文章信息
- 杨桂燕, 郭宇聪, 张凤娇, 赵震, 高彩球
- Yang Guiyan, Guo Yucong, Zhang Fengjiao, Zhao Zhen, Gao Caiqiu
- 不同长度ThVHAc1基因启动子片段分离及活性分析
- Isolation and Activity Analysis of Different Length ThVHAc1 Promoters
- 林业科学, 2016, 52(1): 55-61
- Scientia Silvae Sinicae, 2016, 52(1): 55-61.
- DOI: 10.11707/j.1001-7488.20160107
-
文章历史
- 收稿日期:2014-12-29
- 修回日期:2015-09-01
-
作者相关文章
启动子(promoter)通常是指位于结构基因5'端上游区域,能与RNA 聚合酶及其转录因子特异结合、决定基因转录起始的一段特异性DNA 序列,是转录控制中心,在转录水平上参与调控下游相应基因的表达,决定基因的转录与否、转录速度和频率、转录时间,因此了解目标基因的调控关键在于对其启动子的认识(Akan et al., 2008; Coca et al., 1996;Holtorf et al., 1995)。郝彦玲等(2006)从向日葵(Helianthus annuus)中分离获得Hads10G1 基因上游的启动子片段,GUS 酶活性检测表明其具有种子表达特异性。聂丽娜等(2008)分离了南瓜(Cucurbitamoschata)PP2 基因启动子序列NP,缺失分析发现其转录起始位点上游437 bp 启动子片段NPⅡ具有和长片段启动子NP 几乎相同的活性,同样能够指导目的基因在韧皮部特异表达。这表明不同基因发挥功能的启动子片段长度可能不同,不同长度的启动子片段可能具有不同的表达活性。因此,对某一基因启动子的不同长度缺失片段进行研究,有利于更全面地了解该目的基因的功能以及调控机制; 对不同胁迫条件下启动子表达活性进行分析,可以预测目的基因响应胁迫时的表达特性。
V-ATPase c 亚基是V-ATPase V0 区的主要部分,参与质子通道的形成,负责质子的转运,且对V-ATPase V1 -V0 的装配必不可少(Dietz et al., 2001)。以往研究表明,植物V-ATPase c 亚基参与植物的逆境胁迫应答。如黄瓜(Cucumis sativus)3个CsVHA-c 基因不仅具有组织表达差异,且对铜和镍应答也不完全一致,CsVHA-c1和CsVHA-c2 具有相似的表达模式,在雄蕊和叶中的表达最高,CsVHA-c3则与二者相反; CsVHA-c1 在铜和镍胁迫下被显著诱导,CsVHA-c3 则仅被镍胁迫诱导,而CsVHA-c2 能对多种重金属胁迫做出应答,但被铜胁迫诱导最明显(Kabała et al., 2014)。Northern 分析表明,冰叶日中花(Mesembryanthemum crystallinum)液泡膜V-ATPasec 亚基在NaCl 胁迫下的转录水平持续增加,且这种表达是由于NaCl 胁迫下的离子转运而不是渗透伤害引起的(Tsiantis et al., 1996)。珍珠粟(Pennisetumglaucum)V-ATPase c 亚基基因(PgVHA-c1)在珍珠粟的不同生长发育时期具有不同的表达,且响应于外界胁迫的刺激(Tyagi et al., 2006),将该基因与其启动子相连转入烟草(Nicotiana tabacum)发现具有组织表达特异性(Tyagi et al., 2005)。
前期研究表明,刚毛柽柳(Tamarix hispida)ThVHAc1 响应干旱、NaCl、重金属等胁迫,在其根、茎、叶中存在不同的表达模式,过表达ThVHAc1 能提高重组酵母多重抗性(Gao et al., 2011)。为进一步研究ThVHAc1 基因启动子的组织表达特性及其对胁迫的应答情况,本研究对该基因启动子的3 个长度缺失片段在NaCl和CdCl2 胁迫前后的表达活性进行分析,以期探讨不同长段ThVHAc1 基因启动子对NaCl和CdCl2 胁迫的应答情况。
1 材料与方法 1.1 植物材料处理根据染色体步移方法克隆获得的ThVHAc1 基因启动子中含有的Dof [DOFCOREZM,核心元件为AAAG,与植物的多重抗逆响应相关(Dong et al., 2007; Guo et al., 2009)]顺式作用元件的分布,将ThVHAc1 基因上游启动子分为205 bp(-1—- 205),504 bp(-1— - 504)和781 bp(-1—- 781)3 个不同长度片段。将这些不同长度启动子片段分别替换pCAMBIA1301 载体上启动GUS 基因表达的CaMV35S 启动子,将这些启动子片段与GUS基因融合构建植物表达载体pThVHAc1∷GUS,利用根癌农杆菌(Agrobacterium tumefaciens)EHA105 介导的蘸花法转化拟南芥(Arabidopsis thaliana)(Clough et al., 1998; Zheng et al., 2012),筛选至T4代。同时,将pCAMBIA1301 载体转化拟南芥作为阳性对照。将T4 种子于4 ℃ 春化3 天,用NaClO表面消毒后播种于1 /2MS 培养基上培养7 天,转移至灭菌土中生长4 周后,分别用100 mmol·L -1NaCl、150 μmol·L -1 CdCl2 浇灌处理,30 min 后取整个植株进行GUS 染色(Zheng et al., 2013),利用实体显微镜进行观察和照相,并测定GUS 酶活性。构建pThVHAc1∷GUS 引物见表 1。
![]() |
4-MU 标准曲线绘制:用反应终止液将1 mmol·L -1MU 母液稀释为0 ~ 10 μmol·L -1系列标准液,测定荧光强度,绘制荧光强度- 溶液浓度线性曲线(激发光波长365 nm,发射光波长455 nm)。
牛血清白蛋白(BSA)标准曲线绘制:配制10 mg·mL -1 BSA,逐级稀释得到5 个浓度梯度BSA 标准液,分别测定吸光度值。绘制蛋白吸光度(OD595)- 蛋白浓度标准曲线。
GUS 酶活性测定(Zheng et al., 2013):取约0. 1g 液氮研磨材料于2 mL 离心管中,加入600 μL 提取液; 3 000 r·min -1、4 ℃ 离心10 min,取上清液用考马斯亮蓝法测定蛋白含量,取50 μL 上清液加入2 mmol·L -1 4-MUG(4-methylumbelliferyl-β-D-glucuronide,4 - 甲基伞形酮- β - D - 葡萄糖醛酸苷)溶液充分混匀,立刻取出50 μL 加入950 μL 终止液停止反应,作为酶促反应0 点; 然后分别在反应5,10,15,20,30,45,60 min 后取出50 μL 反应液,转入950 μL 反应终止液; 测定激发波长365nm、发射波长455 nm 下的各点荧光值。
2 结果与分析 2.1 不同长度启动子片段的植物表达载体构建将克隆获得的ThVHAc1 基因781 bp 长启动子进行顺式作用元件分析(http://www.dna.affrc.go.jp/PLACE/),发现该启动子片段含有多种元件,如AACACOREOSGLUB1,AMYBOX2,DOFCOREZM,DGATABOX,GT1CONSENSUS,GT1GMSCAM4,IBOXCORE 等。鉴于已有报道证实DOFCOREZM(简写为Dof)元件与抗逆相关,及其在ThVHAc1 基因启动子上的数量和分布,将ThVHAc1 启动子分为3 个长度不同的片段。-1— - 781 区域(简写为781 bp 片段)含有5 个Dof motif; -1— - 504 区域(简写为504 bp 片段)含有3 个Dof motif; 而-1—- 205区域(简写为205 bp 片段),不包含Dof motif(图 1a)。将这3 个片段分别置换pCAMBIA1301 载体上的CaMV35S 启动子,构建植物表达载体(图 1b,c)。
![]() |
图 1 不同长度启动子片段及载体构建 Fig. 1 The different promoter segments and recombinant vector structure |
GUS 染色结果(图 2)显示:正常生长条件下,野生型拟南芥(wild type,WT)为阴性对照,几乎染不上色;空载体转化株系(CaMV35S)在根、茎、叶中均有GUS 染色;205 bp 片段转基因植株的染色稍淡于504 bp 片段,而781 bp 染色则要深于2 个短片段。同时,染色结果(图 2)还表明不同长度片段的表达特性不完全相同:205 bp和504 bp 片段整个植株的GUS 染色比较均匀,表明植株的各个器官具有相似的GUS 表达活性;781 bp 片段转基因植株GUS 染色则在各个叶片中的表达差异较大,其中老叶染色较深,而嫩叶染色则较浅。
![]() |
图2 不同长度ThVHAc1 启动子片段转基因拟南芥GUS 染色 Fig.2 The GUS staining of transgenic Arabidopsis thaliana with different ThVHAc1 promoters under NaCl and CdCl2 stresses |
为了进一步测定各转基因株系的GUS 酶活性,绘制了BSA和4-MU 标准曲线,R2 分别为0. 992 4,0. 989 9(图 3),达到了测定要求。以此为基础测定GUS 酶活性,结果显示WT 几乎检测不到GUS 酶活性,而其他4 个转化株系均有GUS 酶活性,3 个启动子片段的GUS 酶活性依次为781 > 504 > 205(4),表明随着ThVHAc1 启动子长度增加,其表达活性增强。
![]() |
图3 BSA 标准曲线和4-MU 标准曲线 Fig.3 Calibration curves of BSA and 4-MU |
![]() |
图4
不同启动子片段转基因拟南芥株系的GUS 酶活性 图上不同字母表示差异显著( P < 0. 05 )。下同。 Fig.4 The relative GUS activity of different length ThVHAc1 promoters Different letter means the significant difference ( P < 0. 05) . The same below. |
与正常生长条件相比,NaCl 胁迫下除CaMV35S 株系的GUS 染色及酶活性无明显改变外,各启动子片段转基因株系的GUS 染色和酶活性均显著降低。205,504 bp 转基因株系的净GUS酶活性分别仅为对应非胁迫时的40. 9%,46. 3%,而781 bp 转基因株系具有相对较高的启动子表达活性(为非胁迫时的64. 6%),分别为205,504 bp转基因株系的2. 73和2. 07 倍(图 2,4)。这表明相同NaCl 胁迫对长片段表达活性影响要弱于短片段。Dof 元件的数量在3 个启动子片度中依次减少,表明Dof 元件可能对NaCl 胁迫有一定的调节作用。
同时,各启动子片段转基因株系的组织表达特性也发生了一些改变。NaCl 胁迫后,205 bp 转基因株系GUS 染色在叶中变化较明显,在根中变化不明显; 504 bp 转基因株系则在老叶中的染色和表达明显增强,而在嫩叶中减弱,根中变化不明显;781 bp转基因株系的GUS 染色也受到抑制,为非胁迫时的67. 6%(图 2,4,5)。
![]() |
图5 不同启动子片段转基因拟南芥株系不同组织的GUS 酶活性 Fig.5 The GUS activities in different tissues of different length ThVHAc1 promoter segments transgenic Arabidopsis thaliana |
CdCl2 胁迫下各长度片段转基因株系的GUS 染色和酶活性变化趋势与NaCl 胁迫相似。同样,与非胁迫相比,CdCl2 胁迫后各长度片段表达活性显著降低,但其活性稍高于NaCl 胁迫。205,504,781 bp转基因株系的净GUS 酶活性分别为非胁迫时的52. 4%,57. 9%,80. 9%。相对于同一片段来说,CdCl2 胁迫后的组织表达活性也发生了一定的改变: 205 bp 转基因株系的GUS 染色在老叶较深,嫩叶较浅; 504 bp 片段则在各部分的表达较均匀;781 bp 转基因株系则更多叶片的GUS 表达减弱。3个片段比较发现,781 bp 转基因株系GUS 酶活性仍然最高,分别为205,504 bp 的2. 67,2. 07 倍(图 2,4,5)。
3 结论与讨论 3.1 结论本研究通过对ThVHAc1 启动子781,504,205 bp片段在NaCl和CdCl2 胁迫下的表达活性进行分析,探讨ThVHAc1 启动子片段应答逆境胁迫的表达模式。结果显示,ThVHAc1 基因3 个不同长度启动子片段在NaCl、CdCl2 胁迫后整株总表达活性减弱,但长片段活性变化小于短片段; 同时胁迫后各启动子片段的组织表达活性发生改变。这表明ThVHAc1可能参与NaCl、CdCl2 胁迫的调控,启动子的表达活性与其长度有一定的关系。
3.2 讨论研究启动子的表达特异性能反映其目的基因的调控表达方式,探讨逆境胁迫下的表达活性能体现基因对逆境的响应能力,不同片段或区域的启动子表达活性分析可以得知启动子发挥作用的能力(Nikolic' et al., 2010)。以往研究也表明,VHAc 基因启动子的表达具有组织特异性,且与胁迫应答相关。如,Padmanaban 等(2004)对2 个拟南芥VHA-c 启动子的研究表明,拟南芥VHA-c1 的表达响应于光照和黑暗刺激时具有组织表达特性,在展开子叶、黄化苗的子叶下胚轴、根的伸长区能表达,RNAi 干扰后VHA-c1 的表达和生长受到限制; VHA-c3 则与之相反,启动子驱动的GUS 酶活性检测结果表明在幼苗的大多数组织和器官中均不能表达,但在根冠却被强烈诱导,RNAi 干扰后其根长减小、NaCl 耐性减弱。珍珠粟V-ATPase c 亚基基因的启动子也具有明显的组织表达特异性,其主要在茎皮毛和花器官等表达,同时参与胁迫调控响应(Tyagi et al., 2005)。本研究中的205,504,781 bp 3 个启动子片段在拟南芥中的表达也存在组织特异性,且这种特异性也表现出与NaCl、CdCl2 胁迫相关。正常生长条件下,3 个启动子片段转基因株系在根、老叶、嫩叶的GUS 染色深浅及GUS 酶活性大小具明显差异,如205 bp 片段在根、老叶、嫩叶的GUS 酶活性分别为14. 7,63. 5,39. 6 pmol·mg -1 min -1,差异显著。在NaCl、CdCl2 胁迫后,3 个转化株系的GUS 酶总活性降低,在组织之间也体现了显著的差异,且2 种胁迫之间也存在差异,尤其是各组织中活性变化不一致,205 bp 片段启动子在CdCl2 胁迫下老叶中的GUS 表达活性增强,504 bp 则在NaCl 胁迫后其老叶GUS 酶活性增强(图 2,4,5)。
一些研究表明,启动子中的元件直接关系目的基因的表达和功能,如,Cytc-2 的表达必须要含有1个G-box和ACGT 元件的区域或者片段才能实现,ACGT 的突变使得其表达完全丧失,而G-box 突变会降低拟南芥地上部分的表达和毁灭根及环境因子刺激时的表达,上游启动子定位于Ⅱ类元件是大量表达的关键,特别是繁殖器官(Welchen et al., 2009)。本研究结果显示,3 个不同长度片段启动子在正常生长条件、NaCl、CdCl2 胁迫下的表达活性具有差异,胁迫后的表达受影响程度不同。3 个启动子片段的长度划分依据为Dof 元件的数量和分布,781 bp 片段包含的Dof 元件数量最多(5 个),其活性也最高; 其次是504 bp 片段,包含了3 个Dof 元件; 但205 片段不含Dof 元件,其依然具有启动子表达活性。表明Dof 元件可能影响ThVHAc1 基因启动子片段的表达活性,但其表达活性还与其他元件有关。因此后续试验中,将通过突变Dof 元件以分析Dof 元件对ThVHAc1 基因启动子表达活性的影响,并对其他元件对ThVHAc1 基因启动子表达活性的影响进行分析。总之,本研究分析比较了正常生长和NaCl、CdCl2 胁迫条件下ThVHAc1 基因启动子表达活性差异,为进一步研究ThVHAc1 基因抗逆机制奠定了基础。
[1] |
郝彦玲, 朱本忠, 栾春光, 等. 2006. 向日葵种子特异性启动子Ha ds10 G1的克隆及其功能验证. 农业生物技术学报, 14(6):922-925. (Hao Y L, Zhu B Z, Luan C G, et al. 2006. Cloning and identification of sunflower seed-specific promoter Ha ds10 G1. Journal of Agricultural Biotechnology, 14(6):922-925.[In Chinese])( ![]() |
[2] |
聂丽娜, 夏兰琴, 徐兆师, 等. 2008. 植物基因启动子的克隆及其功能研究进展. 植物遗传资源学报, 9(3):385-391. (Nie L N, Xia L Q, Xu Z S, et al. 2008. Progress on cloning and functional study of plant gene promoters. Journal of Plant Genetic Resources, 9(3):385-391.[In Chinese])( ![]() |
[3] |
Akan P, Deloukas P. 2008. DNA sequence and structural properties as predictors of human and mouse promoters. Gene, 410(1):165-176.(![]() |
[4] |
Clough S J, Bent A F. 1998. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16(6):735-743.(![]() |
[5] |
Coca M, Almoguera C, Thomas T, et al. 1996. Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Molecular Biology, 31(4):863-876.(![]() |
[6] |
Dietz K J, Tavakoli N, Kluge C, et al. 2001. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany, 52(363):1969-1980.(![]() |
[7] |
Dong G, Ni Z, Yao Y, et al. 2007. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Molecular Biology, 63(1):73-84.(![]() |
[8] |
Gao C, Wang Y, Jiang B, et al. 2011. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Molecular Biology Reports, 38(2):957-963.(![]() |
[9] |
Guo Y, Qin G, Gu H, et al. 2009. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. The Plant Cell Online, 21(11):3518-3534.(![]() |
[10] |
Holtorf S, Apel K, Bohlmann H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Molecular Biology, 29(4):637-646.(![]() |
[11] |
Kabała K, Janicka-Russak M, Reda M, et al. 2014. Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress. Plant Physiology, 150(1):32-45.(![]() |
[12] |
Nikolić D B, Samardžić J T, Bratić A M, et al. 2010. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress:Protective role of the protein and inducibility of the promoter region under Cu2+ and Cd2+ treatments. Journal of Agricultural and Food Chemistry, 58(6):3488-3494.(![]() |
[13] |
Padmanaban S, Lin X, Perera I, et al. 2004. Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiology, 134(4):1514-1526.(![]() |
[14] |
Tsiantis M S, Bartholomew D M, Smith J A C. 1996. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H+-ATPase in the halophyte Mesembryanthemum crystallinum. The Plant Journal, 9(5):729-736.(![]() |
[15] |
Tyagi W, Rajagopal D, Singla-Pareek S L, et al. 2005. Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promoter that is expressed in shoot hairs and floral organs. Plant and Cell Physiology, 46(8):1411-1422.(![]() |
[16] |
Tyagi W, Singla-Pareek S, Nair S, et al. 2006. A novel isoform of ATPase c subunit from pearl millet that is differentially regulated in response to salinity and calcium. Plant Cell Reports, 25(2):156-163.(![]() |
[17] |
Welchen E, Viola I L, Kim H J, et al. 2009. A segment containing a G-box and an ACGT motif confers differential expression characteristics and responses to the Arabidopsis Cytc-2 gene, encoding an isoform of cytochrome c. Journal of Experimental Botany, 60(3):829-845.(![]() |
[18] |
Zheng L, Liu G, Meng X, et al. 2012. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochemical Genetics, 50(9/10):761-769.(![]() |
[19] |
Zheng L, Liu G, Meng X, et al. 2013. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Molecular Biology, 82(4/5):303-320.(![]() |