林业科学  2015, Vol. 51 Issue (8): 67-73   PDF    
DOI: 10.11707/j.1001-7488.20150809
0

文章信息

杨蕾, 周国英, 梁军
Yang Lei, Zhou Guoying, Liang Jun
2种生防菌株对杨树溃疡病原葡萄座腔菌的抑制作用
Inhibitory Effects of Two Biocontrol Fungous Strains on Poplar Canker Botryosphaeria dothdea
林业科学, 2015, 51(8): 67-73
Scientia Silvae Sinicae, 2015, 51(8): 67-73.
DOI: 10.11707/j.1001-7488.20150809

文章历史

收稿日期:2014-10-30
修回日期:2015-03-16

作者相关文章

杨蕾
周国英
梁军

2种生防菌株对杨树溃疡病原葡萄座腔菌的抑制作用
杨蕾1, 2, 周国英1, 梁军1, 2, 3     
1. 中南林业科技大学经济林培育与保护教育部重点实验室 长沙 410004;
2. 中国林业科学研究院森林生态环境与保护研究所 国家林业局森林保护重点实验室 北京 100091;
3. 南京林业大学南方现代林业协同创新中心 南京 210037
摘要【目的】从生防菌株产生的拮抗作用酶及生防菌株对病原菌生长的影响2方面研究黄绿木霉(YGF9)和木贼镰刀菌(LX6F2)对杨树溃疡病病菌葡萄座腔菌的抑菌机制,为杨树溃疡病的生物防治提供参考。【方法】通过生防菌株在几丁质培养基、纤维素培养基、β-l,3-葡聚糖培养基和酪蛋白培养基上的反应和生长情况,判定生防菌株能否产生几丁质酶、纤维素酶、β-1,3-葡聚糖酶和蛋白酶;通过显微镜观察2种生防菌株对病原菌菌丝生长和孢子萌发的影响。【结果】菌株YGF9和LX6F2代谢过程中均能使β-1,3-葡聚糖培养基中的蓝色消失,说明2种菌株具有产β-1,3-葡聚糖酶的能力;2种菌株可以在酪蛋白培养基上形成水解圈,说明2种菌株具有产蛋白酶的能力;2种菌株在几丁质培养基和纤维素培养基上没有产生水解圈和透明圈,说明2种菌株可能没有产几丁质酶和纤维素酶的能力。菌株LX6F2的菌丝可以与病原菌菌丝平行生长、缠绕或穿插生长在病菌菌丝上,从而使得病原菌菌丝扭曲、变形、异常膨大;菌株YGF9的菌丝使得病原菌菌丝发生折叠、畸形、断裂,从而阻碍病原菌菌丝的生长;2种菌株的发酵产物均可导致杨树溃疡病菌葡萄座腔菌的孢子皱缩畸形、孢子内部结构发生变化,从而使病原菌孢子不能正常萌发;抑菌物质使病原菌芽管变短、扭曲畸形,从而芽管上长出的菌丝不能向前伸展,使孢子失去侵袭能力;生防菌株对孢子萌发的抑制率可达94%以上。【结论】 2种生防菌株可通过自身产生的拮抗作用酶和影响病原菌菌丝生长和孢子萌发来达到对葡萄座腔菌的抑制作用。本试验中未发现2种生防菌株产生几丁质酶和纤维素酶,在后续研究中需用不同的试验方法进行验证。此外,本文仅对生防菌株产生拮抗作用酶进行了定性研究,没有计算其产酶量,若今后需要分离提取这些拮抗作用酶,则需要进一步对生防菌株的产酶量进行定量分析。
关键词杨树溃疡病    黄绿木霉    木贼镰刀菌    葡萄座腔菌    生防菌株    抑菌效果    
Inhibitory Effects of Two Biocontrol Fungous Strains on Poplar Canker Botryosphaeria dothdea
Yang Lei1, 2, Zhou Guoying1, Liang Jun1, 2, 3     
1. Key Laboratory of Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry & Technology Changsha 410004;
2. Key Laboratory of Forest Protection of State Forestry Administration Research Institute of Forest Ecology, Environment and Protection, CAF Beijing 100091;
3. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University Nanjing 210037
Abstract: [Objective] Poplar canker is one of the major biological disaster of poplar plantations in China. Techniques of biological control to restrain poplar canker are sustainable and effective. Trichoderma aureoviride strain YGF9 and Fusarium equiseti strain LX6F2 are two biocontrol strains which were isolated from poplar tissue and soil, respectively. They may have the potential to prevent from and control poplar canker. In order to explore the mechanism of these strains in controlling disease, biocontrol efficacy of the strain YGF9 and the strain LX6F2 on poplar canker caused by Botryosphaeria dothidea were investigated with its antagonism enzyme and inhibition of pathogen's growth. [Method] Production of chitinase, cellulose enzyme, β-1, 3-glucanase and protease by the two strains was determined through the reaction and growth status of the two biocontrol strains grown on chitin medium, cellulose medium, β-1, 3-glucan culture medium and casein medium. Effects of the two biocontrol strains on the pathogen hyphal growth and spore germination were observed through a microscope. [Result] The results showed that the strains YGF9 and LX6F2 could make β-1, 3 glucanase medium's blue color disappear in metabolic process, indicating that the two strains could produce β-1, 3-dextranase. The two strains had the ability to form hydrolyzed circle on casein medium, suggesting that the two strains had the ability to produce protease; The hydrolyzed circle and transparent circle were not generated by the two strains in chitin medium and cellulose hydrolysis medium, inferring that the two strains were not able to produce chitinase and cellulase. The strain LX6F2 hypha grew parallelly to pathogen hyphae, winded or interspersed with pathogen hyphae, so as to make the pathogen hyphae distortion, deformation and enlargement abnormal. The strain YGF9 hypha made pathogen hyphae folding, deformity, fracture, thereby preventing pathogen hyphal growth. The fermentation products of the two biocontrol strains could lead to spores of poplar canker pathogen B. dothidea deformity, and change in the spore internal structure, thus the pathogen spores couldn't germinated normally. The antifungous substances could make germ tubes shorter and twist deformity, so that germ tubes couldn't stretch forward. The inhibition rate of the biocontrol strains to pathogenic spore germination could reach to more than 94%. [Conclusion] It was found that the two biocontrol strains could produce antagonism enzymes and inhibit pathogen's growth, which can interpret why the strain YGF9 and strain LX6F2 could prevent from poplar canker. Chitinase and cellulase produced by the two biocontrol strains were not found in the present experiment, for which, the further study is required by using different experimental methods for validation. In addition, the present study only studied the ability of the two biocontrol strains producing antagonism enzyme in qualitative analysis, the amount of enzyme production, the separation and application of these antagonism enzymes, as well as quantitative analysis of the amount should be studied later.
Key words: poplar canker    Trichoderma aureoviride    Fusarium equiseti    Botryosphaeria dothidea    biocontrol strains    inhibitory effect    

杨树溃疡病是危害杨树(Populus)健康生长的寄主主导型慢性枝干病害,常导致幼树死亡并限制大树的生长,大面积杨树溃疡病的发生会破坏生态环境,带来巨大的经济损失(梁超琼等,2014)。我国杨树溃疡病常表现为“水泡型”、“大斑型”和“烂皮型”3种症状(王义勋等,2008)。水泡型杨树溃疡病病原菌主要是葡萄座腔菌(Botryosphaeria dothidea)。葡萄座腔菌的寄主范围广泛,除杨树外还为害山核桃(Carya cathayensis)、桤木(Alnus spp.)等十几种树木(王璇,2013;梁超琼,2013)。由于目前营建的杨树人工林大多存在品种单一、造林结构不合理等问题,使得杨树溃疡病容易暴发且防治难度很大。微生物源的生物防治对病原菌的抑制作用有很强的专一性、持久性和有效性,并且可以增强寄主植物的抗性,是目前林木病害防治的主要方向(Mejía et al., 2008;Schenwinski et al., 2008)。Ren等(2011)研究发现,吡咯伯克霍尔德氏菌(Burkholderia pyrrocinia)JK-SH007产生的抗菌蛋白可很好地抑制杨树溃疡病菌的生长;袁秀英等(2006)从健康杨树植株的叶(芽)、皮、枝中分离筛选到一株对溃疡病有拮抗活性的青霉属(Penicillium spp.)真菌,哈茨木霉(Trichoderma harzianum)T88菌株和深绿木霉(T.atroviride)T95菌株对能严重危害杨树枝干的杨树烂皮病菌和杨树水泡溃疡病菌有拮抗作用和重寄生现象(高克祥等,2001)。生物防治作用机制的多样和复杂性,为其良好的防治效果提供了前提条件。

在前期研究中,本实验室以杨树溃疡病病原葡萄座腔菌为靶标菌株,分别从杨树组织和杨树林土壤中分离筛选到2株对杨树溃疡病有良好生防效果的菌株YGF9和LX6F2,经鉴定菌株YGF9是一株黄绿木霉(Trichoderma aureoviride)(杨蕾等,2014),菌株LX6F2是一株木贼镰刀菌(Fusarium equiseti)(杨蕾等,2015)。木霉属真菌是对多种植物病原真菌具有拮抗作用的重要生防因子,它们可以通过对植物的促生及诱导植物抗病性来起到抑制病原菌的作用(赵蕾等,2010),此外重寄生也被认为是木霉生物防治的主要机制(杨萍等,2012)。镰刀菌是一类分布广、种类多的真菌,目前对镰刀菌的研究应用可以从2个方面来概括:一方面,镰刀菌可侵染多种植物,引起植物的根腐、茎腐、茎基腐、花腐和穗腐等多种病害(肖杰文等,2011;盛茹媛等,2012);另一方面,一些镰刀菌可作为防治病虫害的优良资源(苑森行,1986;段玉玺等,2010;吴元华,2011)。目前未见黄绿木霉和木贼镰刀菌是杨树病害病原菌的报道。此外,经试验验证,本研究中的黄绿木霉YGF9和木贼镰刀菌LX6F2均不会引起杨树发病。为明确菌株YGF9和LX6F2对病原菌的抑制效果及作用方式,本研究从生防菌株产生的拮抗作用酶及生防菌株对病原菌生长的影响2方面对生防菌株的抑菌机制进行研究,为杨树溃疡病的生物防治提供参考。

1 材料与方法 1.1 试验材料 1.1.1 菌株

葡萄座腔菌由中国林业科学研究院森林保护重点实验室菌种保藏中心提供,编号为72②B;生防菌株YGF9和LX6F2由本实验室分离筛选获得。

1.1.2 培养基

马铃薯葡萄糖培养基(potato dextrose agar,PDA):马铃薯200 g,葡萄糖20 g,琼脂 15~20 g,H2O 1 000 mL。

几丁质基本培养基:胶体几丁质5.0 g,MgSO4·7H2O 0.5 g,FeSO4·7H2O 0.01 g,KH2PO4 0.3 g,K2HPO4 0.7 g,ZnSO4 0.001 g,琼脂20 g,H2O 1 000 mL,pH 7.2~7.4。

胶体几丁质的制备(Rodriguez-Kabana et al., 1983):虾、蟹壳(蝇蛆)粗制品5 g,剪碎,加50 mL丙酮,混匀后加200 mL浓盐酸,搅拌均匀,静置3~5 h,然后用玻璃纤维过滤至冰水中,充分透析2 h,加盖放入冰箱过夜,使其彻底沉淀,3 000~4 000 r·min-1离心20 min,用蒸馏水洗至pH6.0~6.5,灭菌备用。

羧甲基纤维素(CMC)钠培养基(高珍娜等,2010):CMC-Na 5.0 g,MgSO4·7H2O 0.1 g,(NH4)2SO4 0.5 g,K2HPO4 0.25 g,琼脂20 g,H2O 1 000 mL。

β-l,3-葡聚糖培养基(黄晓丽,2009):K2HPO4 17.98 g,KH2PO4 6.8 g,MgSO4·7H2O 0.5 g,FeSO4·7 H2O 0.01 g,酵母粉5.0 g,琼脂18 g,H2O 1 000 mL,茯苓粉4.0 g,苯胺兰100 mg。

酪蛋白培养基(周德庆,1993):酵母粉5.0 g,NaCl 5.0 g,琼脂18 g,H2O 900 mL,另取新鲜脱脂牛奶100 mL,将两液分开灭菌,待冷却至45~50 ℃时,将两液混匀倒平板,即成牛奶平板,将平板倒置过夜,使表面水分干燥,备用。

1.1.3 试剂

上述培养基中所需试剂均购买于北京福尔彻科技有限公司。

1.1.4 仪器设备

MLS-3750全自动高压蒸汽灭菌锅,日本SANYO公司;全能台式高速冷冻离心机,美国Thermo Fisher Scientific公司;BX51显微镜,日本OLYMPUS公司。

1.2 试验设计 1.2.1 生防菌株产生拮抗作用酶分析

将活化培养4天的菌种点接在几种鉴定拮抗作用酶的培养基上,每皿点接3次,于25 ℃恒温培养3~7天,观察是否有颜色变化或是透明圈产生。每个处理重复5次。

1.2.2 生防菌株抑制病原菌生长及孢子萌发

1)生防菌株对病原菌菌丝生长的影响在PDA平板中央接种病原菌,距病原菌接种点3 cm处接种生防菌株,在两菌中间45°角斜插盖玻片,同时做空白对照,28 ℃恒温培养4天,缓慢抽出盖玻片,截取病原菌生长边缘处的玻片为观察样品,在光学显微镜下观察菌丝形态结构特征。

2)生防菌株对病原菌孢子萌发的影响采用载玻片悬滴法。将杨树溃疡病病原菌接种于PDA平板上,28 ℃下培养7天。用无菌水洗下菌落,4层灭菌纱布过滤制成孢子悬浮液,与等量生防菌株发酵液混合,滴到凹玻片中,再将凹玻片放入纱布保湿的培养皿中,盖好培养皿,置于28 ℃下培养,分别于8,24,48 h在10×20倍镜下检测孢子的萌发情况及数量,每个处理重复3次,以与无菌水混合处理作为对照(计红芳等,2008)。

1.3 指标测定 1.3.1 几丁质酶(赵蕾,1998)

几丁质在琼脂培养基中呈微粒悬浮状,在几丁质酶的水解作用下,几丁质被水解为可溶性小分子物质。有透明圈则表明该菌株有几丁质酶活性,透明圈的大小与几丁质酶活性大小呈正相关。

1.3.2 纤维素酶(叶姜瑜,1997)

接种生防菌株培养3天后,将刚果红染液滴加在培养基上,在纤维素酶的作用下,纤维素被水解成多糖水解物,再与刚果红强烈作用,使刚果红红色消失,形成透明圈。有透明圈则表明该菌株产纤维素酶,透明圈的大小与纤维素酶活性大小呈正相关。

1.3.3 β-1,3-葡聚糖酶(赵蕾,1998)

茯苓粉中β-1,3-葡聚糖与苯胺蓝结合呈蓝色,在β-1,3-葡聚糖酶的作用下β-1,3-葡聚糖被水解,蓝色消失。蓝色消失后有透明圈形成则表明该菌株有葡聚糖酶,透明圈的大小与葡聚糖酶活性大小呈正相关。

1.3.4 蛋白酶(周德庆,1993)

蛋白酶会使培养基中的蛋白质水解从而形成水解圈,同时菌体也会发生颜色及形态的变化。通过观察培养基上有无水解圈的产生及菌株形态的变化,可以确定生防菌株有无产蛋白酶的能力。

1.4 数据分析

所有数据均进行标准差的计算并用Excel绘制相应图表;采用SPSS 17.0 统计分析软件对数据进行方差分析、t检验或相关分析,当方差分析结果差异显著(P<0.05)时进行Duncan氏新复极差法多重比较。

2 结果与分析 2.1 生防菌株产生的拮抗作用酶

生防菌株LX6F2和YGF9代谢过程中均能产生β-1,3-葡聚糖酶和蛋白酶(图 1图 2),并且YGF9菌株产β-1,3-葡聚糖酶的能力高于LX6F2菌株,在显色反应中,YGF9可使培养基的蓝色完全消失。菌株LX6F2和YGF9可产生一定量的蛋白酶,使得培养基上有透明的蛋白质水解圈出现,同时在培养基上两菌株的形态发生了一定的变化,菌落颜色变浅,菌丝较为稀疏。

图 1 生防菌株产β-1,3-葡聚糖酶的能力 Fig. 1 Ability of biocontrol strains to produce β-1,3-dextranase A.YGF9菌株使培养基中的蓝色完全消失YGF9 strain made blue of the culture medium disappear entirely; B. LX6F2菌株在培养基上形成明显透明圈 LX6F2 strain formed clear transparent circle on the medium.
图 2 生防菌株产蛋白酶的能力 Fig. 2 Ability of biocontrol strains to produce protease A. YGF9;B. LX6F2.

在几丁质培养基上,2种生防菌株均没有出现水解透明圈。在羧甲基纤维素(CMC)钠培养基上,2种菌株均能生长,但没有使得培养基中刚果红红色消失而形成透明圈。说明YGF9和LX6F2菌株可能没有产生几丁质酶和纤维素酶的能力。

2.2 生防菌株抑制病原菌菌丝生长和孢子萌发

生防菌株菌丝以多种方式寄生于病原菌菌丝上(图 34)。菌株LX6F2的菌丝可以与病原菌菌丝平行生长、缠绕在病菌菌丝上,有的还可穿透病原菌菌丝和穿入病原菌菌丝并在其上生长,从而使得病原菌菌丝扭曲、变形、异常膨大等;菌株YGF9的菌丝使得病原菌菌丝发生折叠、畸形、断裂。同时,生防菌株菌丝寄生于病菌菌丝上,使病菌的细胞质变稀薄而不能正常生长;生防菌株通过代谢产生酶的作用分解菌丝细胞壁,使之消解、断裂。由此可见,菌株YGF9和LX6F2对植物病原菌的重寄生作用是其抑制病原菌的作用机制之一。

图 3 生防菌株LX6F2对病原菌菌丝生长的影响 Fig. 3 Effects of the biocontrol strain LX6F2 on mycelial growth of pathogen Bd.葡萄座腔菌 Botryosphaeria dothidea; L. 生防菌株LX6F2 Biocontrol strain LX6F2. A.正常菌丝Normal hyphal growth in a control; B,C.为受抑制的病菌菌丝 The abnormal hyphal morphology of Botryosphaeria dothidea.

2种生防菌株发酵后产生的抑菌物质能影响杨树溃疡病菌葡萄座腔菌孢子和芽管的正常萌发和生长。2种生防菌株的发酵产物均可导致杨树溃疡病菌葡萄座腔菌的孢子皱缩畸形、孢子内部结构发生变化,从而使孢子不能正常萌发。抑菌物质使病原菌芽管变短、扭曲畸形,从而芽管上长出的菌丝不能向前伸展,使孢子失去侵袭能力(图 5)。通过孢子萌发数的观察统计结果(表 1),经SPSS双因素双变量方差分析发现,生防菌株发酵液的处理和萌发时间都对病原菌孢子的萌发数和萌发抑制率有显著影响,2种生防菌株之间的孢子萌发抑制率差异不显著。2种生防菌株对孢子萌发的抑制率可达94%以上,其中菌株LX6F2在48 h的萌发抑制率为95.26%。

图 4 生防菌株YGF9对病原菌菌丝生长的影响 Fig. 4 Effects of the biocontrol strain YGF9 on mycelial growth of pathogen Bd. 葡萄座腔菌,Botryosphaeria dothidea; Y. 生防菌株YGF9 Biocontrol strain YGF9. A.YGF9菌丝缠绕病原菌YGF9 hyphal winded with pathogen hyphae; B. YGF9孢子使病原菌菌丝折叠Pathogen hyphae been folded by YGF9 spores; C.YGF9使病原菌菌丝断裂Pathogen hyphae been breaked by YGF9 spores.
图 5 生防菌株对病原菌孢子和芽管的影响 Fig. 5 Effects of the biocontrol strains YGF9 and LX6F2 on spores and germ tubes of pathogen A.正常分生孢子萌发Normal spore germination in a control; B.受YGF9影响的孢子和芽管 The effect of strain YGF9 on spores and germ tubes of pathogen; C.受LX6F2影响的孢子和芽管The effect of strain LX6F2 on spores and germ tubes of pathogen.
表 1 生防菌株对病原菌孢子萌发的影响 Tab.1 Effects of biocontrol strains on spore germination of pathogen
3 结论与讨论

本文从生防菌株产生拮抗的作用酶和生防菌株对病原菌生长的影响2方面研究了 黄绿木霉YGF9和木贼镰刀菌LX6F2对杨树溃疡病原葡萄座腔菌的抑菌效果和作用方式,得到以下主要结论: 1)2种生防菌株均可产生β-1,3-葡聚糖酶和蛋白酶; 2)菌株YGF9和LX6F2通过对病原菌菌丝的平行、缠绕、穿插生长来阻碍病原菌菌丝的生长,通过抑制病原菌孢子的萌发从而降低病原菌的繁殖力。

3.1 拮抗作用酶

研究发现干扰真菌的细胞壁组分葡聚糖、几丁质和各种甘露蛋白的合成,从而导致细胞壁的缺损,是抗真菌作用机制之一。β-1,3-葡聚糖酶是一种抗真菌蛋白,能催化真菌细胞壁组分葡聚糖的水解,从而破坏细胞壁的完整性(Josen et al., 1996),如棘白霉素类化合物通过干扰细胞壁葡聚糖的合成而发挥抗真菌作用(Denning,2003)。几丁质酶具有广谱性抑菌作用,可抑制孢子萌发和菌丝生长,使胞壁破裂,其与类似酶或杀菌剂混合使用具有协同增效作用(郭润芳等,2002)。绿色木霉(Trichoderma viride)菌株Tr9701能产生几丁质酶,其酶粗提液对立枯病菌(Rhizoctonia solani)、灰霉病菌(Botrytis cinerea)有显著抑制作用(王勇等,2008)。杨丽荣等(2012)对绿色木霉的几丁质基因进行了克隆表达,发现表达产物对小麦全蚀病(Gaeumannomyces graminis var. tritici)、赤霉病(Fusarium graminearum)、纹枯病(Rhizotonia cerealis)病原菌显示出较好的抑菌活性。在本试验中,生防菌株黄绿木霉YGF9和木贼镰刀菌LX6F2表现出了很好的产β-1,3-葡聚糖酶和蛋白酶的能力,未能发现2种生防菌株产生几丁质酶和纤维素酶,但这并不能断定该菌株缺乏产这2种拮抗作用酶的能力,也可能与采用的试验方法有关。此外,几丁质酶是一种诱导酶,在有底物存在的条件下,可能被诱导产生,而在本研究中没有进行相关的处理。杨树溃疡病病菌葡萄座腔菌菌丝细胞壁的组成是以几丁质为骨架,β-1,3-葡聚糖为填充物,还有少量的蛋白质,因此,在后续试验中,可以用葡萄座腔菌的细胞壁作为底物,进行生防菌株产几丁质酶活性的诱导和验证。

3.2 菌丝生长和孢子萌发

抑制病原菌菌丝生长和孢子萌发是很多生防菌株的抑菌机制之一。发酵产物抑制作用测定发现,内生真菌Chaetomium globosum L18 能够分泌产生抗菌物质抑制病原菌菌丝的生长和孢子萌发(王艳红等,2012)。拮抗细菌CE抑菌物质致使菌丝和分生孢子形态异常,细胞内液泡增多,分生孢子不能萌发(杨海清等,2011)。放线菌TA21菌株能很好地抑制烟草根黑腐病菌(Thielaviopsis basicola)菌丝的生长及其致病力,较低浓度的发酵滤液也能使病原菌孢子畸形,影响萌发(易龙等,2010)。链霉菌(Streptomyces sp.)182-2的抑菌活性组分可导致烟草赤星病(Alternaria alternate Fries Keissler)病原菌菌丝和孢子萌发产生的芽管变形扭曲或产生大泡囊(高芬等,2012)。生防菌株YGF9和LX6F2同样能够通过作用于病原菌的菌丝和孢子从而抑制其生长。

本试验仅对生防菌株产生拮抗作用酶进行了定性研究,并没有计算其产酶量,若今后需要分离提取这些拮抗作用酶,则需要进一步对生防菌株的产酶量进行定量分析。

参考文献(References)
[1] 段玉玺,曲泽岚,王媛媛,等.2010.南方根结线虫生防镰刀菌菌株筛选.农药,49(8): 607-620.
(Duan Y X,Qu Z L,Wang Y Y,et al.2010.Screening the strains of Fnsarium against Meloidogyne incognita.Agrochemicals,49(8):607-620[in Chinese]).(1)
[2] 高芬,吕赛飞,王梦亮.2012.链霉菌182-2抗真菌活性物质的分离及抑菌特性的初步研究.植物保护,38(1): 71-75.
(Gao F,LüS F,Wang M L.2012.Preliminary purification and characterization of antifungal substance produced by Streptomyces sp.182-2.Plant Protection,38(1): 71-75[in Chinese]).(1)
[3] 高克祥,刘晓光,郭润芳,等.2001.木霉菌对杨树树皮溃疡病菌拮抗作用的研究.林业科学,37(5): 82-88.
(Gao K X,Liu X G,Guo R F,et al.2001.Study on the antagonism of Trichoderma sp.on canker pathogen fungai of popular.Scientia Silvae Sinicae,37(5): 82-88[in Chinese]).(1)
[4] 高珍娜,吕文静,谢航,等.2010.纤维素降解菌的筛选与诱变育种.福州大学学报:自然科学版,38(3): 450-455.
(Gao Z N,LüW J,Xie H,et al.2010.Screening and breeding by induced mutation of cellulose-degrading strains.Journal of Fuzhou University:Natural Science,38(3): 450-455[in Chinese]).(1)
[5] 郭润芳,刘晓光,高克祥,等.2002.拮抗木霉菌在生物防治中的应用与研究进展.中国生物防治,18(4): 180-184.
(Guo R F,Liu X G,Gao K X,et al.2002.Progress in biocontrol research with Trichoderma.Chinese Journal of Biological Control,18(4): 180-184[in Chinese]).(1)
[6] 黄晓丽.2009.毛壳菌(Chaetomium spp.)生防菌株的筛选及其生物防治机制研究.雅安:四川农业大学硕士学位论文.
(Huang X L.2009.Screens bioeontrol strains from Chaetomium spp.and studies on bioeontrol mechanisms of Chaetomium spp.Ya'an: MS thesis of Sichuan Agricultural University[in Chinese]).(1)
[7] 计红芳,张令文,宋瑞清.2008.绒白乳菇发酵液提取物对杨树叶枯病菌抑菌机理的初步研究.北京林业大学学报,30(4): 146-149.
(Ji F H,Zhang L W,Song R Q.2008.Inhibiting mechanism of the extraction of Lactarius vellereus fermenting liquid on Alternaria alternata in poplar.Journal of Beijing Forestry University,30(4): 146-149[in Chinese]).(1)
[8] 梁超琼,曹支敏,陈敏,等.2014.杨树水泡型溃疡病菌培养性状无性型与分子系统学分析.林业科学,50(4): 66-50.
(Liang C Q,Cao Z M,Chen M,et al.2014.Cultural characteristics,anamorph and DNA phylogeny of Botryosphaeria dothidea causing poplar canker.Scientia Silvae Sinicae,50(4): 66-50[in Chinese]).(1)
[9] 梁超琼.2013.杨树溃疡病菌(Botryosphaeria dothidea)生理生化及其分子系统发育研究.杨凌:西北农林科技大学硕士学位论文.
(Liang C Q.2013.Physiological differentiation and phylogeny of Botryosphaeria dothidea causing poplar canker.Yanglin: MS thesis of Northwest A&F University[in Chinese]).(1)
[10] 盛茹媛,肖长坤,郑书恒,等.2012.镰刀菌引起的北京市草莓根腐病病原鉴定.中国蔬菜,(12): 52-56.
(Sheng R Y,Xiao C K,Zheng S H,et al.2014.Identification of strawberry root rot pathogeny caused by Fusarium in Beijing.China Vegetables,(12):52-56[in Chinese]).(1)
[11] 王勇,王万立,刘春艳,等.2008.绿色木霉Tr9701对多种病原菌的抑制作用及其抑病机理.中国农学通报,24(1): 371-374.
(Wang Y,Wang W L,Liu C Y,et al.2008.The study on inhibition activities and mechanisms of Trichoderma viride Tr9701.Chinese Agricultural Science Bulletin,24(1): 371-374[in Chinese]).(1)
[12] 王璇.2013.山核桃干腐病病原菌的鉴定及其系统发育分析.临安:浙江农林大学硕士学位论文.
(Wang X.2013.Identification and phylogeny of the pathogens causing stem canker of Carya cathayensis.Lin'an: MS thesis of Zhejing A&F University[in Chinese]).(1)
[13] 王艳红,吴晓民,朱艳萍,等.2012.温郁金内生真菌Chaetomium globosum L18对植物病原菌的抑菌谱及拮抗机理.生态学报,32(7): 2040-2046.
(Wang Y H,Wu X M,Zhu Y P,et al.2012.Inhibition effects and mechanisms of the endophytic fungus Chaetomium globosum L18 from Curcuma wenyujin.Acta Ecologica Sinica,32(7): 2040-2046[in Chinese]).(1)
[14] 王义勋,陈京元,蔡三山,等.2008.杨树溃疡病研究进展.湖北林业科技,(3): 39-41.
(Wang Y X,Chen J Y,Cai S S,et al.2008.Advances on Populus sp.Canker.Hubei Forestry Science and Technology,(3): 39-41[in Chinese]).(1)
[15] 吴元华,宁繁华,刘晓琳,等.2011.生防镰刀菌(Fusarium spp.)对烟草列当的防效.烟草科技,291(10):78-80.
(Wu Y H,Ning F H,Liu X L,et al.2011.Biological control effects of Fusarium sp.against Orobance in tobacco field.Tobacco Science & Technology,291(10):78-80[in Chinese]).(1)
[16] 肖杰文,冉俊祥,杨占臣,等.2011.美国大豆中镰刀菌的分离鉴定.植物检疫,25(1): 29-32.
(Xiao J W,Ran J X,Yang Z C,et al.2011.Idendification of Fusarium isolates from America soybean.Plant Quarantine,25(1): 29-32[in Chinese]).(1)
[17] 杨海清,赵筱萌,赵晓燕,等.2011.桃树根际拮抗细菌CE抑菌物质对桃褐腐病菌的抑制作用和稳定性研究.果树学报,28(2): 204-208.
(Yang H Q,Zhao X M,Zhao X Y,et al.2011.Antifungal mechanism aganist Monilinia fruticola and stability of the antagonistic substance from bacterium strain CE.Journal of Fruit Science,28(2): 204-208[in Chinese]).(1)
[18] 杨蕾,梁军,周国英,等.2015.土壤中杨树溃疡病生防菌的分离鉴定.林业科学,51(4): 116-125.
(Yang L,Liang J,Zhou G Y,et al.2015.Study on isolation and identification of bio-control microorganisms to poplar canker in soil.Scientia Silvae Sinicae,51(4): 116-125[in Chinese]).(1)
[19] 杨蕾,周国英,梁军,等.2014.防治杨树溃疡病内生菌的分离筛选及鉴定.植物保护学报,41(4): 438-446.
(Yang L,Zhou G Y,Liang J,et al.Isolation,screening and identification of endogenous microorganisms to poplar canker.Acta Phytophylacica Sinica,41(4): 438-446[in Chinese]).(1)
[20] 杨丽荣,孙虎,雷振生,等.2012.绿色木霉几丁质酶基因Tvchi cDNA的克隆、原核表达与活性分析.植物病理学报,42(2): 139-145.
(Yang L R,Sun H,Lei Z S,et al.2012.Cloning,prokaryotic expression and activity assay of chitinase(Tvchi)from Trichoderma viride.Acta Phytopathologica Sinica,42(2): 139-145[in Chinese]).(1)
[21] 叶姜瑜.1997.一种纤维素分解菌鉴别培养基.微生物学通报,24(4): 251-252.
(Ye J Y.1997.A kind of cellulose-degrading strains culture.Microbiology China,24(4): 251-252[in Chinese]).(1)
[22] 易龙,肖崇刚,马冠华,等.2010.拮抗放线菌TA21对烟草根黑腐病菌的抑制及其控病作用.中国生物防治,26(2):186-192.
(Yi L,Xiao C G,Ma G H,et al.2010.Biocontrol effect and inhibition activity of antagonistic actinomycetes strain TA21 against Thielaviopsis basicola.Chinese Journal of Biological Control,26(2):186-192[in Chinese]).(1)
[23] 苑森行,杨玉景.1986.虫生真菌-木贼镰刀菌的初步研究.微生物学通报,3(2):13-14.
(Yuan S X,Yang Y J.1986.Preliminary study on entomogenous fungi Fusarium equiseti. Microbiology China,3(2):13-14[in Chinese]).(1)
[24] 袁秀英,白红霞,白玉明,等.2006.杨树内生真菌的分离和拮抗生防菌的筛选.林业科学研究,19(6):713-717.
(Yuan X Y,Bai H X,Bai Y M,et al.2006.Isolation of endophytes and screen of antagonistic strains in poplar trees.Forest Research,19(6):713-717[in Chinese]).(1)
[25] 赵蕾.1998.绿色木霉对灰霉病菌拮抗机制的初步研究.植物保护,24(2): 36-37.
(Zhao L.1998.Preliminary study of the antagonism mechanism of Trichoderma viride to Botrytis cinerea.Plant Protection,24(2): 36-37[in Chinese]).(2)
[26] 赵蕾,滕安娜.2010.木霉对植物的促生及诱导抗性研究进展.植物保护,36(3): 43-46.
(Zhao L,Teng A N.2010.Research progress in Trichoderma stimulated plant growth and induced plant resistance.Plant Protection,36(3): 43-46[in Chinese]).(1)
[27] 周德庆.1993.微生物学实验教程.上海:复旦大学出版社.
(Zhou D Q.1993.Laboratory experiments in microbiology.Shanghai: Fudan University Press.[in Chinese])(2)
[28] Denning D W.2003.Echinocandin antifungal drugs.The Lancet,362(9390):1142-1151.(1)
[29] Josen L G,Olsen O,Kops O,et al.1996.Transgenic barley expressing a protein-engineered thermostable(1,3-1,4)-beta-1,3-glucanase during germination.Proceedings of Nation Academy of Sciences of the United States of America,93(8): 3487-3491.(1)
[30] Mejía L C,Rojas E I,Maynard Z,et al.2008.Endophytic fungi as biocontrol agents of Theobroma cacao pathogens.Biological Control,46(1): 4-14.(1)
[31] Ren J H,Ye J R,Liu H,et al.2011.Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent.World J Microbiol Biotechnol,27(9):2203-2215.(1)
[32] Rodriguez-Kabana R,Godoy G,Morgan-Jones G,et al.1983.The determination of soil chitinase activity: conditions for assay and ecological studies.Plant and Soil,75(1): 95-106.(1)
[33] Scherwinski K,Grosch R,Berg G.2008.Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible,short-term effects on nontarget microorganisms.FEMS Microbiology Ecology,64(1): 106-116.(1)