林业科学  2016, Vol. 52 Issue (3): 97-104   PDF    
DOI: 10.11707/j.1001-7488.20160312
0

文章信息

费玲, 钟全林, 程栋梁, 徐朝斌, 张中瑞, 张蕾蕾
Fei Ling, Zhong Quanlin, Cheng Dongliang, Xu Chaobin, Zhang Zhongrui, Zhang Leilei
天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系
Biomass Allocation Between Aboveground-and Underground of shrub Layer Vegetation in Natural Evergreen Broad-Leaved Forest and Chinese Fir Plantation
林业科学, 2016, 52(3): 97-104
Scientia Silvae Sinicae, 2016, 52(3): 97-104.
DOI: 10.11707/j.1001-7488.20160312

文章历史

收稿日期:2014-07-30
修回日期:2016-01-11

作者相关文章

费玲
钟全林
程栋梁
徐朝斌
张中瑞
张蕾蕾

天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系
费玲1, 2, 钟全林1, 2, 3, 程栋梁1, 2, 3, 徐朝斌1, 2, 张中瑞1, 2, 张蕾蕾1, 2    
1. 福建师范大学地理科学学院 福州 350007;
2. 湿润亚热带山地生态国家重点实验室培育基地 福州 350007;
3. 福建省植物生理生态重点实验室 福州 350007
摘要:【目的】研究林下灌木层地上与地下生物量的分配关系探究不同起源森林在不同生长发育阶段灌木层地上地下生物量是否符合等速生长规律,抚育管理等人工经营措施是否会影响其地上地下生物量分配关系,为开展森林生态系统其他相关研究提供基础数据和科学依据。【方法】以天然常绿阔叶林和杉木人工林为研究对象,分别基于其不同龄组及所有灌木层样方植物的地上生物量(y)与地下生物量(x)数据,应用SMATR软件,采用对数方程lgy=b+algx拟合灌木层地上、地下生物量分配关系,并对不同起源森林各龄组灌木层的a(生长指数)和b(生长常数)值进行分析。【结果】不同龄组天然常绿阔叶林的灌木层生长指数a值分别为幼龄林0.942、中龄林1.003、近熟林0.946和成熟林0.951,各龄组间差异不明显(P=0.136),其地上地下生物量分配均遵循等速生长规律;不同龄组杉木人工林灌木层a值分别为幼龄林0.837,中龄林0.817,近熟林1.011,成熟林0.984,各龄组间差异也不明显(P=0.515),且其95%置信区间也均包含理论预测值1.0,其地上地下生物量分配也遵循等速生长规律。【结论】天然常绿阔叶林和杉木人工林灌木层地上地下生物量均遵循等速生长规律;不同区域、不同树种及不同龄组的人工林灌木层地上地下生物量分配均遵循等速生长规律。
关键词灌木层    生物量分配    龄组    天然常绿阔叶林    杉木人工林    
Biomass Allocation Between Aboveground-and Underground of shrub Layer Vegetation in Natural Evergreen Broad-Leaved Forest and Chinese Fir Plantation
Fei Ling1, 2, Zhong Quanlin1, 2, 3, Cheng Dongliang1, 2, 3, Xu Chaobin1, 2, Zhang Zhongrui1, 2, Zhang Leilei1, 2     
1. College of Geographical Sciences, Fujian Normal University, Ministry of Education Fuzhou 350007;
2. State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology Fuzhou 350007;
3. Key Laboratory of Plant Ecophysiology of Fujian Province Fuzhou 350007
Abstract: [Objective] Understanding the relationship between above- and below-ground biomass is of profound significance to predict the biomass of forest ecosystem and global climate changes. This paper was aimed to test whether the aboveground biomass scaled isometrically with under-ground biomass of shrub layer plants and how forest management measures influenced such scaling relationships. [Method] Above-(y)and under-ground biomass(x)of shrub layer plants in natural evergreen broad-leaved forest and Chinese fir plantation in Fujian province (Nanping and Sanming) were harvested to test the biomass allocation patterns, a. Software SMATR (standardized major axis tests and routines)was used to calculate and analyze the allometric scaling a and exponent constant b, as the equation: log y=b+a log x. [Result] The scaling exponents for the shrub layer plants of young, middle-age, pre-mature and mature natural evergreen broad-leaved forests were 0.942, 1.003, 0.946, and 0.951, respectively. Furthermore, the scaling exponents were not differ significantly among the four stand ages of natural evergreen broad-leaved forests, indicating that above-ground biomass scaled isometrically with under-ground biomass. For the shrub layer plants of young, middle-age, pre-mature and mature Chinese fir plantations, the scaling exponents were 0.837, 0.817, 1.011, and 0.984, respectively. The 95% confidence intervals of such scaling exponents all covered the predicted theoretical value 1.0, showing that above-ground biomass scaled isometrically with below-ground biomass. [Conclusion] The above-ground biomass of understory scales nearly one to one with under-ground biomass in different regions and different types of forests. Although different forest tending measures appeared to affect the scaling constants, but not the scaling exponents of above-vs . under-ground biomass of shrub layer plants. Generally, the above- and under-ground biomass allocation patterns of shrub layer plants in natural evergreen broad-leaved forest and Chinese fir plantation in Fujian province were in consistence with the isometric biomass allocation theory. The research validated and developed the theory of isometric scaling of above- and under-ground biomass of forest vegetation.
Key words: shrub layer vegetation    biomass allocation    age groups    natural evergreen broad-leaved forest    Chinese fir plantation    

林下植被是森林生态系统的重要组成部分,包括木本植物、草本植物和藤本植物等,对森林多样性的维护、生态功能的稳定和立地生产力的持续利用等有重要作用(何艺玲等,2002; 闫文德等,2003)。国外对林下植被的研究起于19世纪末期,多集中于其对立地环境的指示作用(方奇,1987)。近年来,我国对林下植被的研究主要集中在林下植被生物量分配格局及其动态(万云,2010; 刘凤娇,2011; 黎燕琼等,2010)、林下灌草多样性(何列艳,2011)以及间伐、林火对林下植被的生长发育、生产力及物种丰富度的影响(安云等,2012; 杨健等,2013)等方面。自然界植物中广泛存在着异速生长关系(Niklas et al.,2002a2002b;韩文轩等,2008),但异速生长指数并不是唯一数值,一般为1/4的倍数(West et al.,1997; Cheng et al.,2007; 韩文轩等,2008)。Niklas et al.,2002a2002b)在分析Cannell(1982)收集的世界森林数据时发现,森林植物地上与地下生物量呈等速生长关系(即异速生长指数为1.0)。

目前,国内外对森林乔层植物生物量分配规律研究较多,对林下灌木层研究主要集中于利用灌木层生物量相对生长模型估算森林灌木层碳储量、退化森林的林下植被恢复(李晓娜等,2010; Paton et al.,2002)、水土保持效益(赵明华等,2004; 王冬梅,2004; 李国荣等,2013)、时空分异(程杰等,2013)和绿化效益(刘宇,2008; 应文思,2008)等方面。但对林下灌木层地上地下生物量分配规律是否符合等速生长规律,抚育管理等人工林经营措施的实施是否会影响林下灌木层地上地下生物量分配关系等问题则尚需进一步研究。本研究基于闽西北地区不同龄组天然常绿阔叶林及杉木(Cunninghamia lanceolata)人工林林下灌木层地上与地下生物量调查数据,分析天然林与人工林灌木层地上地下生物量分配关系,拟解决以下几问题:不同起源森林在不同生长发育阶段灌木层地上地下生物量是否符合等速生长规律,抚育管理等人工经营措施是否会影响其地上地下生物量分配关系,林下灌木层地上地下生物量分配关系是否与乔木层植物地上地下生物量分配关系一致等。研究结果有利于了解南方不同起源森林灌木层地上与地下生物量分配特征及受人为干扰(如人工抚育等)后森林灌木层地上与地下生物量的相对生长关系,对实施林下树种经营、发展林下经济等具有重要参考价值,并可为开展森林生态系统其他相关研究如生态系统生物量预测、林下植被碳汇功能评价、全球气候变化研究等提供基础数据和科学依据(杨昆等,2006; 李晓娜等,2010)。

1 研究区概况

研究区位于福建省南平市(117°00′—119°17′E,26°15′—28°19′N)和三明市(116°22′—118°39′E,25°29′—27°07′N),都属中亚热带湿润季风气候。南平市年均气温19.5 ℃,年均降水量1 731 mm,年均日照时数1 820 h。三明市年均气温19.4 ℃,年均降水量1 762 mm,年均日照时数1 629.3 h。研究区植被群落以天然常绿阔叶林和杉木人工林为主。本研究所选择的天然常绿阔叶林未受人为干扰,郁闭度在0.7以上(表 1表 2),主要优势种为米槠(Castanopsis carlesii)、栲树(Castanopsis fargesii)、甜槠(Castanopsis eyrei)和青冈(Quercus glauca)等壳斗科(Fagaceae)植物,木材蓄积量为101.3~434.9 m3 ·hm-2,其林下灌木层平均覆盖度为47%;杉木人工林在造林当年抚育1次,第2,3年每年抚育2次,第4,5年每年抚育1次,一般在6~9年第1次间伐,12~15年第2次间伐。所选取的杉木人工林蓄积量为61.8~425.9 m3 ·hm-2,其林下灌木层平均覆盖度为35%。

2 研究方法

依据2008年研究区森林资源二类调查资料中的各龄组森林面积与资源数据,结合其小班分布图,参照《国家森林资源连续清查技术规定》进行龄组划分,其中杉木幼龄林为10年以下、中龄林为11~20年、近熟林为21~25年、成熟林为26~35年;天然常绿阔叶林幼龄林为40年以下、中龄林为41~60年、近熟林为61~80年、成熟林为81~120年。2011年8—10月,分别选用不同龄组的天然常绿阔叶林和杉木人工林,采用典型样地调查法,在南平市和三明市设置常绿阔叶林样点8个(表 1)、杉木林样点8个(表 2)。在每个样点分别设置3块20 m× 50 m 样地,3样地间距离不小于100 m。在每块样地内设置3个2 m × 2 m的灌木层样方(Dech et al.,2008; Torroba-Balmori et al.,2015; Cheng et al.,2015),记录样方内灌木层(胸径 < 5 cm,高度>50 cm)植物的种类及数量,采用全挖法实测其生物量。将各样方内所有灌木层分种收获后,按地下部分(根)、地上部分(枝、叶、干)取样并带回实验室,在80 ℃烘干至恒质量。以典型样方中各灌木层植物种的地上生物量与地下生物量作为分析样本,选用对数转换处理(log10-transformed)后的方程lgy=b+a lgx,其中x为地下生物量,y为地上生物量。应用SMATR软件,分别不同龄组天然常绿阔叶林和杉木人工林,计算其灌木层的异速生长指数a、异速生长常数b及其95%置信区间(程栋梁,2007; 朱强根等,2013),并据此分析其地上生物量(y)与地下生物量(x)(t ·hm-2)的分配关系。

表 1 天然常绿阔叶林灌木层地上地下生物量关系式中的异速生长指数与异速生长常数 Tab.1 Growth exponents and constants of shrub layer in natural evergreen broad-leaved forest
表 2 杉木人工林灌木层地上地下生物量关系式中的异速生长指数与异速生长常数 Tab.2 Growth exponents and constants of shrub layer in Chinese fir plantation
3 结果分析 3.1 天然常绿阔叶林灌木层地上地下生物量分配关系

表 1可知,不同龄组天然常绿阔叶林的灌木层地上地下生物量关系式中的异速生长指数分别为幼龄林0.942、中龄林1.003、近熟林0.946、成熟林0.951(表 1图 1),各龄组灌木层的异速生长指数均与等速生长理论预测值1.0无显著差异(P>0.05),说明各龄组天然常绿阔叶林的灌木层地上地下生物量均遵循等速生长规律。4个龄组间的森林灌木层地上地下生物量关系式中的异速生长指数以中龄林为最大,幼龄林为最小(表 1图 1),但4个龄组森林灌木层生物量异速生长指数没有显著差异(P=0.136)。阔叶林生长后期(近熟林和成熟林)与生长前期(幼龄林和中龄林)的异速生长常数差异显著(P < 0.05)。

图 1 天然常绿阔叶林各龄组灌木层地上和地下生物量分配关系 Fig. 1 Allocation relationship between above- and below-ground biomass of shrub layer vegetation in natural evergreen broad-leaved forest x:地下生物量Belowground biomass, y:地上生物量Above around biomass。下同。The same below.

从各龄组不同地域天然常绿阔叶林灌木层地上地下生物量关系式中的异速生长指数也可看出,同一龄组中,不同地域林下灌木层地上地下生物量异速生长指数为0.762~1.115(表 1),除武夷山森林灌木层的异速生长指数95%的置信区间上限接近1.0外,其余各地域各龄组森林灌木层的异速生长指数均与理论值1.0无显著差异(P>0.05)(表 1),说明其亦遵循等速生长规律。

3.2 杉木人工林灌木层地上地下生物量的分配关系

表 2可知,不同龄组杉木人工林的灌木层地上地下生物量关系式中的异速生长指数分别为幼龄林0.837、中龄林0.817、近熟林1.011和成熟林0.984。不同龄组间异速生长指数无显著差异,且其95%的置信区间数值也均包含1.0(表 2图 2),说明各龄组杉木人工林的灌木层地上地下生物量分配均遵循等速生长规律。但杉木成熟林异速生长常数显著低于其余3个龄组(P < 0.05)。

图 2 杉木人工林各龄组灌木层地上和地下生物量分配关系 Fig. 2 Allocation relationship between above- and below-ground biomass of shrub layer vegetation in Chinese fir plantation

从各龄组不同地域杉木人工林灌木层地上地下生物量关系式中的异速生长指数也可看出,同一龄组中,不同地域林下灌木层地上地下生物量异速生长指数为0.723~1.148(表 2),但各异速生长指数的95%的置信区间数值均包含1.0(表 2),说明其亦遵循等速生长规律。

另从表 2中永安杉木幼龄林和建阳杉木近熟林灌木层地上地下生物量关系的拟合结果可知,其灌木层植物样本数分别为6和7,选用对数转换处理后的方程lgy=b+a lgx拟合的地上地下生物量关系的异速生长指数的拟合精度P>0.05,说明在样本数较少时,可能不宜采用对数转换处理后的方程lgy=b+a lgx拟合其森林灌木层地上地下生物量分配关系。

4 讨论

不同龄组天然常绿阔叶林与杉木人工林的灌木层地上地下生物量分配均遵循等速生长规律,即地上生物量正比于地下生物量,符合Niklas等(2002a2002b)提出的等速生长理论。通过从相关文献中(闫文德等,2003; 韩忠明等,2006梁妮等,2006;潘攀等,2007; 谢伟东等,2009汪永文等,2010刘凤娇,2011何列艳,2011; 刘广营等,2011; 刘延惠等,2011;赵蓓,2012; 明安刚等,2012;俞月凤等,2013杜虎等,2013; 秦金舟等,2013)收集的国内研究的不同类型、不同年龄阶段、不同地理位置人工林林下灌木层植物的生物量数据分析也发现,不同类型、不同地理位置的森林群落林下灌木层地上地下生物量间的异速生长指数均接近1.0或其95%置信区间包含1.0,也普遍满足等速生长规律。本研究中杉木人工林林下灌木层地上地下生物量间的植物异速生长指数与利用闫文德等(2003)赵蓓(2012)俞月凤等(2013)所获取的杉木人工林灌木层植物生物量数据拟合的异速生长指数比较接近(0.940~1.065),说明不同起源、不同森林类型及同一森林类型不同龄组的林下灌木层地上地下生物量均符合等速生长理论,这一结果验证并发展了前人对森林群落植物的地上地下生物量的等速生长理论(Niklas et al.,2002a2002b; Cheng et al.,2007)。

5 结论

不同龄组天然常绿阔叶林灌木层地上地下生物量的异速生长指数分别为幼龄林0.942、中龄林1.003、近熟林0.946、成熟林0.951;不同龄组杉木人工林灌木层地上地下生物量的异速生长指数分别为幼龄林0.837,中龄林0.817,近熟林1.011,成熟林0.984;同一森林类型各龄组间的异速生长指数及不同森林类型在同一龄组间的灌木层地上地下生物量的异速生长指数均差异不显著,灌木层地上地下生物量分配均遵循等速生长规律。

参考文献(References)
[1] 安云,丁国栋,梁文俊,等. 2012.间伐对华北土石山区油松林生长及其林下植被发育的影响.水土保持研究, 19(4):86-90.
(An Y, Ding G D, Liang W J, et al.2012. Effects of thinning on the growth and the development of undergrowth of Pinus tabulaeformis plantation in rocky mountain Area of North China. Research of Soil and Water Conservation, 19(4):86-90[in Chinese]).(1)
[2] 程栋梁. 2007.植物生物量分配模式与生长速率的相关规律研究.兰州:兰州大学博士学位论文.
(Cheng D L.2007. Study on the correlation of plant biomass allocation pattern and growth rate. Lanzhou:PHD thesis of Lanzhou University[in Chinese]).(1)
[3] 程杰,王吉斌,程积民,等. 2013.黄土高原柠条锦鸡儿灌木林生长的时空变异特征.林业科学, 49(1):14-20.
(Cheng J, Wang J B, Cheng J M, et al. 2013. Spatial-temporal variability of Caragana korshinskii vegetation growth in the Loess Plateau. Scientia Silvae Sinicae, 49(1):14-20[in Chinese]).(1)
[4] 杜虎,宋同清,曾馥平,等. 2013.桂东不同林龄马尾松人工林的生物量及其分配特征.西北植物学报, 33(2):394-400.
(Du H, Song T Q, Zeng F P, et al. 2013. Biomass and its allocation in Pinus massoniana plantation at different stand ages in East Guangxi. Acta Botanica Boreali Occidentalia Sinica, 33(2):394-400[in Chinese]).(1)
[5] 方奇. 1987.杉木连栽对土壤肥力及杉木生长的影响.林业科学, 23(4):289-397.
(Fang Q.1987. The successive rotation effect on the growth and soil fertility of Chinese fir plantation. Scientia Silvae Sinicae, 23(4):289-397[in Chinese]).(1)
[6] 韩文轩,方精云. 2008.幂指数异速生长机制模型综述.植物生态学报, 32(4):951-960.
(Han W X, Fang J Y.2008. Review on the mechanism models of allometric scaling. Journal of Plant Ecology, 32(4):951-960[in Chinese]).(2)
[7] 韩忠明,韩梅,吴劲松,等. 2006.不同生境下刺五加种群构件生物量结构与生长规律.应用生态学报, 17(7):1164-1168.
(Han Z M, Han M, Wu J S, et al.2006. Modules biomass structure and growth pattern of Acanthopanax senticosus population in different habitats. Chinese Journal of Applied Ecology, 17(7):1164-1168[in Chinese]).(1)
[8] 何列艳. 2011.长白山过伐林区杨桦次生林与落叶松人工林林下灌草多样性和生物量研究.北京:北京林业大学硕士学位论文.
(He L Y.2011.Understory diversity and biomass of polar-birch secondary forest and larch plantation in over-cutting forest area of Changbai Mountains. Beijing:MS thesis of Beijing Forestry University[in Chinese]).(2)
[9] 何艺玲,傅懋毅. 2002.人工林林下植被的研究现状.林业科学研究, 15(6):727-733.
(He Y L, Fu M Y.2002. Review of studies on understorey of plantations. Forest Research, 15(6):727-733[in Chinese]).(1)
[10] 李国荣,胡夏嵩,毛小青,等. 2013.青藏高原东北部黄土区草本与灌木植物根-土相互作用力学机理及其模型研究.中国水土保持, 7(7):37-41.
(Li G R, Hu X S, Mao X Q, et al.2013.Study on herb and shrub plant roots and soil interaction mechanics mechanism and model of Loess area in the northeast in Qinghai-Tibet Plateau. China Journal of soil and water conservation, 7(7):37-41[in Chinese]).(1)
[11] 李晓娜,国庆喜,王兴昌,等. 2010.东北天然次生林下木树种生物量的相对生长.林业科学, 46(8):22-32.
(Li X N, Guo Q X, Wang X C, et al.2010. Allometry of understory tree species in a natural secondary forest in Northeast China. Scientia Silvae Sinicae, 46(8):22-32[in Chinese]).(2)
[12] 黎燕琼,郑绍伟,龚固堂,等. 2010.不同年龄柏木混交林下主要灌木黄荆生物量及分配格局.生态学报, 30(11):2809-2818.
(Li Y Q, Zheng S W, Gong G T, et al.2010. Biomass and its allocation of undergrowth Vitex negundo L. in different age classes of mixed cypress forest. Acta Ecologica Sinica, 30(11):2809-2818[in Chinese]).(1)
[13] 梁妮,王卫斌,田昆. 2006. 4年生及13年生西南桦人工林生物量的分布特征.西部林业科学, 35(4):118-122.
(Liang N, Wang W B,Tian K.2006. Biomass distribution characteristics of 4 and 13 years old Betula alnoides plantations. Journal of West China Forestry Science, 35(4):118-122[in Chinese]).(1)
[14] 刘凤娇. 2011.长白落叶松人工林林下植被生物量与多样性研究.北京:北京林业大学硕士学位论文.
(Liu F J.2011.Study on biomass and species diversity of understory in Larix olgensis Herry. plantation. Beijing:MS thesis of Beijing Forestry University[in Chinese]).(2)
[15] 刘广营,赵国华,王广海,等. 2011.华北落叶松人工林生物量分配格局.河北林果研究, 26(3):222-226.
(Liu G Y, Zhao G H, Wang G H, et al.2011. Allocation pattern of Larix principis rupprechtii biomass. Hebei Journal of Forestry and Orchard Research, 26(3):222-226[in Chinese]).(1)
[16] 刘延惠,王彦辉,于澎涛,等. 2011.六盘山主要植被类型的生物量及其分配.林业科学研究, 24(4):443-452.
(Liu Y H, Wang Y H, Yu P T, et al.2011. Biomass and its allocation of the main vegetation types in Liupan Mountains. Forest Research, 24(4):443-452[in Chinese]).(1)
[17] 刘宇. 2008.南宁市4种道路绿化灌木生理特性及土壤性质研究.南宁:广西大学硕士学位论文.
(Liu Y.2008.Research on the physiological characteristics of four shrubs species and the property of soil in Nanning. Nanning:MS thesis of Guangxi University[in Chinese]).(1)
[18] 明安刚,贾宏炎,陶怡,等. 2012.桂西南28年生米老排人工林生物量及其分配特征.生态学杂志, 31(5):1050-1056.
(Ming A G, Jia H Y, Tao Y, et al. 2012. Biomass and its allocation in a 28-year-old Mytilaria laosensis plantation in southwest Guangxi. Chinese Journal of Ecology, 31(5):1050-1056[in Chinese]).(1)
[19] 潘攀,牟长城,孙志虎. 2007.长白落叶松人工林灌丛生物量的调查与分析.东北林业大学学报, 35(4):1-6.
(Pan P, Mou C C, Sun Z H.2007. Biomass of shrub and herb layers in Larix olgensis plantations.Journal of Northeast forestry University, 35(4):1-6[in Chinese]).(1)
[20] 秦金舟,何小定,陈晓娟,等. 2013. 2种马尾松林林下植被生物量特性研究.安徽农业大学学报, 40(5):740-745.
(Qin J Z, He X D, Chen X J, et al. 2013. Biomass characteristics of understory vegetation in pure and mixed Pinus massoniana forests.Journal of Anhui Agricultural University, 40(5):740-745[in Chinese]).(1)
[21] 王冬梅. 2004.黄土丘陵区沙棘水土保持薪炭林土地生产潜力研究.国际沙棘研究与开发, 2(3):33-37.
(Wang D M.2004. Studies on potential land productivity of Hippophae rhamnoides L.for fuel wood and water and soil conservation in hilly area of the Loess Plateau. International Journal of Research and Development of Seabuckthorn, 2(3):33-37[in Chinese]).(1)
[22] 汪永文,王力,王丽丽,等. 2010.马尾松混交林林下植被结构及生物量特征研究.安徽农业大学学报, 37(2):312-316.
(Wang Y W, Wang L, Wang L L, et al.2010. Structure and biomass of understory vegetation in masson pine and broad-leaved tree mixed forest. Journal of Anhui Agricultural University, 37(2):312-316[in Chinese]).(1)
[23] 万云. 2010.枞阳大山不同演替阶段林下植被生物量分配格局研究.合肥:安徽农业大学硕士学位论文.
(Wan Y.2010.Biomass allocation pattern of understory vegetation in different succession stages in Dashan Zongyang. Hefei:MS thesis of Agricultural University of Anhui[in Chinese]).(1)
[24] 谢伟东,叶绍明,杨梅,等. 2009.桂东南丘陵地马尾松人工林群落生物量及分布格局.北华大学学报:自然科学版,10(1):68-71.
(Xie W D, Ye S M, Yang M, et al.2009. Biomass and distribution pattern of Pinus massoniana plantation in southeast area of Guangxi.Journal of Beihua Univerrity:Natural Science, 10(1):68-71[in Chinese]).(1)
[25] 闫文德,田大伦,焦秀梅. 2003.会同第二代杉木人工林林下植被生物量分布及动态.林业科学研究, 16(3):323-327.
(Yan W D, Tian D L, Jiao X M.2003. A study on biomass dynamics and distribution of under vegetation in the secondary generation of Chinese firp lantation in Huitong. Forest Research, 16(3):323-327[in Chinese]).(3)
[26] 杨健,孔健健,刘波. 2013.林火干扰对北方针叶林林下植被的影响.植物生态学报, 37(5):474-480.
(Yang J, Kong J J, Liu B.2013. A review of effects of fire disturbance on understory vegetation in boreal coniferous forest. Chinese Journal of Plant Ecology, 37(5):474-480[in Chinese]).(1)
[27] 杨昆,管东生. 2006.林下植被的生物量分布特征及其作用.生态学杂志, 25(10):1252-1256.
(Yang K, Guan D S.2006. Biomass distribution and its functioning of forest understory vegetation. Chinese Journal of Ecology, 25(10):1252-1256[in Chinese]).(1)
[28] 应文思. 2008.湖南6种园林灌木的耗水特性及不同配置绿地耗水量.长沙:中南林业科技大学硕士学位论文.
(Ying W S.2008. The law of water consuming for 6 kinds of shrubs and water consumption in different cultivate styles in Hunan. Changsha:MS thesis of Central South Forestry University[in Chinese]).(1)
[29] 俞月凤,宋同清,曾馥平,等. 2013.杉木人工林生物量及其分配的动态变化.生态学杂志, 32(7):1660-1666.
(Yu Y F, Song T Q, Zeng F P, et al.2013. Dynamic changes of biomass and its allocation in Cunninghamia lanceolata plantations of different stand ages. Chinese Journal of Ecology, 32(7):1660-1666[in Chinese]).(2)
[30] 赵蓓. 2012.大岗山林区几种灌木生物量及其价值研究.北京:北京林业大学硕士学位论文.
(Zhao B.2012. Biomass and value of several shrub species in Dagang Mountain. Beijing:MS thesis of Beijing Forestry University[in Chinese]).(2)
[31] 赵明华,杨延春,邹志国,等. 2004.江苏沿海地区生物措施提高水土保持效益研究.水土保持研究, 11(3):233-237.
(Zhao M H, Yang Y C, Zou Z G, et al.2004. Studies on benefits of improving water and soil conservation by ecological measures in coastal regions of Jiangsu Province. Research of Soil and Water Conservation, 11(3):233-237[in Chinese]).(1)
[32] 朱强根,金爱武,王意锟,等. 2013.不同营林模式下毛竹枝叶的生物量分配:异速生长分析.植物生态学报,37(9):811-819.
(Zhu Q G, Jin A W, Wang Y K, et al.2013. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes:allometric scaling analysis. Chinese Journal of Plant Ecology, 37(9):811-819[in Chinese]).(1)
[33] Cannell M G R. 1982. World forest biomass and primary production data. London:Academic Press.(1)
[34] Cheng D L, Niklas K J. 2007. Above- and below-ground biomass relationships across 1534 forested communities. Annals of Botany, 99(1):95-102.(2)
[35] Cheng D L, Zhong Q L, Niklas K J, et al.2015. Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest. Annals of Botany, 115(2):303-313.(1)
[36] Dech J P, Robinson L M, Nosko P. 2008. Understorey plant community characteristics and natural hardwood regeneration under three partial harvest treatments applied in a northern red oak(Quercus rubra L.) stand in the Great Lakes-St. Lawrence forest region of Canada.Forest Ecology and Management,256(4):760-773.(1)
[37] Niklas K J, Enquist B J. 2002a. Canonical rules for plant organ biomass partitioning and growth allocation. American Journal of Botany, 89(5):812-819.(4)
[38] Niklas K J, Enquist B J. 2002b. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. American Naturalist, 159(5):482-497.(4)
[39] Paton D, Nunez J, Bao D, et al. 2002. Forage biomass of 22 shrub species from Monfrague Natural Park (SW Spain) assessed by log-log regression models. Journal of Arid Environments, 52(2):223-231.(1)
[40] Torroba-Balmori P, Zaldívar P, Alday J G, et al. 2015. Recovering quercus species on reclaimed coal wastes using native shrubs as restoration nurse plants. Ecological Engineering, 77:146-153.(1)
[41] West G B, Brown J H, Enquist B J. 1997. A general model for the origin of allometric scaling laws in biology. Science, 276(5309):122-126.(1)