分解并促进N循环。Clemmensen等(2013)在《Science》中报道,北方森林土壤持有的绝大部分碳可能来自活的、分解的树根以及与其共生的真菌,气候变暖可导致北方森林的树木、灌木以及根和真菌加速生长。

大气CO2浓度增加促进了林木的光合生长,特别是增加森林地上凋落物产量(杨万勤等,2007),而细根的生产力将如何变化还是一个未知数(Norby et al., 2000)。目前国际上通过凋落物添加和去除处理(DIRT)试验研究地上凋落物的改变对森林地下生态过程影响的研究均集中在温带森林和热带雨林中(Crow et al., 2009Prévost-Bouré et al., 2010Sayer et al., 2007)。我国亚热带森林无论在生态系统结构还是生态系统过程方面都有别于其他气候带森林,对全球变化极其敏感(黄锦学等,2012),但目前在根系和地上凋落物间关系的研究方面还十分有限。森林作为全球碳循环的一个重要组成部分,了解林木及林下植物的细根对凋落叶及土壤有机质分解的影响,对于在全球尺度下量化森林固碳潜力有着十分重要的意义。气候变化背景下细根和凋落物分解这两者之间的互作关系及反馈机制将成为根系生态学和凋落物分解研究中的新生长点。

4.4 研究方法

将分子技术与传统的生态学研究相结合将成为未来生态学研究的发展趋势之一(Yoccoz,2012)。基于 DNA/RNA 等分子生物学方法为土壤微生物生态学研究提供了强有力的手段,将促进细根生长对凋落物分解的微生物学机制研究,如 RT-PCR 技术可以定量地研究细根生长对凋落物分解过程参与地下系统C,N循环的关键基因的影响。另外,凋落物不同层次的可利用性养分多大程度上影响细根的生长及功能的发挥,以及细根对养分的吸收如何介导及调控分解者对凋落物的分解进程有待进一步研究,目前的稳定同位素(13C、15N)示踪技术可为解决这一问题提供新的方法。固态13C核磁共振光谱学技术,能从分子水平上揭示凋落物分解动态,还能有效研究凋落物分解过程中化学组成对细根生长的影响(Bonanomi et al., 2011)。

全球气候变化背景下根系生长与凋落物分解的关系是一个复杂的综合作用过程,研究中需注重野外原位试验和室内控制试验相结合,而控制试验需纳入更多、更丰富的生态系统类型。如Yin等(2012a; 2012b)采用红外辐射加热的原位模拟控制试验,并通过定期移除凋落物,比较研究了亚高山针叶林2种主要树种云杉(Picea asperata)和岷江冷杉(Abies faxoniana)通过根系生命活动对土壤过程的影响及其对气候变暖的响应。大尺度(跨区域的、长期的)分解试验因其能在全球尺度上揭示影响凋落物分解的因素,仍是十分必要。未来应把控制试验、模型研究及大尺度分解试验研究结果进行整合,以期更好地揭示陆地生态系统细根生长与凋落物分解对全球气候变化响应的全球格局。

总之,在复杂的细根分支系统中,不同结构功能的细根与分解过程具有重要联系,并且细根影响凋落物分解的诸多潜在机制一般不是单独出现,它们之间可能存在交互作用,这需要进行多学科、多角度、多手段研究。为了深入理解全球变化对地下生态系统所带来的深远影响,研究这两者之间的作用过程对温度的敏感性及其机制,同时从更长的时间尺度和更广的空间尺度来认识两者之间的作用过程和作用机制是十分迫切和必要的。

参考文献(References)
[1] 陈莎莎, 刘鸿雁, 郭大立. 2010. 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局. 植物生态学报, 34(9):1007-1015.
(Chen S S, Liu H Y, Guo D L. 2010. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia. Chinese Journal of Plant Ecology, 34(9):1007-1015.[in Chinese])(1)
[2] 陈玉平, 吴佳斌, 张 曼, 等. 2012. 枯落物处理对森林土壤碳氮转化过程影响研究综述. 亚热带资源与环境学报, 7(2):84-94.
(Chen Y P, Wu J B, Zhang M, et al. 2012. Research advances of effects of detritus input and removal on dynamics of carbon and nitrogen in forest soils. Journal of Subtropical Resources and Environment, 7(2):84-94.[in Chinese])(1)
[3] 贺金生, 王政权, 方精云. 2004.全球变化下的地下生态学:问题与展望. 科学通报, 49(134):1226-1233.
(He J S, Wang Z Q, Fang J Y. 2004. Belowground ecology under global change:problems and prospects. Chinese Science Bulletin, 49(134):1226-1233.[in Chinese])(1)
[4] 黄锦学, 凌 华, 杨智杰, 等. 2012. 中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态. 生态学报, 32(14):4472-4480.
(Huang J X, Ling H, Yang Z J, et al.2012. Estimating fine root production and mortality in subtropical Altingia grlilipesand Castanopsis carlesiiforests.Acta Ecologica Sinica, 32(14):4472-4480.[in Chinese])(1)
[5] 刘延滨, 牟 溥. 2010. 植物养分捕获的菌根塑性——外生菌根的塑性. 植物生态学报, 34(12):1472-1484.
(Liu Y B, Mu P. 2010. Mycorrhizal plasticity of plant nutrient foraging:a review of ectomycorrhizal plasticity. Chinese Journal of Plant Ecology, 34(12):1472-1484.[in Chinese])(1)
[6] 马承恩, 孔德良, 陈正侠, 等. 2012. 根系在凋落物层中的生长及其对凋落物分解的影响. 植物生态学报, 36(11):1197-1204.
(Ma C E, Kong D L, Chen Z X, et al.2012. Root growth into litter layer and its impact on litter decomposition:a review. Chinese Journal of Plant Ecology, 36(11):1197-1204.[in Chinese])(1)
[7] 潘复静, 张 伟, 王克林, 等. 2011. 典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征. 生态学报, 31(2):335-343.
(Pan F J, Zhang W, Wang K L, et al.2011. Litter C:N:P ecological stoichiometry character of plant communities in typical Karst peak-cluster depression. Acta Ecologica Sinica, 31(2):335-343.[in Chinese])(1)
[8] 汪思龙, 陈楚莹. 1992. 凋落物对土壤酸化的缓冲及其对根系生长的影响. 生态学杂志, 11(4):11-17.
(Wang S L, Chen C Y. 1992. Buffering of forest litter to soil acidification and its effect on root growth. Chinese Journal of Ecology, 11(4):11-17.[in Chinese])(1)
[9] 杨万勤, 邓仁菊, 张 健. 2007. 森林凋落物分解及其对全球气候变化的响应. 应用生态学报, 18(12):2889-2895.
(Yang W Q, Deng R J, Zhang J. 2007. Forest litter decomposition and its responses to global climate change. Chinese Journal of Applied Ecology, 18(12):2889-2895.[in Chinese])(1)
[10] 査同刚, 张志强, 孙 阁, 等.2012. 凋落物分解主场效应及其土壤生物驱动.生态学报, 32(24):7991-8000.
(Zha T G, Zhang Z Q, Sun G, et al.2012. Home-field advantage of litter decomposition and its soil biological driving mechanism:a review.Acta Ecologica Sinica, 32(24):7991-8000.[in Chinese])(1)
[11] Achat D L, Bakker M R, Trichet P. 2008. Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. Journal of Forest Research, 13(3):165-175.(1)
[12] Adamek M, Corre M D, Hölscher D. 2011. Responses of fine roots to experimental nitrogen addition in a tropical lower montane rain forest, Panama. Journal of Tropical Ecology, 27(1):73-81.(1)
[13] Alarcon-Gutierrez E, Floch C, Ziarelli F, et al. 2008. Characterization of a mediterranean litter by 13C CPMAS NMR:relationships between litter depth, enzyme activities and temperature. European Journal of Soil Science, 59(3):486-495.(1)
[14] Baize D, Girard M C. 1995. Referentiel pedologique. Paris:Institut National de la Recherche Agronomique, 332.(1)
[15] Bennett J N, Andrew B, Prescott C E. 2002. Vertical fine root distributions of western redcedar, western hemlock, and salal in old-growth cedar hemlock forests on northern Vancouver Island. Canadian Journal of Forest Research, 32(7):1208-1216.(1)
[16] Benzing D H. 1991. Aerial roots and their environments//Wiasel Y, Eshel A, Kafkafi U. Plant roots:the hidden half. NewYork:Marcel Dekker, Inc., 867-886.(1)
[17] Berg B, Mcclaugherty C. 2008. Plant litter:decomposition, humus formation, carbon sequestration. 2nd ed. Berlin:Springer-Verlag.(3)
[18] Bonanomi G, Incerti G, Barile E, et al. 2011. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects:evidence from solid-state 13C NMR spectroscopy. New Phytologist, 191(4):1018-1030.(2)
[19] Bonkowski M, Scheu S, Schaefer M. 1998. Interactions of earthworms(Octolasion lacteum), millipedes(Glomeris marginata) and plants(Hordelymus europaeus) in a beechwood on a basalt hill:implications for litter decomposition and soil formation. Applied Soil Ecology, 9(1/3):161-166.(1)
[20] Børja I, DeWit H A, Steffenrem A, et al. 2008. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiology, 28(5):773-784.(1)
[21] Borken W, Kossmann G, Matzner E. 2007. Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant and Soil, 292(1/2):79-93.(1)
[22] Bughio F A, Mangrio S M, Abro S A, et al. 2013. Physio-morphological responses of native Acacia nilotica to eucalyptus allelopathy. Pakistan Journal of Botany, 45(1):97-105.(1)
[23] Chapin F S, Matson P A, Mooney H A. 2002. Principles of terrestrial ecosystem ecology. New York:Springer-Verlag, 6-137.(2)
[24] Chen H, Dong S, Liu L, et al. 2013. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS One, 8(12):1-8.(1)
[25] Cheng L, Booker F L, Tu C, et al. 2012. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337(6098):1084-1087.(2)
[26] Cheng W, Parton W J, Gonzalez-Meler M A, et al. 2014. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201(1):31-44.(2)
[27] Clemmensen K E, Bahr A, Ovaskainen O, et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127):1615-1618.(1)
[28] Colpaert J V, Vanlaere A. 1996. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytologist, 134(1):133-141.(1)
[29] Coomes D A, Grubb P J. 2000. Impacts of root competition in forests and woodlands:a theoretical framework and review of experiments. Ecological Monographs, 70(2):171-207.(1)
[30] Cotrufo M F. 2006. Quantity of standing litter:a driving factor of root dynamics. Plant and Soil, 281(1/2):1-3.(1)
[31] Craine J M, Morrow C, Fierer N. 2007. Microbial nitrogen limitation increases decomposition. Ecology, 88(8):2105-2113.(1)
[32] Crow S E, Lajtha K, Bowden R D, et al. 2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10):2224-2232.(1)
[33] de Graaff M A, Classen A T, Castro H F, et al. 2010. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188(4):1055-1064.(1)
[34] Dijkstra F A, Carrillo Y, Pendall E, et al. 2013. Rhizosphere priming:a nutrient perspective. Frontiers in Microbiology, 4:1-8.(1)
[35] Dijkstra F A, Cheng W. 2007. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10(11):1046-1053.(1)
[36] Fahey T J, Hughes J W. 1994. Fine root dynamics in a northern hardwood forest ecosystem, hubbard brook experimental forest, NH. Journal of Ecology, 82(3):533-548.(1)
[37] Fellbaum C R, Gachomo E W, Beesetty Y, et al. 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109(7):2666-2671.(2)
[38] Fontaine S, Barot S, Barre P, et al. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167):277-280.(1)
[39] Fujimaki R, Mcgonigle T P, Takeda H. 2004. Soil micro-habitat effects on fine roots of Chamaecyparis obtusa Endl.:a field experiment using root ingrowth cores. Plant and Soil, 266(1):325-332.(3)
[40] Gadgil R L, Gadgil P D. 1971. Mycorrhiza and litter decomposition. Nature, 233(5315):133-135.(1)
[41] Gavito M E, Olsson P A. 2003. Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. Fems Microbiology Ecology, 45(2):181-187.(1)
[42] Herrera R, Merida T, Stark N, et al. 1978. Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften, 65(4):208-209.(2)
[43] Hertel D, Leuschner C, Lscher D H. 2003. Size and structure of fine root systems in old-growth and secondary tropical montane forests(Costa Rica). Biotropica, 35(2):143-153.(3)
[44] Hilli S, Stark S, Derome J. 2008. Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11(2):270-282.(1)
[45] Hobbie S E. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 8(6):644-656.(1)
[46] Hodge A, Campbell C D, Fitter A H. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413(6853):297-299.(1)
[47] Hodge A, Fitter A H. 2010a. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, 107(31):13754-13759.(1)
[48] Hodge A, Helgason T, Fitter A H. 2010b. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3(4):267-273.(1)
[49] Hölscher D, Dunker B, Harbusch M, et al. 2009. Fine root distribution in a lower montane rain forest of Panama. Biotropica, 41(3):312-318.(1)
[50] Hopkins F, Gonzalez-Meler M A, Flower C E, et al. 2013. Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199(2):339-351.(1)
[51] Janssens I A, Dieleman W, Luyssaert S, et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5):315-322.(1)
[52] Jenny H. 1941. Factors of soil formation:a system of quantitative pedology. New York:McGraw-Hill.(1)
[53] Kemmitt S J, Lanyon C V, Waite I S, et al. 2008. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective. Soil Biology and Biochemistry, 40(1):61-73.(1)
[54] Kiers E T, Duhamel M, Beesetty Y, et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044):880-882.(2)
[55] Knops J, Bradley K L, Wedin D A. 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3):454-466.(1)
[56] Knorr M, Frey S D, Curtis P S. 2005. Nitrogen additions and litter decomposition:a meta-analysis. Ecology, 86(12):3252-3257.(1)
[57] Koide R T, Fernandez C W, Peoples M S. 2011. Can ectomycorrhizal colonization of Pinus resinosaroots affect their decomposition?.New Phytologist, 191(2):508-14.(1)
[58] Koide R T, Wu T. 2003. Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytologist, 158(2):401-407.(1)
[59] Kong D, Ma C. 2014a. Acquisition of ephemeral module in roots:a new view and test. Scientific Reports, 4:1-4.(1)
[60] Kong D, Ma C, Zhang Q, et al. 2014b. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203(3):863-872.(1)
[61] Kuchenbuch R O, Ingram K T, Buczko U. 2006. Effects of decreasing soil water content on seminal lateral roots of young maize plants. Journal of Plant Nutrition and Soil Science, 169(6):841-848.(1)
[62] Kuzyakov Y, Hill P W, Jones D L. 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant and Soil, 290(1-2):293-305.(1)
[63] Kuzyakov Y. 2010. Priming effects:interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9):1363-1371.(2)
[64] Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen:mechanisms and ecological relevance. New Phytologist, 198(3):656-669.(1)
[65] Leppälammi-Kujansuu J, Aro L, Salemaa M, et al. 2014. Fine root longevity and carbon input into soil from below-and aboveground litter in climatically contrasting forests. Forest Ecology and Management, 326:79-90.(1)
[66] Lima T T, Miranda I S, Vasconcelos S S. 2010. Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytologist, 187(3):622-630.(1)
[67] Lindahl B R D, Trumbore S E, Gberg H P, et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173(3):611-620.(1)
[68] Lopez-Iglesias B, Olmo M, Gallardo A, et al. 2014. Short-term effects of litter from 21 woody species on plant growth and root development. Plant and Soil, 381(1/2):177-191.(1)
[69] Manzoni S, Jackson R B, Trofymow J A, et al. 2008. The global stoichiometry of litter nitrogen mineralization. Science, 321(5889):684-686.(1)
[70] Manzoni S, Trofymow J A, Jackson R B, et al. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80(1):89-106.(2)
[71] Mayor J, Henkel T W. 2006. Do ectomycorrhizas alter leaf litter decomposition in mono dominant tropical forests of Guyana?. New Phytologist, 169(3):579-588.(1)
[72] Moore T R, Trofymow J A, Prescott C E, et al. 2006. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in canadian forests. Ecosystems, 9(1):46-62.(1)
[73] Mun H. 2009. Weight loss and nutrient dynamics during leaf litter decomposition of Quercus mongolica in Mt. Worak National Park. Journal of Ecology and Environment, 32(2):123-127.(1)
[74] Nasholm T, Ekblad A, Nordin A, et al. 1998. Boreal forest plants take up organic nitrogen. Nature, 392(6679):914-916.(1)
[75] Norby R J, Jackson R B. 2000. Root dynamics and global change:seeking an ecosystem perspective. New Phytologist, 147(1):3-12.(1)
[76] Nottingham A T, Turner B L, Winter K, et al. 2013. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. Fems Microbiology Ecology, 85(1):37-50.(2)
[77] Olsson P A, Chalet M, Baath E, et al. 1996. Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. Fems Microbiology Ecology, 21(2):77-86.(1)
[78] Orwin K H, Kirschbaum M U F, StJohn M G, et al. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage:a model-based assessment. Ecology Letters, 14(5):493-502.(1)
[79] Osono T, Hirose D, Fujimaki R. 2006. Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biology and Biochemistry, 38(9):2743-2752.(1)
[80] Park B B, Yanai R D, Fahey T J, et al. 2008. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems. Ecosystems, 11(2):325-341.(1)
[81] Parton W, Silver W L, Burke I C, et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810):361-364.(1)
[82] Pérez-Corona M E, De Aldana B R V. 2013. Allelopathic potential of invasive Ulmus pumila on understory plant species. Allelopathy Journal, 32(1):101-112.(1)
[83] Persson H Å, Stadenberg I. 2010. Fine root dynamics in a Norway spruce forest(Picea abies(L.) Karst) in eastern Sweden. Plant and Soil, 330(1/2):329-344.(1)
[84] Persson H Å, Stadenberg I. 2009. Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant and Soil, 318(1/2):1-14.(1)
[85] Persson H Å. 2012. The high input of soil organic matter from dead tree fine roots into the forest soil. International Journal of Forestry Research, 1-9.(1)
[86] Phillips R P, Finzi A C, Bernhardt E S. 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14(2):187-194.(1)
[87] Phillips R P, Meier I C, Bernhardt E S, et al. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 15(9):1042-1049.(1)
[88] Pregitzer K S, DeForest J L, Burton A J, et al. 2002. Fine root architecture of nine north american trees. Ecological Monographs, 72(2):293-309.(1)
[89] Prévost-Bouré N C, Soudani K, Damesin C, et al. 2010. Increase in aboveground fresh litter quantity over-stimulates soil respiration in a temperate deciduous forest.Applied Soil Ecology, 46(1):26-34.(1)
[90] Querejeta J, Egerton-warburton L M, Allen M F. 2003. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 134(1):55-64.(1)
[91] Read D J, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?. New Phytologist, 157(3):475-492.(1)
[92] Rosling A, Lindahl B D, Taylor A F S, et al. 2004. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. Fems Microbiology Ecology, 47(1):31-37.(1)
[93] Rosling A. 2009. Trees, mycorrhiza and minerals-field relevance of in vitro experiments. Geomicrobiology Journal, 26(6):389-401.(1)
[94] Sanchez F G. 2001. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. Forest Ecology and Management, 152(1):85-96.(1)
[95] Sayer E J, Powers J S, Tanner E V J. 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE, 2(12):1-6.(1)
[96] Sayer E J, Tanner E V J, Cheesman A W. 2006. Increased litterfall changes fine root distribution in a moist tropical forest.Plant and Soil, 281(1/2):5-13.(3)
[97] Schimel D S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1(1):77-91.(1)
[98] Seeber J, Seeber G U H, Kössler W, et al. 2005. Abundance and trophic structure of macro-decomposers on alpine pastureland(Central Alps, Tyrol):effects of abandonment of pasturing. Pedobiologia, 49(3):221-228.(1)
[99] Stark N M, Jordan C F. 1978. Nutrient retention by the root mat of an Amazonian rain forest. Ecology, 59(3):434-437.(1)
[100] Subke J, Hahn V, Battipaglia G, et al. 2004. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, 139(4):551-559.(2)
[101] Sullivan B W, Hart S C. 2013. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biology and Biochemistry, 58(2):293-301.(1)
[102] Tian D, Peng Y, Yan W, et al. 2010. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in masson pine plantations. Pedosphere, 20(4):486-493.(1)
[103] Tiunov A V, Scheu S. 2005. Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia, 142(4):636-642.(1)
[104] Tobon C, Sevink J, Verstraten J M. 2004. Litterflow chemistry and nutrient uptake from the forest floor in northwest Amazonian forest ecosystems. Biogeochemistry, 69(3):315-339.(1)
[105] Turner B L, Engelbrecht B M J. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 103(1-3):297-315.(1)
[106] Wardle D A, Bardgett R D, Klironomos J N, et al. 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677):1629-1633.(1)
[107] Went F W, Stark N. 1968. Mycorrhiza. Bioscience, 18(11):1035-1039.(1)
[108] Xia M, Guo D, Pregitzer K S. 2010. Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188(4):1065-74.(1)
[109] Yang X, Yang Z, Warren M W, et al. 2012. Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. European Journal of Soil Biology, 53:23-31.(1)
[110] Yin H, Chen Z, Liu Q. 2012a. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 50(5):77-84.(1)
[111] Yin H, Xu Z, Chen Z, et al. 2012b. Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. Applied Soil Ecology, 59(4):60-67.(1)
[112] Yoccoz N G. 2012. The future of environmental DNA in ecology. Molecular Ecology, 21(8):2031-2038.(1)
[113] Zhu B, Cheng W. 2011. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 17(6):2172-2183.(2)